Visual Nﬁsﬂ

A Rogue Wave Software Company

Fortran Numerical Library User’s Guide marx usrary

VERSION 7.0

Visual--my

A Rogue Wave Software Company

CORPORATE HEADQUARTERS
Rogue Wave Software 5500 Flatiron
Parkway Suite 200 Boulder, CO 80301
USA

T: 303.545.3220 F: 303.473.9137

IMSL Libraries Contact Information
USA Toll Free: 800.222.4675

T: 713.784.3131 F: 713.781.9260

Email: info@vni.com Web site: www.vni.com

Worldwide Offices

USA « UK = France = Germany = Japan For
contact information, please visit

www.v ni.com/contact/wordwideoffices.php

© 1970-2010 Rogue Wawe Software, Visual Numerics, IMSL and PV-WAVE are registered
trademarks of Rogue Wave Software, Inc. inthe U.S. and cther countries. IMSL, JWAVE,
TS-WAVE, PyIMSL and Knowledge in Motion are trademarks of Rogue Wave Software, Inc. All
other company, product or brand names are the property of their respective owners.

IMPORTANT NOTICE: Information contained in this documentation is subject to change
without natice. Use of this document is subject to the terms and conditions of a Rogue Wave
Software License Agreement, including, without limitation, the Limited Warranty and Limitation
of Liability. If you do not accept the terms of the license agreement, you may not use this
documentation and should promptly return the product for a full refund. This documentation
may not be copied or distributed in any form without the express written consent of Rogue
Wawe Software.

IMSL

Embeddable mathematical and statistical algorithms available for C, C#.NET, Java™,
Fortran and Python applications

Table of Contents

Introduction [
The IMSL Fortran NUMErCal LIDIArycccocvivieiieieieie s i
USEr BACKGIOUNTvieiiciic ettt ettt e et e et eent e ta e ba e baeteaneenreenreas i
LCTeT 10 S U (= SRS PSSR i
FInding the RIGt ROULINEcoiiiie ettt san e iii
Organization of the DOCUMENTALIONcvviiiiieiie e iii
NAMING CONVENTIONS.cuieiieiteeie ettt e e s ta e te e beeste e e e snaeaneesraenreenes iv
Using Library SUDPrOGIAMSoviiiiiiiiieiie bbb %
Programming CONVENTIONSciviiiieiiiiiiiiie ettt sttt et sr e ebesne e Vi
MOAUIE USAGE ...ttt bbb bbbt vi
USING MPT ROULINES ..ottt bbbt vii
PrOGraAMIMING TIDS. . v e veueiteiteteete ettt et etk sb et b e bbb e bt b e b b se b e viii
Optional SUDProgram AFGUIMENTSciieiieiee it eie e e st steesteeste e e sreesreeaeeneesnsesreenreens iX
(O] o1 o] gL L B L WSSO iX
Overloaded =, /=, etC., TOr DEriVEd TYPES.....ciiveiiiieiie ettt X
T (ol =T To | 1T oo PSSR Xi
PIINTING RESUILSvieiiee ettt et e et e s e s re e s be e taeteasteeneennees Xii
FOITran 90 CONSIIUCESouviuieieiteite ittt bbbttt bt bbbt e et sne xii
Shared-Memory Multiprocessors and Thread Safety ..o Xii
Using Operators and Generic FUNCHIONScooiiiiiiiie e Xiii
Using ScaLAPACK, LAPACK, LINPACK, and EISPACKccccoviviiieeieenene e XV
Using ScaLAPACK ENhanced ROULINES.cooiiiiiiiieneise e XixX

Chapter 1: Linear Systems 1
ROULINES ..t e bbbt bbbt b e bbbt e et e et ettt ne e 1
(0 L7 o[- N\ 0] (S PO P R OPPPPROP 5

IVIBEFIX TYPES ettt bbb bbbt b bbbt b et sb e bt b 5
SOIULION OF LINEAI SYSTEIMSvviiiiiitiieiieii ittt 6
MUIEIPIE RIGNT STAES ...t 7
DELEIMMINANTS ...e.veieieieeiie ettt e e e se e tesre e s e e s e e st e eeseesteneesneaneens 7
Iterative REFINEMENT enes 7
SINQUIAITLY ..ottt bbbt bt b s et et sae et e b eneas 8
SPECIAl LINEAI SYSTEIMS......oiuiiiiiieieeitiie ettt e eneas 8
Iterative SOIULION OF LINBAr SYSIEMSeiuiiiiiiiie et 8
QR DECOMPOSITION ...ttt b e bt s et e e b sae et e e eneas 9
LIN_SOL_GEN ..ottt sttt sttt bbbttt e e ebe st e e enenbe e ate e 10
LIN _SOL_SELF ..ottt ettt sttt ettt sttt e e ebe b eate e 18
LIN_SOL_LSQ ...eoieieeeeeeeeeeesseeeees s seessee s 27

IMSL MATH LIBRARY Table of Contents e i

LIN_SOL_SVD eerevvveeeeereeeeeeeeeeeoseeesseessessssessseessessssseesesesssseesseessessssssesssessesssssessseessessseees 36

LIN_SOL_TRI ettt bbbt bbbttt bbbt 45
LIN_SVD ettt bbb bbb bbb bbbttt 57
Parallel Constrained Least-SQUAres SOIVEIScciiriiieiiiieieee e 66

Solving Constrained Least-SqUAres SYSIEMScerveireririrereisenieesie e 66
PARALLEL_NONNEGATIVE_LSQ ..ottt st 67
PARALLEL_BOUNDED_LSQ ..ottt 75
LSARG . ..ttt bbbttt bbb 83
LSLRG ...ttt £ttt bbb 87
LIFCRG ...ttt bbbttt 93
LIFTRG ..ttt bbbt bbbttt 99
LSRG .t b b e bR bk Rkt etk ettt 103
LFTRG ..ttt ettt h ettt n et e nre et e e nne s 108
LEDRG . ..ttt ettt h ekt e et een bt n e re e nre e te e e enes 113
[N L PSR ROTPTPTUR 115
LSACG ..ttt b bRttt b Rt b ettt bttt 119
LSLCG .ttt bbb bR e bRt e bbbttt ettt n e 123
LIFCCG ittt bbbt bbbttt bbb 128
LT CG ottt bbbttt bbbt 134
LIFSCG ittt bbbt b Rttt 138
LIFTCG bbbttt bbbt 143
LD CG ottt bbbt bbbttt 148
LINCG .ot bbbt bbbttt bbbt 150
IS 0 PR 154
I] PP RTUPPUR 158
[D TP TP PP PR PRI 162
LN R T ettt h bbbt R e E bt h et e et nne s 163
S O S PPSR 165
] O SO S 169
LD CT ettt bbbttt ettt 173
LI CT ittt bbbt £ bbbttt e bbb 175
LSADS ..ttt E £ E et bbbttt bbbt 177
LSLDS .ttt bbbt bbbttt e bbbt 181
LIFCDS ..ttt bbbt bbbttt bbb 186
I I 1 TSR 191
I] D TSP 195
I 5 1 TSRS 199
I I I SR 204
01N S 206
IS TS S 210
IS S TSSOSO U U PUTPRTOTPTOTORO 213
[O] TSSO U U U TUTPROTPOTOTO 215
I IS TSSOSO U TSP 218
TS USSR UE U URTRTSTOTOTOR 221
I 1S USSR UE U UUTRTSTRTOTORR 223
L D S ettt bR £ £ £ £t bbb R Rttt bbbt renes 226
IS I L SR 227
IS 0 SR 232
I I3 SR 237

