

Introduction
Optimization options control compile time optimizations to generate an application with
code that executes more quickly. Absoft Fortran 90/95 is an advanced optimizing
compiler. Various optimizers can be turned on that discover different opportunities to
optimize Fortran code. There are pros and cons when choosing optimizations; the
application will execute much faster after compilation but the compilation speed itself
will be slow. Some of the optimizations described below will benefit almost any Fortran
code, while others should only be applied to specific situations.

No Optimization
The –O0 option is the default optimization level and provides the fastest compilation
speed. It disables all optimizations and is useful for debugging. The -g option is the
common debugging flag used with this level of optimization.

Basic Optimizations
The –O1 option will cause most code to run faster and enables optimizations that only
span sequential code sequences. The optimizations include, but are not limited to,
common subexpression elimination, constant propagation, dead code elimination, and
instruction scheduling. This option is compatible with debugging options.

Normal Optimizations
The –O2 option enables normal optimizers that can make most code run faster. It can
substantially rearrange the code generated for a program. The optimizations include, but
not limited to, strength reduction, partial redundancy elimination, innermost loop
unrolling, control flow optimizations, advanced instruction scheduling. This option is not
generally usable with debugging options.

Advanced Optimizations
The –O3 option enables advanced optimizers that can significantly rearrange and modify
the code generated for a program. It provides all optimizations applied with –O1 and –O2.
Additional optimizations include auto loop vectorization, loop permutation (loop
reordering), loop tiling (improved cache performance), loop skewing, loop reversal, loop
fusion and fission, unimodular transformations, forward substitution, and expression
simplification. This option is not usable with debugging options.

Inter-Procedural Optimizations
The -O4 or -Ofast option enables advanced optimizers that can significantly rearrange and
modify the code generated for a program. The optimizations include all optimizations
that are included with –O3 as well as turning on inter-procedural analysis with inlining
optimizers.

Auto-Parallelization
The –apo option enables automatic parallelization of those loops in your source program
to leverage multiple cores or processors.

SSE Optimizations
These optimizations leverage the Streaming SIMD Extension (SSE) instruction set of the
CPU. These instructions were first introduced with the Intel Pentium 4 as part of the
SIMD (single instruction, multiple data) processor supplementary instruction sets.

SSE2 instructions
The –msse2 and –mno-sse2 options enable and disable respectively the use of SSE2
instructions for floating-point operations. This –msse2 option is automatically enabled on
processors which support SSE2. It may be disabled with the –mno-sse2 option.

SSE3 instructions
The -msse3 option enables the use of SSE3 instructions for floating-point operations. This
option is automatically turned on when the -march=host option is specified and the host
supports SSE3 instructions.

SSE4a instructions
The -msse4a option enables the use of SSE4a instructions. This option is automatically
turned on when the -march=host option is specified and the host supports SSE4a
instructions.

SSSE4.1 instructions
The -msse4.1 option enables the use of SSE4.1 instructions. This option is automatically
turned on when the -march=host option is specified and the host supports SSSE4.1
instructions

Math Optimization Level
The -speed_math=n option enables aggressive math optimizations that may improve
performance at the expense of accuracy. Valid arguments for n are 0-11. The following
table describes the effect of each level:

n effect
0 enable wrap around optimization
1 allow relational operator folding; may cause signed integer overflow
2 enable partial redundancy elimination for loads and stores
3 enable memory optimization for functions without aliased arrays
4 inline NINT and related intrinsics with limited-domain algorithm
 use fast_powf in libm instead of powf
5 use multiplication and square root for exp() where faster
6 allow optimizations that reassociate floating point operators
7 see notes below
8 allow use of reciprocal instruction; convert a/b to a*(1/b)
9 use fast algorithms with limited domains for complex norm and divide
 use x*rsqrt(x) for sqrt(x) on machines where faster
 dead casgn function elimination
10 use AMD ACML library if applicable
11 allow relational operator folding; may cause unsigned integer overflow
 use IEEE rounding instead of Fortran rounding for NINT intrinsics
 use IEEE rounding instead of Fortran rounding for ANINT intrinsics

NOTES:

A. Departure from strict rounding is applied at 3 levels: level 1 is applied at n=5,
level 2 is applied at n=7, and level 3 is applied at n=10.