ii @ Table of Contents IMSL MATH LIBRARY

LESDH e vveeeoee e seseseseee e e seesse e es e sssess s eesees e eeee e seses e es s see e 248
LEIDH oo vveeoo e eeeeesees e eseesee e eseess e es e ee e s e s ee e s e seeeee e 252
LEDDH 1o eevvveeeoe e seseessee s esssesseee s essessse e esees e eeeee e sesees s s sss e e seseee e 258
LSAHE oo e eseees e e ee e s ettt 259
LSLIHF ©o oo eeeeeseeeee e eesesss e seesee e s e st 262
LFCHF <o eeeeee e eeeese e eeees e s et 265
LFTHE «oooeeeeeeeeeeeee e eeeaeseee e seeese e se e s e e e s 268
LESHF .o seeeeeeee e eseeesee e seess e s s ee e e s e e 271
LFTHE <o seeeese e eeeese e se e s oo 273
LEDHF .o eeeeeee e eeeese e ee e s s 276
RS 1 2 00000 OO 278
ST ox 00O 279
IRSY Y = 000000 282
ST 2= 000000 285
=03~ J OO 290
LETRB ..o vveeeseeeeeeeesesesssee s sssesse e e seess s e e s e s e s e e s e see e 293
LESRB ..o vveeeeeoeeseeeseseesseeeseeeseseesseees e eeeess e s esees e e e e e 296
LFIRB ..o vveeeoeoeeseeesesessees e eseesse e es e esees s s e s ee e es e es e 298
LEDRB. ..o vveeeeeoeeseeeseeeesseeeseeeseseesseeees e essess e s es s eee e s e se e ese e 301
LSAQS ..o eeseseeeeee e eeesee et e 303
LSLIDS «.vveeeevveeeseeeeeeeeseseassee s seseesseeeee e ess e st 305
LSLPB .o vveeeeeoeeeeeesesesesees e eseesse e se e s 308
LECQS oo eeevveeeseeeeeeeeseseseseeeseeessseesse e s essess e es e s s e e ee e ee e 311
LETOS oo eeeeveeeseoeeeeeeseseseseeseeesssessseeeseeesess e esees e ee e s e e e s es e see e 314
LESQS v eeeeveeeseeeeeeeesssessseeseeessseesee e ese e s et ee e 316
LFIQS ©.oooe e eeveeeseoeeeeeeeseseseseeseeeseseesee e s ese e s e e ee e 318
LEDIQS .+ eeevveeeseeeeeeeeeesessseeseeeseesesseee s sessess e es e s e e e e s 320
ST o JF 00000 322
LSLLCQ e eeevveeeeeeeeeeeeseseesseeeeeeseseesseeeeseeeeeseess s s s ee e s 324
LSACB e vveeeoe e eseseeeeee s eseeese e ee e ee e s e 327
ST o3= F OO OO 330
=07 = J OO OO 333
= (03 = T OO 336
0= = 00000 339
=T} = 0000 341
=503 = 0000 344
LSAQH oo eeeeeeees e eeeeeeese e e ee e st s et 346
RS0 00000 349
ST 0000 352
=00) = OO OO 355
= (0] OO OO 358
LESQH e vveeeeeeeeeeeseeeesseeeeeeseseessesees e essess s esees e eee e s e s eee e ese e s e 360
LFTQH oo vveeeoe e seseees e eseesseees e essess e s es e eee e se s ee s es s ee s seees e 362
LEDQH 1o eeeeeeeeeseesseeseseesseeeesssesessesssees e eeseeseeesee e s e s eeesesesees e sesee e 365
LSLXGvrrereevveeeseoeeseeesesessseeseeessseesse s eeeess s s et 366
= 5 CC 0000 372
=32 (000 377
ST 1 c JS 00T 380

IMSL MATH LIBRARY Table of Contents e iii

LIFSZG et b b e bR ek b bt b ettt b 391
LSLXD ettt bbb bbb £ bR e bR bRt e ekttt et 394
LSCXD ittt bbb £ bR bR bR bR ek R bRt e ekttt r b 399
LINFXD ettt £ bbb £k b R bk Rk ekttt 403
LFESXD .ttt bbb bR e bR e bbbtk ettt b 408
LSLZD .ottt 412
LINFZD ..ot 416
LESZD . 421
LSLTO ittt b 424
LS LT C ettt 426
LSLICC ettt bbb bRk b R ek bkt ekttt b e 428
PCGRC ...ttt et bbbt b Rt R etk b ettt ettt neen e 431
JCGRC ..ttt bbbt R Rttt bRttt e 437
GIMIRES ...ttt bbb b bt e e et b et R et ettt ber e enas 440
ARPACK SVttt bbbttt bt et 451
(IS0] TSSO SRPS 451
LQRRYV Lt bbbt 457
LSBRR ...ttt bbb bbbt 463
LCLSQ ittt bbbttt 467
LQRRR bbbt 471
LQERR ..ttt bbbttt 478
QRS bbbt 483
LUPQR .ttt bbbkt etk bttt ettt e ne e 489
LCHRG ...ttt bbbt ekttt ettt ne et 494
LUPGCH . ..ttt bbbtttk bkttt ettt 496
LDNCH .ttt ettt bbbttt bbbttt ettt 499
ISRV o L TS S 503
(IS LY 1 = TSR 510
LSGRR .t bbbttt 514
Chapter 2: Eigensystem Analysis 521
ROULINES ..ottt ettt ettt et e s et et e s te et e e neene e s e e e teneeebeaneaneeneeee e e 521
USAQE NOTES ...ttt e e s r e e n e e e nreenneen 522
Reformulating Generalized Eigenvalue Problems...........ccooiiiiiiiiiiiicces 525
Using ARPACK for Ordinary and Generalized Eigenvalue Problems...........c.cccce.... 526
LIN_EIG_SELF ..ottt bbb 526
LIN_EIG_GEN ...t bbbt 533
LIN_GEIG_GEN ..ottt bbbttt 542
EVLRG .ottt 549
EVCRG ..ottt 552
EPTRG .ottt 555
Y S 557
Y O O TS 559
1 O TS S 562
Y S S S 564
Y O TS 566
YN TS 568

iv e Table of Contents IMSL MATH LIBRARY

BV B S b bR £ bbb R e b e bbb et 573
BV SE bbb e b £ bRt b e bbb b 575
B P LS bbb bbb e bbbt 578
EVLSB ...ttt £ bbb bRt b b et b bbb 580
BV CSB .ttt bbb bRt b e e bRt b bbb 582
EVASB ..o 585
EVESB ... oottt 588
EVBSB ..o 591
EVESB . oo 593
EPISB e 596
BV LHF bbb bbbt bbb 598
BV CHE e ettt ettt b ettt nteenaeenes 601
BV A e 604
BV EHE e 606
BV BHE e 609
BV HE e 612
P THE et 615
EVLRH .ot 617
EVCRH ..t 619
EVLCH ..ottt 621
BV CCH bbb 623
GVLRG ..t bbbt 626
GV ECRG ..ttt b R bRt bRt bRt b e et R et et ne s 629
GPIRG .ttt bttt R etttk Rtk et n et e et ne s 632
LAY I OO TTOPR TR 634
GV ECCG .ottt b Rt bRtk R et bRt b Rt b e et R ettt ne s 637
€]] [PRSP 640
GV LSP .ttt R ARtk R et R Rt R Rt E et n ettt tene s 642
GV CSP bbb bbbttt b e 645
GPISP ..t b e 648
Eigenvalues and Eigenvectors Computed with ARPACKcccocoviiiivieie e 651
The Abstract Interfaces for User-Written Array FUNCLIONSc.covvevveieeieiic e, 652

The Base Class ARPACKBASE ... 653
ARPACK_SYMMETRIC ...ttt ee e nneenne e 654
ARPACK _SVD ..ttt ettt ettt ettt e te st ene e re e nreenreeneas 668
ARPACK_NONSYMMETRIC ...ttt 676
ARPACK _COMPLEX ...ttt sttt e st et et te s e aseesneeaneeaneennas 685
Chapter 3: Interpolation and Approximation 693
ROULINES ...t b et bt et b et b e nr e b e nn et b e nn e enennes 693
L0 L7 o T3 N\ (0] (SO PP P PPRPRP 695
PIeCeWise POIYNOMIALSciiiiiiieiee e 695
SPIHNES AN B-SPIINESooiiiiiiiee e 695
CUDIC SPIINES ..ttt 697
TenSOr ProduCt SPIINES........oviiiiiii et 698
Quadratic INtErPOIALION.......cviiie e 699
Multi-dimensional INterpolation............ccoeiiiiiiiiieee s 699

IMSL MATH LIBRARY Table of Contents e v

LBASE SOUAIESeevee ettt 699

Smoothing by CUbIC SPIINESooviiiiii s 699

Rational Chebyshev ApProXimation ... 699

Using the Univariate SPline ROULINES.coieiiiiiiiiieiee e 699

Choosing an Interpolation ROULINE ..o 701
SPLINE_CONSTRAINTS ..ottt bbb 702
SPLINE_VALUES ..ot 703
SPLINE_FITTING ..ottt 704
SURFACE_CONSTRAINTS ..ot 714
SURFACE_VALUES ..ottt 715
SURFACE_FITTING ..ottt 716
CSIEZ ..ot bbbt 727
L0107 1\ OO U TSP PSP PPPPRTRO 729
CSDEC... ot b bbbttt 732
CSHER ... ot bbbt 737
CSAKM L.t b bbbt bbb 740
CSCON L.ttt bbb e bbb bbbt b et b et bbb 742
CSPER ...ttt bbbt 746
CSV AL bbbt 749
CSDERttt 750
CSLGD .ttt 753
CSITG ettt bbb bbb bbbt 756
SPLEZ ..ottt 758
B S N T ettt bbbttt 761
BSINAK ettt bbbt 765
BSOPK .ttt bbbttt b 768
BS2IN .ottt 771
BSBIN ettt bbbt bbb 776
B SV AL ..ttt bt 782
BSDER ...ttt 783
BSLGD ...t bbbttt 786
BSITG ittt 789
BS2VL ettt 792
BS2DR ...ttt 794
BS2GD ...ttt bbbt bbb 797
BS2IG ..ottt 801
BSBVL ettt bbbt bbb 805
BSBDR ..ottt bbb bbbt bbb 807
BSBGD ...ttt bbb bbbt bbb 811
BS3BIG .ttt bbbt bbb 817
B PP .t b bbbttt 821
PPV AL .ottt 823
PPDER ...ttt bbbttt 825
PPLGD ..ttt bbb bbbt bbbt 828
PPITG ittt b bbb bbbt bbb 831
QDV AL .ttt bbbt e bbbttt e 833
QDDER ..ottt bbbttt e ne b 835
QD2V L.t bbb ettt b e 838
QD2DRR .ot b et h et b ettt b e 840

vi e Table of Contents IMSL MATH LIBRARY

QD3BDR ...ttt b e e bt ettt e b et e beebeebeere et e teateereareebeanes 847
SURE ettt ettt ettt e et et e et e a e et e e et et e e et e e aeaeaeeaaes 851
SURFEND ...ttt ettt et et e et e e et e e eat e e et e e e et e e e etee et eeeetesseteseereeseteesreesres 855
RLINE ..ottt et ettt e et e et e et e e st e st e st esate e st e e ste e st e esteesteeereeereas 858
RCURW ..ottt ettt e st e et e st e e st e st e e et e e st e e s eteesteesnes 861
FINLSQ oottt ettt et et et e et e et e s te e s be e et e et e e ab e Rt e e bt e b e e b e e b e e reeareeareeareenras 865
BSLSQ ittt ittt e e e e be et e b e b e bt e b e e b e e b e e e e areeareeareenras 870
L33V I T 874
(010]\ 879
L] IS 889
2] S 2T TR 894
CSSED ...ttt ettt — et e e e e et e e et e e e e e e raaas 900
S SIMH .ottt ettt e et et et a e e e aaas 904
(01511 AN OO U TR OO OUR TR 907
[AN O - PR 910
Chapter 4: Integration and Differentiation 915
ROULINES ...ttt e e et e e e et e e e s bt e e e s bt e e e s eab e e e e s bbeessebbesessabasessrbaneas 915
USAQE NOTES ... e e e 916
Univariate QUATALUIEcveveiieieiieeiieieie ettt st e et e aeseestenneeneas 916
Multivariate QUAAIALUIEccuiiiieieieie ettt se b e sreere e 917
Gauss Rules and Three-term RECUIMENCESccveeirieicee ettt 917
NUmMerical DIffErENTIALIONooovvieeiieiie et e e st e e e st e e s eaees 918
QDAGS ...ttt ettt et et e te ettt e te et e reareabeans 918
QDAG ..o ettt et e beeRe e et e te it e renreereenes 922
QDAGRP ... ettt e te e Re et et et e renreereanes 925
QDAGILD ...ttt e b e a e bt et renreareans 929
QDAG ..ttt e e et et et et nreereenes 935
QDAWO ...ttt bbbttt e be e te et et et e renreereanes 938
QDAWF ...ttt 942
QDAWS ...ttt et ettt et ettt ettt et e et et e et et e eteeteeteareereenes 946
QDAWC ...ttt ettt ettt ettt et e et et e ete e teareereanes 949
(@] 5]V RSO 953
TWODQ ...ttt 955
(0] 572X €24 5 U 960
QDAGS3D ...ttt e b e he e bt r et reereans 966
QAND ... e b ettt et e beebe et et e it e renreabeenes 973
QMU C e e b e ettt et e he e re e et et et e renreereenes 976
GQRUL ...ttt ettt et ettt e e beete et e et et e et et e e beeaaere et et et e renreereenes 979
(C10]2 O SO SSRS RS RTRPTP 983
] = O O TR 986
L0] = R SRRS 988
FQRUL ..ot n s 991
[0 Y 2R 995
Chapter 5: Differential Equations 999
ROULINES ...ttt et e et e e e ettt e e s st e e e s bt e e e s eab e e e s sbbeessabbeeessabenessabaneas 999

IMSL MATH LIBRARY Table of Contents e vii

USBGE NOTES ...ttt 1000

Ordinary Differential EQUAtIONSccoeiiiiiiiiiiiciie e 1000
Differential-algebraiCc EQUAtIONS...........cooeiiiiiiiiicisee e 1001
Partial Differential EQUALIONSooiiiiiiiiieiiee e 1001
SUMIMEBIY ..t b et r bbbt ns 1002
IVPRK .ttt ettt ettt b et b b ettt Re bttt ne bt re e re e ns 1003
IVIMIRK Lt bttt b ettt b ettt b e et b bbbt 1011
IVPAG ... bbbt r ettt 1021
BVPFED ...ttt b bbbt n ettt 1037
BVPIMS ..ottt bt Rt bttt ettt 1050
DAESL ..ottt E bRt bt r et n ettt 1057
DASPGttt bttt bRt R et e R et e ne et n et e enen 1072
IVOADM et e e e e e 1072
Introduction to Subroutine PDE_1D_MG........ccciiiiiiiinieiienese e 1080
PDE_ID_MGi....oiioieeieieeceeseeeeeeeees s es st 1081
DESCIIPLION 1.ttt bbb bbb b 1089
Remarks on the EXAMPIESciiiiiiiiii e 1090
Example 1 - Electrodynamics MOGEL...........cccooviiiiiieiice e 1092
Example 2 - Inviscid FIOW 0N @ Plate..........cccooviiiiiieiice e 1095
Example 3 - Population DYNAMICSccvcveiiiiiiiiieie et ee e e naeens 1098
Example 4 - A Model in Cylindrical Coordinatesccovvvveiieeiieise e 1101
Example 5 - A Flame Propagation Modelccoooveiiiiiii i 1102
Example 6 - A “Hot Spot” MOdelccooiiiiiiiiiiieice s 1105
Example 7 - Traveling WAVEScooiiiiiiieicie e 1107
Example 8 - BIaCK-SCNOIES..........ccooiiiiiiii e 1109
Example 9 - Electrodynamics, Parameters Studied with MPI............ccccoovviieiennne. 1111
IMIMIOLCH ..ottt et e e b e e st e e sat e e s st e e sab e e srseesneeesrbeesneeeans 1115
Y[4 = USRS UPRPRR 1128
FEYNMAN_KAC ...ttt sttt et ettt ettt e ste et e et eameeaneenteebeeneeeneeaneas 1128
HQSV AL ..ottt b bbbt b et n et n et n et enen 1185
FPS2H ..ot b bbbt r et n ettt nenes 1188
P SBH ..ttt E bbbt r et n bt n et enes 1194
SLEIG .ottt ettt ne 1201
1S I A OSSPSR 1213
Chapter 6: Transforms 1217
ROULINES ..t h et b bbbttt b bbbt e et nn e 1217
(07 o[- N\ 0] (T ST P PP RUPRTP 1218
Fast FOUFEr TranSTOrMSooiiiiice e 1218
Continuous versus Discrete Fourier TransSform ... 1219
Inverse Laplace TranSformMccoooi i 1220
FAST DT ittt b bbbt b e bt s ettt b et n et enen 1220
NI A 5 SRS 1227
NI I 15 SO 1233
e N SRS 1236
e N = SRS 1240
e N OSSR 1243
e 3 SO P PRSPPI 1245