B. Conformance to IEEE-754 arithmetic rules is relaxed at 2 levels: level 1 is applied
at n=6, level 2 is applied at n=10

C. At n=10, the loop unrolling constraints are modified: loop size is increased to
7000, limit is increased to 9, minimum iteration is decreased to 200.

Enable OpenMP Directives
The -openmp option enables the recognition of OpenMP directives. OpenMP directives
usually begin in column one in the form of:

C$OMP for fixed source format
!$OMP for free source format

Please refer OpenMP Specification for the detail.

OpenMP optimization Level
The –speed_openmp=n enables progressively more aggressive OpenMP optimizations
based on the value of n as follows:

n effect
0 allow code optimization and movement through OpenMP Barrier
1 enable loose memory equivalence algorithm during optimization
2 Enable MU generation in SSA generation for OpenMP pragma
3 Enable CHI generation in SSA generation for OpenMP pragma
4 Allow loop unrolling for loops with OpenMP chunksize directive
5 Use a risky but faster algorithm to handle thread private common blocks

Each level includes all previous optimizations (e.g. 3 includes 0,1, and 2).

Safe Floating-Point
The –safefp option is used to disable optimizations that may produce inaccurate or invalid
floating point results in numerically sensitive codes. The effect of this option is to
preserve the FPU control word, enable NAN checks, disable CABS inlining, and disable
floating-point register variables.

Optimization Diagnostics
These options do not perform optimizations; rather they are used to provide diagnostic
information on which optimizations were performed. Equally importantly, they provide
diagnostic information on which optimizations were not performed and why not.

Report Parallelization Results
The –LNO:verbose=on option is used to display the results of the –apo option. It will
report which loops were parallelized and which were not and why not.

Report Vectorization Results
The –LNO:simd_verbose=on option is used to display the results of vectorization of loops
which occurs at optimization levels greater than –O3. It will report which loops were
vectorized and which were not and why not.

Loop Nest Optimizations
These options are used to control the loop nest optimizer in the compiler to deliver the
best performance for a specific code. Usually, the default level is designed to achieve
performance improvement for most situations. The aggressive level may achieve
additional speed improvements, but it may also produce performance degradation. Thus,
a set of options for individual optimizations is given to professional tuners for pursuing
the best performance improvement. For loop nest optimizations, the options starts with
-LNO:.

Loop Vectorization (SIMD Vectorization)
The –LNO:simd=n option is used to control loop vectorization and utilizes Streaming
SIMD Extension (SSE) instruction sets provided by certain processors to work on
multiple pieces of data at once. n=0 disables loop vectorization. n=1 is the default
vectorization. n=2 enables aggressive vectorization. When –O3 is used, -LNO:simd=1 is
implied.

Loop Tiling/Blocking
The –CG:blocking=[on|off] option is used to enable/disable the loop tiling optimization,
that transforms the loop space in order to significant improve cache locality.

Loop Fusion and Fission
The –LNO:fusion=n option is used to control loop fusion which merges two small
consecutive loops into one larger loop in order to improve utilization of CPU resources.
n=0 disables fusion. n=1 is the default level. n=2 is the aggressive level. When –O3 is
used, –LNO:fusion=1 is implied.

The –LNO:fission=n option is used to control loop fission which splits one large loop into
two smaller loops to reduce excessive register usage. n=0 disables fission. n=1 is the
default level. n=2 is the aggressive level. When the –O3 is used–LNO:fission=2 is implied.

Note: When both fusion and fission are performed on a same loop, fusion has a higher

priority than fission.

The option –LNO:fusion_max_size=n, where n=0-99999, can be used to prevent fusion of
loops whose size is greater than n.

Unroll-and-Jam
The option –LNO:fu=n, where n=0-100, is used to control unroll-and-jam on the
innermost loop, which completely unrolls the innermost loop body to a straight line of
code if the iteration is more than the limit n. The enlarged loop body may improve
utilization of CPU resources. However, if the loop body is too large, performance may
degrade due to register pressure.

The option –LNO:full_unroll_size=n, where n=0-10000, is used to limit unroll-and-jam of
the innermost loop. Unrolling is disabled if the size of the innermost loop body is greater
than the limit n.