viii @ Table of Contents IMSL MATH LIBRARY

T Lttt bbb bbb e bR et b e bbbt 1251
S T ettt bbb R bR e bR e bR £ bbb bt 1253
FSINT Lottt bbbt b et b b et bt b bbbt 1255
0 1S OO TSRO UURTORTUTPTPPOR 1257
FCOSI ettt b bbb e bR e bbbt b et b et ens 1259
QSINF e 1261
QSINB e 1263
QSINT bt 1266
QCOSF ..t 1268
QECOSB ...t 1270
QCOSI bbb R bbb et n et 1272
e 17 TS OUTPRTRTTRN 1274
e 172 = ST OPTPRTRTTRON 1277
e 1T TS OUTPRTRTTROTN 1281
e 1G] = PO OUTPRTRTPRN 1285
REONY ettt ettt b et bbbttt b et ekttt e s et ebe e ntenas 1289
CCONV bbb bbb bbb bbbt 1294
RECORL .t bbbt b bbb bbbt b bbbttt 1299
COORL 1ttt b bbbttt 1304
INLAP L. et bbb bbb e b bbbt 1309
SINLP bbbt 1311
Chapter 7: Nonlinear Equations 1319
ROULINES .ttt ettt sttt e st et e e st et e s beete e s e ene e e et e besneerenre e 1319
(O 7. o[N\ (0] (1 PP PPPRP 1319
Zer0s 0f @ POIYNOMIALcooiiiie e 1319
Zero(S) OF @ FUNCLIONcvviiiie ettt sae e 1320
Root of System Of EQUALIONScoviiicieece e 1320
ZPLRC ..ttt bbbt b 1320
A @] = RS RSR 1322
7 @ 1 RS RSTRR 1324
ZANLY ettt ettt nnre e 1325
ZUNI ettt h bttt b bbbt ekt s b bt e ab et et a e tr e nr e 1328
ZBREN L.ttt 1331
ZREAL ...ttt 1334
NEQINF bbbt bbb bbb bbbt b bbbttt 1337
INEQINU bbbt b bbb bbbt b bbbt 1340
NEQBFE ..ttt bbb bbbt 1344
NEQBUJ ..ottt 1350
Chapter 8: Optimization 1357
L 10 TSP 1357
USAGE NOTES ...ttt r e n e e nreenr e e neene e 1358
Unconstrained MinIMIZAtIONooiiiiiiie e 1358
Minimization wWith SIMPIe BOUNS........ccoiiiiiiiiiiiiee s 1359
Linearly Constrained MinimizZation............cocoveiiiiiieie s 1359
Nonlinearly Constrained Minimizationccccooiiiiiiiinieee e 1359

IMSL MATH LIBRARY Table of Contents e ix

LAY 1Y/ 1 TR 1362
LAY 1Y/ 1 TR 1365
UVIMGS .ottt e et e e ettt e e e ettt e e s s b et e e s bb e e e s sabbeessbbesesirbaaessrbaneeas 1369
L1V 1N TR 1372
L0171 1N TR 1377
L0 1LY] = R 1384
L 1LY 1A o R 1389
L 11O R 1395
L1011/ [@ 1SR 1399
L0111] ORI 1403
L1\ S TR 1407
L1\ SN TR 1413
L2 OO\ TR 1420
BCONG ..ottt ettt e e et e e et e e st e e e ettt e e s e b et e e e bt ee e e e bt e e e ettt e e nabareenraaees 1427
(2000 = IR 1434
(2000 A = IR 1441
21 =@] RS 1448
2O] RS 1452
2O IS RO 1459
O 1| T RO 1466
AN |V = TSP 1475

YL T [T 0 4T | 1480

A ST=Tox £ [IR 1481

ROWVS SEOLION....cciieveiie ittt ettt e e ettt e ettt e e e ettt e s sttt e e s bt aeesssbeeessbaeeesenneas 1481

COLUMNS SEOLION.....iieieeiee e ceteie e ettt e ettt ettt e s et e e s ettt e e s st e e e e s ettt s e ssbesesssbeeeesssrenessans 1481

RHS SBCLION ...ttt ettt e e ettt e s et e e s bt e e s st e e e s sttt e e ssaneas 1481

RANGES SECHION ...ttt ettt e e e e e et e e st e e s st e e s etae e e s eaeeas 1482

BOUNDS SECHION.....eiiiieeeee ettt ettt e e e et e e s ettt e e sttt e e s et e e e s st eeessraeeessnres 1483

QUADRATIC SECLION....ccuiitieiiie ittt ettt sttt st st ae et sre e 1484

[N YAy AN T =Tt 1 o] o F SRR 1484
MPS FREEottt ettt sttt ettt st at ettt be e beebe et a et nre 1485
DENSE _LP ..ottt sttt ettt e b et b et be b et a ettt rn 1488
[0]I 0 SRR 1494
S P RS e et e — et e e et e e r e — e e e et e s et e e niareas 1497
TRAN .o ettt e e e et e e et e ettt e e ettt e e e — e e e e e e e ettt e e —te s e e e e e ateenaraes 1504
QPROG ... e et e et sre e teereenns 1506
(IO @]\ TR TRRTTTTRR 1510
LCONG .ttt et ettt e ettt e e ettt e e e ettt e e s ea et e s st e e e e et teesetatee s teeesaraneeaans 1516
NN L P ettt e e ettt e e ettt e sttt e e s ea bt e e s ebe e e e st e ee e s st e e e e sttt e e seabaaesrraeeeas 1522
ININLPG ettt ettt e et e e e et e e st e e eh e e e st e e s st e e sateesabeesateessbeesrteesrbaesreeean 1528
(1D 1] 4 5 J TSR 1536
FDGRD ...ttt ettt e e e e et e et e e e e e e be e et e e s taeaaae e 1538
FDHES ...ttt ettt e et e et e et e e et e et e e et e e et e e s bt e e e e et e e eteesbeesaee e 1541
GDHES ..o ettt ettt e e e et e e et e e e bt e e bt e e s e e et e e e e et e e s aeearaes 1543
(] BN TR 1546
FDJIAC . oot e e et e e e —— e e e —— e e et e e e et e r it e e ni——aas 1555
(O 2 (€12 5 J PRSP 1558
(O | =S TSRO TTRRTTTI 1561

x e Table of Contents IMSL MATH LIBRARY

GGUES ...ttt ettt bbbttt b ettt st e et et e be st e te e 1569
Chapter 9: Basic Matrix/Vector Operations 1573
ROULINES ...ttt ettt bbbt b et b e bbb b e b bt e ne et e re et 1573
Basic Linear Algebra SUDPrOgramsccccvcivivierieieieie e 1576
Programming Notes for LeVel 1 BLAS ..o 1576
Descriptions of the Level 1 BLAS SUbProgramscccoceveveiiesisieeneiesesese e, 1577
Programming Notes for Level 2 and Level 3 BLAS ... 1588
Descriptions of the Level 2 and Level 3 BLAS ..o 1589
Programming Notes for BLAS USING NVIDIA ..o 1601
CUBLAS GET ittt sttt sttt e et st e b e st eebe st e et e 1607
CUBLAS _SET . ittt ettt ettt s e b et e e b e e bt se e s e sreenbeenteeneas 1609
CHECK_BUFFER_ALLOCATION ...octiiiiiitiiieisie sttt ettt st et sneeene e 1611
CUDA _ERROR _PRINT L.ttt sttt sttt sb sttt st et b e s e 1612
Other MatriX/Vector OPEratiONSccvccvviieiieiie e seese e e et se et ee e sreesreeeas 1614
CRGRG ...ttt et ettt bbbt b e bbb bt bt et b et b et nr et e 1615
(010 X C SO SE PSP PSPPSR 1616
CRBIRB ...ttt ettt bbbt b et bbb et bttt e et e 1617
(0101 2101 = TSSO PSTPTPR PSPPI 1619
(O (€ = TSRS UPOPRTR 1621
CRBRG ... oottt ettt sttt r ettt b e bbb e b et e b et et eete st e re e 1622
(01001 = S TSSO PSPPSRI 1624
(0101 2101 C OSSPSR PRSP 1626
(01 L X C USSP PSOTPPRTON 1627
(014 {01 = OSSP P SO PRTPPPRPRPPRPN 1629
CRBECB ...ttt ettt b bbbt b e b bbbt et nn et et et e 1631
(OS] o = (OSSO P PSPPSR 1632
(O o | € USSP PSTPPPRORPPRPN 1634
CSBRB..... ettt b bt et nb et st e bt e et e 1635
(O = T = ST SPPOPRTR 1637
TRINRR Lot e e e et a e et e e et e e e nnaeaeennreeen 1639
Y 19, PSSR 1641
Y I PSR 1643
Y2 0 I USRS 1645
MRRRR L.t a e e a e e a e e et e e e nnaaeennaeen 1647
IMICRCR .otttk s bbb bbbttt be bt re b 1649
HRRRR ..ottt ettt b et r ettt ne bt ne et ne b 1651
BLINF <ottt bbbt r bbbt R et et ne et e re b 1653
POLRG ..ottt ettt ettt b et b et b ettt b et re bttt ne b 1655
IMURRY ..ottt b ettt bbbttt st re b 1657
IMURBY ...tttk bttt bbb ettt ettt ane b 1659
MUCKRYV Lttt e e et e et e e b e et e e e be e e sbe e e teeesbeeenbaeebeeaseeaneeas 1661
MUCBV .ottt et et e ettt e et e e et e e e be e et e e e teeesbeeeteeeteeareeanres 1663
N = = OSSP 1665
AN 1 =11 = TS STPOPSTR 1667
LA T 1 RS OPRR 1670
INRLRR sttt e e e e e e e et e e s a e e e an e e e e n et e e e nte e e e anrreeeanaeeeennnes 1671

IMSL MATH LIBRARY Table of Contents e xi

NRLRB ..ottt ettt ettt ettt e e s et s et e b et e st et et et st et sene et e st e enen 1674
NRLCB ..ottt ettt b ettt b st b e b e st e b et s e b et et s e te s n et e s et enen 1676
[0 1 USRS PPR 1677
[0 1 TSSOSO 1679
[0 1 USRS 1681
VCONR. ..ottt ettt et b st b et b e b e b ettt s e b e e et et ettt e et nreneas 1683
VCONC . ..ttt ettt ettt b st bt r ekt b e bt st bt e b e e b e st et e e e ebe et et nrere s 1685
Extended PreciSion ArNMELIC.oovviiiiiiieieiec s 1687
Chapter 10: Linear Algebra Operators and Generic Functions 1691
ROULINES ...ttt et et e b et e et e st e et e e s ba e s beesbeebeeabeeaseebeesbeebeesbeereenreas 1691
USAGE NOTES ...t 1692
Matrix Optional Data ChanQeS..........cocviiieiiieiiei et 1692
Dense MatriX COMPULALIONS.ccviiieieiie et sre e e st e beesaeeneenneas 1694
Dense MatriX FUNCLIONSoviitiiiitisieei ettt bbb 1696
Dense Matrix Parallelism USiNG MP1c.ooiiiiiiicice e 1697
GENETAl REMAIKS ...ttt bbbt 1697
Getting Started with Modules MPT setup int and MPI node int........... 1697
USING PrOCESSOIS. ...c.vieitieeiieiesiiesieeste et ste et e st st e ta e te e e asee s e e sneesteesteesteaneeaneeeneesneenneens 1699
Sparse MatriX COMPULALIONScuiiieiieiieie et e e sreesreeeeenes 1700
INEFOAUCTION ... bbbt 1700
Derived TYpe DefiNitioNSc.ccoveiiiiiiiie e 1702
Overloaded ASSIGNMENTScviiveiieie et e st e e e e e e aesreeaneas 1704
TSSOSO 1707
PP PRPTP PP 1711
PP RPTT PRI 1714
X1ttt h e b et e b et e b e e r e e aheeabeeabeebeenbeenteetreereearaens 1717
D T OSSPSR SROTRUPROPROPO 1720
SRRSO PRPR 1723
Dbttt ettt ettt ettt tene et e 1726
e ettt ettt E LRt R bR R AR R e R R R bR e R e R e R £ R R Rt R bt Re bt ne et e 1728
) S TPV PP PRI 1730
PP PP TP UPRTP 1740
L0 = [] OSSPSR 1743
(010)11 5 OSSPSR 1746
D OSSR 1750
[0] A PP OPRPR 1753
DIAGONALS .ottt e e e e et e e e et e e e te e s beeenteeasbeeanteesrbaeanaeeans 1754
SO PP OPRTR 1755
B Y E oo e e et — e e a Rt a e e e a bt e e e e rae e e annraeeenrraeen 1759
e O SURS 1761
[I =T) SO PPR 1763
] OO SOURPRPR T 1765
IFFT _BOX ottt ettt sttt s ettt ettt ettt nae s 1767
ISINBN . e e et b et e b e et e e baeara e e 1769
[N N TSP 1770
NORM . ettt ettt ettt ettt ettt e bbb et s et n et n et enen 1771