The option –LNO:ou=n, where n=1-32 is used to set the number of iterations that the outer
loop is unrolled to the limit n.

Prefetch
The –LNO:prefetch=n option is used to control how the compiler generates prefetch
instructions for memory loads and stores to improve cache locality. n=0 disables prefetch
generation. n=1 is the default level. n=2 is the aggressive level.

Code Generation Optimizations
The code generator contains its own optimizer and various options are designed to fine
tune those optimizations. These options are prefixed with –CG:.

Global Code Motion
The –CG:gcm=[on|off] option is used to enable/disable the instruction level global code
motion optimization. This optimization is designed to improve scheduling efficiency.

Instruction Level Loop Optimization
The –CG:loop_opt=[on|off] option is used to enable/disable the instruction level loop
optimization, especially loop unrolling. Instruction level loop unrolling may make some
OpenMP programs fail due to changes in iteration counts.

Peephole Optimizations
The –CG:peephole_optimize=[on|off] option is used to enable/disable the instruction level
peephole optimizations. Peephole optimizations include many small optimizations to
improve the efficiency of instructions generated by code generator.

Control Flow Optimization
The –CG:cflow=[on|off] option is used to enable/disable instruction level control flow
optimization. This optimization rearranges the order of basic blocks to improve
performance on critical paths.

Hyperblock Scheduling
The –CG:hb_sched=[on|off] option is used to enable/disable the hyperblock scheduling.
Hyperblock scheduling is an advanced scheduling technique to schedule code based on a
hyperblock instead of a super block or a basic block.

Inter-Procedural Analysis and Optimization
Inter-procedural analysis collects information from every piece of a program and
analyzes their relationships in order to optimize for better performance. The options to
control inter-procedural analysis start are prefixed with –IPA:.

Inlining
The –IPA:inline=[on|off] option is used to enable/disable the inliner. This optimization
improves performance by removing those calls to small functions and incorporating them
inline at the point of reference.

The option –IPA:plimit=n, where n=0-INT_MAX, is used to limit the inliner to a specific
number of calls and basic blocks inside the function under consideration.

Cloning
The option –IPA:multi_clone=n, where n=0-INT_MAX, is used to control the maximum
clones per call graph node to the upper bound n. When n is 0, cloning is disabled.

Inter-Procedural Structure Optimization
The –IPA:optimize_struct=[0|1] option is used to enable/disable the inter-procedural struct
optimization. If set to 0, this optimization is disabled. If set to 1, this optimization is
enabled. This optimization results in splitting structure types to improve performance.

Inter-Procedural Constant Propagation
The –IPA:cprop=[on|off] option is used to enable/disable inter-procedural constant
propagation.

AMD ACML Library

The –OPT:fast_math=[on|off] option is used to enable/disable the utilization of the AMD
ACML Library. The AMD ACML library is a free math library released by AMD for
improving mathematic computation speed on AMD processors. When the option is on,
the compiler will convert certain math functions to use the ACML library to improve
performance. The library must be specified to the linker if this option is on.

Copyright 2010 Absoft Corporation

	�
	Introduction
	No Optimization
	Basic Optimizations
	Normal Optimizations
	Advanced Optimizations
	Inter-Procedural Optimizations
	Auto-Parallelization
	SSE Optimizations
	SSE2 instructions
	SSE3 instructions
	SSE4a instructions
	SSSE4.1 instructions

	Math Optimization Level
	Enable OpenMP Directives
	OpenMP optimization Level
	Safe Floating-Point
	Optimization Diagnostics
	Report Parallelization Results
	Report Vectorization Results

	Loop Nest Optimizations
	Loop Vectorization (SIMD Vectorization)
	Loop Tiling/Blocking
	Loop Fusion and Fission
	Unroll-and-Jam

	Prefetch
	Code Generation Optimizations
	Global Code Motion
	Instruction Level Loop Optimization
	Peephole Optimizations
	Control Flow Optimization
	Hyperblock Scheduling
	Inter-Procedural Analysis and Optimization
	Inlining
	Cloning

	Inter-Procedural Structure Optimization
	Inter-Procedural Constant Propagation

	AMD ACML Library