xii @ Table of Contents IMSL MATH LIBRARY

RAIND L.ttt bt b e bR bR £ bR e bRt b e bbbt ens 1777
RAINK Lttt btk E e b bt e b b e b bt b e e bt b bt ens 1779
SVD bR E bR £ bR e bR £ bR bR ek et b et n e 1780
UN T ettt b bbbt b £ b bbb bbbt b bbbttt et ns 1783
Chapter 11: Utilities 1787
ROULINES ...ttt 1787
Usage Notes for SCALAPACK ULIHITIEScoiiiiiiiiiiieceeee e 1789
ScaLAPACK Supporting MOTUIES ..o 1792
SCALAPACK _SETUP ...ttt bbb bbbt 1792
SCALAPACK _GETDIM ..ottt bbbt 1794
SCALAPACK READ ...ttt ettt ettt nneenne e e 1795
SCALAPACK _WRITE ...ttt 1797
SCALAPACK _IMAP ...ttt bbb 1805
SCALAPACK _UNMARP ...ttt 1807
SCALAPACK _EXIT ..ottt 1809
ERROR_POST ..ttt bbbttt 1810
SHOWV ...t bbbttt 1813
WRRRN .t b ettt ettt e bbb e be et e e be et s 1817
WRRRL <.ttt ettt ettt 1819
WWRIRN bbbt bt b e ettt be ettt ebe et e e e be e st s 1822
WV RIRL ..ttt b ettt b ettt e et e e et et 1825
WVRCRN ettt ettt r bt s e e bt ekt e st e e s be e st e ebe e sbeenbeebeenbeeneennee e 1827
WVRCRLL <.ttt etttk ekt ettt r e ne e b e e ae b nneenr e ne e 1830
WWVROPT L.ttt bbb bbb bbbt b et b bt n ettt 1833
P GOPT L.ttt 1840
PERIMU ..ottt bbbttt 1842
PERIMA . .ot bbbt b bbb bbbt 1844
SORT_REAL ..ttt bbbttt 1846
SVRGN L.ttt ettt ettt et n e bttt bttt et e reeereenreenaeeneas 1849
SVRGP ettt ettt nre e nreenreeneas 1850
LY] SR PPTR 1852
SVIGP ettt et n ettt ettt reenre e reenreenes 1853
LY =] USRS 1855
SVRBP ..ttt n ettt be e teenee e reeereenreenaeeneas 1856
SVIBIN L.ttt 1857
SVIBP ..ot 1859
SRCH <.ttt 1860
ISRCH .. bbb bbb bbb bbbttt 1862
SSRCH .t bbbt 1864
ACHAR bbbttt 1867
O SRR 1868
TCASE ...ttt Rttt R Rt ettt n e nene s 1869
0 SRR 1870
TIDEX et et b ettt n e ne e 1872
LAY Y OSSPSR 1873
L0 =SSR 1874

IMSL MATH LIBRARY Table of Contents e xiii

LI 7 AN I =PTSRS 1876
N1 2 TSSO 1877
N1 1 TS PRRSP 1878
IDY WK et ettt ettt e bt b e bt bt e bRt e st et e b e b bt r e ne et e et e 1880
WERML ... ettt bttt et b ekt R et h bbbttt e e e 1881
RAND _GEN ...ttt bbbt b et n s 1882
RINGET L.t bbbt b bbbttt b bbbt et nn e 1891
RINSET ettt bbbttt b bbbttt bbbt bt n e 1892
RIN O P T et bbbt b b bbbt b bbbt nn e 1893
RINTNBZ bbbttt b bbbttt bbbt bt nn e 1894
RINGEB2... ettt bbbt b ettt e bttt b e R e e n e et et e beebe b e e reen e et e e 1895
LI IS = SRS 1897
RININBA ...ttt ettt ettt s et et ettt te e st e e st e teabe et e e reeneeneeneeneas 1897
RINGEBA ..ottt ettt ettt e e e et ettt ere e st et e st e beebeebeereene e e e neenees 1898
RINSEBZ ...ttt ettt r ettt sttt r e e Rt e s et enbeeRe R e e re et nn e 1900
RINUNF ettt et bttt e st et et e besbe et e e reeneeneeneenees 1900
RINUN L bbb bbbt e e bbbttt e e nn e 1902
FAURE _INIT ...ttt bbbt nn s 1904
FAURE_FREE ..ottt bbb bt 1905
FAURE _NEXT ...ttt bbbttt ettt bbb bttt nn s 1905
TUMALG ..t bk bbbt bbbt et bbb bt e e e r b 1908
UIMAG L.ttt b bbbt h e h bbbt R bbb bt b et nn e 1911
(1Y A OSSPSR 1914
IO SRS 1914
PRIME ..ottt ettt ettt ettt et ettt et e e st et et e beebe et e e reent e e e nnennes 1917
(01] 1N) TSSO 1919
(O 1N OSSR 1921
[0 PSSR 1925
IMIP_SETUP ...ttt bbb bbbttt b e bt bbbt et e et e 1926
Reference Material 1931
(O0] 01 1=]] SRS 1931
L= 1 OSSN 1931
What Determines Error SEVETILYcoviiiiriiriniiisieseese e 1931
Kinds of Errors and Default ACLIONSccoeieiiiiii e 1932
Errors in LOWer-Level ROULINEScoooiiiiiiiiicie s 1933
Routines for Error Handlingcccovviiiiie e 1933

E R ST ettt bbb bbb bbbttt nn e 1933
IERCD @NA NLIRTY oottt b e 1934
EXAMPIES ...t 1934
Machine-Dependent CONSIANTS..........cccviiieiieie ettt ae e sneas 1937
LN O S ST 1937
N 2 O SR 1939
(11N 1 o PSSP 1940
L N A AN ST 1940
L0110 1 o PSSP 1942
MBELFIX StOrAgE MOTEScoeiuiiiiiiti ettt ettt 1943

xiv e Table of Contents IMSL MATH LIBRARY

RESEIVEI NAIMES ...ttt e ettt e e s et e e s st et e e s bt e e e s sabaeessabaeeesenees 1954

Deprecated Features and Renamed ROULINEScoceiviiiiniiiiieniineee e 1955
Automatic Workspace AHOCALIONcoeiviiiiiiiiicii s 1955

Changing the Amount of Space AIOCAEdcccveiiiiiiiiii e, 1955

Character WOIKSPACE.cuviiiieiitiiciietee bbb 1956

Appendix A: GAMS Index [
[T T]od 1 OSSPSR i

IMSL MATH LIBRARY .ottt ettt sttt ae e ii
Appendix B: Alphabetical Summary of Routines [
ROULINES ...ttt et bt r et i
Appendix C: References [
Appendix D: Benchmarking or Timing Programs [
Scalar Program DeSCIIPLIONSc.uiiieiieie et ste et e et ste et e e e e e sreesreenaeenneenes i

Parallel Program DeSCrIPLIONS.c.civiiiiiieieese et e ettt ta e te e e e e e nre e e v
Product Support 11
CoNtACiNG IMSL SUPPOIT......itiiiitiitiiiite bbb bbbt 11

[

IMSL MATH LIBRARY Table of Contents e xv

Introduction

The IMSL Fortran Numerical Library

The IMSL Fortran Numerical Library consists of two separate but coordinated Libraries that allow
easy user access. These Libraries are organized as follows:

e MATH/LIBRARY general applied mathematics and special functions
The User’s Guide for IMSL MATH/LIBRARY has two parts:

1.MATH/LIBRARY
2.MATH/LIBRARY Special Functions

e STAT/LIBRARY statistics

Most of the routines are available in both single and double precision versions. Many routines for
linear solvers and eigensystems are also available for complex and double -complex precision
arithmetic. The same user interface is found on the many hardware versions that span the range
from personal computer to supercomputer.

This library is the result of a merging of the products: IMSL Fortran Numerical Libraries and
IMSL Fortran 90 Library.

User Background

To use this product you should be familiar with the Fortran 90 language as well as the withdrawn
Fortran 77 language, which is, in practice, a subset of Fortran 90. A summary of the ISO and
ANSI standard language is found in Metcalf and Reid (1990). A more comprehensive illustration
is given in Adams et al. (1992).

Those routines implemented in the IMSL Fortran Numerical Library provide a simpler, more
reliable user interface than was possible with Fortran 77. Features of the IMSL Fortran Numerical
Library include the use of descriptive names, short required argument lists, packaged user-
interface blocks, a suite of testing and benchmark software, and a collection of examples. Source
code is provided for the benchmark software and examples.

Some of the routines in the IMSL Fortran Numerical Library can take advantage of a standard
(MPI) Message Passing Interface environment but do not require an MPI environment if the user
chooses to not take advantage of MPI.

IMSL MATH LIBRARY Introduction e i

The MPI logo shown below cues the reader when this is the case:

Eimpr

Routines documented with the MPI Capable logo can be called in a scalar or one computer
environment.

Other routines in the IMSL Library take advantage of MPI and require that an MPI environment
be present in order to use them. The MPI Required logo shown below clues the reader when this is

the case:
Ermpr

REQUIRED

NOTE: It is recommended that users considering using the MPI capabilities of the product read
the following sections of the MATH Library documentation:

Introduction: Using MPI Routines,
Introduction: Using ScaLAPACK Enhanced Routines,

Chapter 10, Linear Algebra Operators and Generic Functions — see Dense Matrix Parallelism
Using MPI.

Vendor Supplied Libraries Usage

The IMSL Fortran Numerical Library contains functions which may take advantage of functions
in vendor supplied libraries such as Intel’s® Math Kernel Library (MKL) or Sun’s"™" High
Performance Library. Functions in the vendor supplied libraries are finely tuned for performance
to take full advantage of the environment for which they are supplied. For these functions, the user
of the IMSL Fortran Numerical Library has the option of linking to code which is based on either
the IMSL legacy functions or the functions in the vendor supplied library. The following icon in
the function documentation alerts the reader when this is the case:

HIGH
PE%#M(E

Details on linking to the appropriate IMSL Library and alternate vendor supplied libraries are
explained in the online README file of the product distribution.

Getting Started

The IMSL MATH/LIBRARY is a collection of Fortran routines and functions useful in
mathematical analysis research and application development. Each routine is designed and
documented for use in research activities as well as by technical specialists.

ii @ Introduction IMSL MATH LIBRARY

To use any of these routines, you must write a program in Fortran 90 (or possibly some other
language) to call the MATH/LIBRARY routine. Each routine conforms to established conventions
in programming and documentation. We give first priority in development to efficient algorithms,
clear documentation, and accurate results. The uniform design of the routines makes it easy to use
more than one routine in a given application. Also, you will find that the design consistency
enables you to apply your experience with one MATH/LIBRARY routine to other IMSL routines
that you use.

Finding the Right Routine

The MATH/LIBRARY is organized into chapters; each chapter contains routines with similar
computational or analytical capabilities. To locate the right routine for a given problem, you may
use either the table of contents located in each chapter introduction, or the alphabetical list of
routines. The GAMS index uses GAMS classification (Boisvert, R.F., S.E. Howe, D.K. Kahaner,
and J. L. Springmann 1990, Guide to Available Mathematical Software, National Institute of
Standards and Technology NISTIR 90-4237). Use the GAMS index to locate which
MATH/LIBRARY routines pertain to a particular topic or problem.

Often the quickest way to use the MATH/LIBRARY is to find an example similar to your problem
and then to mimic the example. Each routine document has at least one example demonstrating its
application. The example for a routine may be created simply for illustration, it may be from a
textbook (with reference to the source), or it may be from the mathematical literature.

Organization of the Documentation

This manual contains a concise description of each routine, with at least one demonstrated exam-
ple of each routine, including sample input and results. You will find all information pertaining to
the MATH/LIBRARY in this manual. Moreover, all information pertaining to a particular routine
is in one place within a chapter.

Each chapter begins with an introduction followed by a table of contents that lists the routines
included in the chapter. Documentation of the routines consists of the following information:

e IMSL Routine’s Generic Name

e Purpose: a statement of the purpose of the routine. If the routine is a function rather than a
subroutine the purpose statement will reflect this fact.

e Function Return Value: a description of the return value (for functions only).

e Required Arguments: a description of the required arguments in the order of their occurrence.
Input arguments usually occur first, followed by input/output arguments, with output
arguments described last. Futhermore, the following terms apply to arguments:

Input Argument must be initialized; it is not changed by the routine.

Input/Output Argument must be initialized; the routine returns output through this
argument; cannot be a constant or an expression.

Input[/Output] Argument must be initialized; the routine may return output through this
argument based on other optional data the user may choose to pass to this routine; cannot
be a constant or an expression.

IMSL MATH LIBRARY Introduction e jii

Input or Output Select appropriate option to define the argument as either input or output.
See individual routines for further instructions.

Output No initialization is necessary; cannot be a constant or an expression. The routine
returns output through this argument.

e Optional Arguments: a description of the optional arguments in the order of their occurrence.
e Fortran 90 Interface: a section that describes the generic and specific interfaces to the routine.

e Fortran 77 Style Interface: an optional section, which describes Fortran 77 style interfaces, is
supplied for backwards compatibility with previous versions of the Library.

e ScaLAPACK Interface: an optional section, which describes an interface to a ScaLAPACK
based version of this routine.

e Description: a description of the algorithm and references to detailed information. In many
cases, other IMSL routines with similar or complementary functions are noted.

o Comments: details pertaining to code usage.

e Programming notes: an optional section that contains programming details not covered
elsewhere.

e Example: at least one application of this routine showing input and required dimension and
type statements.

e Qutput: results from the example(s). Note that unique solutions may differ from platform to
platform.

¢ Additional Examples: an optional section with additional applications of this routine showing
input and required dimension and type statements.

Naming Conventions

The names of the routines are mnemonic and unique. Most routines are available in both a single
precision and a double precision version, with names of the two versions sharing a common root.
The root name is also the generic interface name. The name of the double precision specific
version begins with a “D_” and the single precision specific version begins with an “s_”. For
example, the following pairs are precision specific names of routines in the two different
precisions: S_GORUL/D_GQRUL (the root is “GQRUL ,” for “Gauss quadrature rule”) and
S_RECCF/D_RECCF (the root is “RECCF,” for “recurrence coefficient”). The precision specific
names of the IMSL routines that return or accept the type complex data begin with the letter “c_
or “z_” for complex or double complex, respectively. Of course, the generic name can be used as
an entry point for all precisions supported.

2

When this convention is not followed the generic and specific interfaces are noted in the
documentation. For example, in the case of the BLAS and trigonometric intrinsic functions where
standard names are already established, the standard names are used as the precision specific
names. There may also be other interfaces supplied to the routine to provide for backwards
compatibility with previous versions of the IMSL Fortran Numerical Library. These alternate
interfaces are noted in the documentation when they are available.

iv e Introduction IMSL MATH LIBRARY

Except when expressly stated otherwise, the names of the variables in the argument lists follow
the Fortran default type for integer and floating point. In other words, a variable whose name
begins with one of the letters “1” through “N” is of type INTEGER, and otherwise is of type REAL
Or DOUBLE PRECISION, depending on the precision of the routine.

An assumed-size array with more than one dimension that is used as a Fortran argument can have
an assumed-size declarator for the last dimension only. In the MATH/LIBRARY routines, the
information about the first dimension is passed by a variable with the prefix “LD” and with the
array name as the root. For example, the argument LDA contains the leading dimension of array A.
In most cases, information about the dimensions of arrays is obtained from the array through the
use of Fortran 90’s size function. Therefore, arguments carrying this type of information are
usually defined as optional arguments.

Where appropriate, the same variable name is used consistently throughout a chapter in the
MATH/LIBRARY. For example, in the routines for random number generation, Nr denotes the
number of random numbers to be generated, and r or IR denotes the array that stores the numbers.

When writing programs accessing the MATH/LIBRARY, the user should choose Fortran names
that do not conflict with names of IMSL subroutines, functions, or named common blocks. The
careful user can avoid any conflicts with IMSL names if, in choosing names, the following rules
are observed:

e Do not choose a name that appears in the Alphabetical Summary of Routines, at the end of the
User’s Manual, nor one of these names preceded byap,s ,p ,c ,orz .

e Do not choose a name consisting of more than three characters with a numeral in the second
or third position.

For further details, see the section on “Reserved Names” in the Reference Material.

Using Library Subprograms

The documentation for the routines uses the generic name and omits the prefix, and hence the
entire suite of routines for that subject is documented under the generic name.

Examples that appear in the documentation also use the generic name. To further illustrate this
principle, note the LIN sor GEN documentation (see Chapter 1, Linear Systems), for solving
general systems of linear algebraic equations. A description is provided for just one data type.

There are four documented routines in this subject area: s 1in sol gen, d _lin sol gen,
c_lin sol gen, and z lin sol gen.

These routines constitute single-precision, double-precision, complex, and double-complex
precision versions of the code.

The Fortran 90 compiler identifies the appropriate routine. Use of a module is required with the
routines. The naming convention for modules joins the suffix “ int” to the generic routine
name. Thus, the line “use 1in sol gen int” is inserted near the top of any routine that calls
the subprogram “1in sol gen”. More inclusive modules are also available, such as

imsl libraries and numerical libraries. To avoid name conflicts, Fortran 90 permits re-
labeling names defined in modules so they do not conflict with names of routines or variables in
the user’s program. The user can also restrict access to names defined in IMSL Library modules
by use of the “: ONLY, <list of names>" qualifier.

IMSL MATH LIBRARY Introduction e v

When dealing with a complex matrix, all references to the transpose of a matrix, A" are replaced
by the adjoint matrix

AT =A=A"
where the overstrike denotes complex conjugation. IMSL Fortran Numerical Library linear
algebra software uses this convention to conserve the utility of generic documentation for that
code subject. All references to orthogonal matrices are to be replaced by their complex
counterparts, unitary matrices. Thus, an n x n orthogonal matrix Q satisfies the

condition QTQ =|,. Ann x n unitary matrix V satisfies the analogous condition for complex

matrices, V'V =1 .

Programming Conventions

In general, the IMSL MATH/LIBRARY codes are written so that computations are not affected by
underflow, provided the system (hardware or software) places a zero value in the register. In this
case, system error messages indicating underflow should be ignored.

IMSL codes are also written to avoid overflow. A program that produces system error messages
indicating overflow should be examined for programming errors such as incorrect input data,
mismatch of argument types, or improper dimensioning.

In many cases, the documentation for a routine points out common pitfalls that can lead to failure
of the algorithm.

Library routines detect error conditions, classify them as to severity, and treat them accordingly.
This error-handling capability provides automatic protection for the user without requiring the user
to make any specific provisions for the treatment of error conditions. See the section on “User
Errors” in the Reference Material for further details.

Module Usage

Users are required to incorporate a “use” statement near the top of their program for the IMSL
routine being called when writing new code that uses this library. However, legacy code which
calls routines in the previous version of the library without the use of a “use” statement will
continue to work as before. Also, code that employed the “use numerical libraries”
statement from the previous version of the library will continue to work properly with this version
of the library.

Users wishing to update existing programs so as to call other routines from this library should
incorporate a use statement for the specific new routine being called. (Here, the term “new
routine” implies any routine in the library, only “new” to the user’s program.) Use of the more
encompassing “ims1l libraries” module in this case could result in argument mismatches for
the “old” routine(s) being called. (The compiler would catch this.)

Users wishing to update existing programs to call the new generic versions of the routines must
change their calls to the existing routines to match the new calling sequences and use either the
routine specific interface modules or the all-encompassing “ims1 libraries” module.

vi e Introduction IMSL MATH LIBRARY

Using MPI Routines

Hvrr Ewmer

CAPABLE REQUIRED

Users of the IMSL Fortran Numerical Library benefit by having a standard (MPI) Message
Passing Interface environment. This is needed to accomplish parallel computing within parts of
the Library. Either of the icons above clues the reader when this is the case. If parallel computing
is not required, then the IMSL Library suite of dummy MPI routines can be substituted for
standard MPI routines. All requested MPI routines called by the IMSL Library are in this dummy
suite. Warning messages will appear if a code or example requires more than one process to
execute. Typically users need not be aware of the parallel codes.

NOTE: that a standard MPI environment is not part of the IMSL Fortran Numerical Library. The
standard includes a library of MPI Fortran and C routines, MPI “include” files, usage
documentation, and other run-time utilities.

NOTE: Details on linking to the appropriate libraries are explained in the online README file of
the product distribution.

There are three situations of MPI usage in the IMSL Fortran Numerical Library:

1. There are some computations that are performed with the ‘box’ data type that benefit from the
use of parallel processing. For computations involving a single array or a single problem,
there is no IMSL use of parallel processing or MPI codes. The box type data type implies that
several problems of the same size and type are to be computed and solved. Each rack of the
box is an independent problem. This means that each problem could potentially be solved in
parallel. The default for computing a box data type calculation is that a single processor will
do all of the problems, one after the other. If this is acceptable there should be no further
concern about which version of the libraries is used for linking. If the problems are to be
solved in parallel, then the user must link with a working version of an MPI Library and the
appropriate IMSL Library. Examples demonstrating the use of box type data may be found in
Chapter 10, “Linear Algebra Operators and Generic Functions”.

NOTE: Box data type routines are marked with the MPI Capable icon.

2. Various routines in Chapter 1, “Linear Systems” allow the user to interface with the
ScaLAPACK Library routines. If the user chooses to run on only one processor then these
routines will utilize either IMSL Library code or LAPACK Library code based on the
libraries the user chooses to use during linking. If the user chooses to run on multiple
processors then working versions of MPI, ScaLAPACK, PBLAS, and Blacs will need to be
present. These routines are marked with the MPI Capable icon.

3. There are some routines or operators in the Library that require that a working MPI Library be
present in order for them to run. Examples are the large-scale parallel solvers and the
ScaLAPACK utilities. Routines of this type are marked with the MPI Required icon. For
these routines, the user must link with a working version of an MPI Library and the
appropriate IMSL Library.

In all cases described above it is the user’s responsibility to supply working versions of the
aforementioned third party libraries when those libraries are required.

IMSL MATH LIBRARY Introduction e vii

Table A below lists the chapters and IMSL routines calling MPI routines or the replacement non-

parallel package.

Chapter Name and Number

Routine with MPI Utilized

Linear Systems, 1

PARALLEL NONNEGATIVE LSQ

Linear Systems, 1

PARALLEL BOUNDED LSQ

Linear Systems, 1

Those routines which utilize ScaLAPACK
listed in Table D below.

Linear Algebra and Generic Functions, 10

See entire following
Table B.1 — Defined Operators and Generic Functions

Utilities, 11 ScaLAPACK SETUP
Utilities, 11 ScaLAPACK GETDIM
Utilities, 11 ScaLAPACK READ
Utilities, 11 ScaLAPACK WRITE
Utilities, 11 ScaLAPACK MAP
Utilities, 11 ScaLAPACK UNMAP
Utilities, 11 ScalLAPACK EXIT

Reference Material

Entire Error Processor Package for IMSL
Library, if MPI is utilized

Table A - IMSL Routines Calling MPI1 Routines or Replacement Non-Parallel Package

Programming Tips

Each subject routine called or otherwise referenced requires the “use” statement for an interface
block designed for that subject routine. The contents of this interface block are the interfaces to the
separate routines available for that subject. Packaged descriptive names for option numbers that
modify documented optional data or internal parameters might also be provided in the interface
block. Although this seems like an additional complication, many errors are avoided at an early
stage in development through the use of these interface blocks. The “use” statement is required
for each routine called in the user’s program. As illustrated in Examples 3 and 4 in routine

lin geig gen, the “use” statement is required for defining the secondary option flags.

The function subprogram for s_NaN () or d_NaN () does not require an interface block because it
has only a single “required” dummy argument. Also, if one is only using the Fortran 77 interfaces
supplied for backwards compatibility then the “use” statements are not required.

viii e Introduction

IMSL MATH LIBRARY

Optional Subprogram Arguments

IMSL Fortran Numerical Library routines have required arguments and may have optional
arguments. All arguments are documented for each routine. For example, consider the routine
lin sol gen that solves the linear algebraic matrix equation Ax = b. The required arguments are
three rank-2 Fortran 90 arrays: A, b, and x. The input data for the problem are the A and b arrays;
the solution output is the x array. Often there are other arguments for this linear solver that are
closely connected with the computation but are not as compelling as the primary problem. The

inverse matrix A may be needed as part of a larger application. To output this parameter, use
the optional argument given by the “ainv=" keyword. The rank-2 output array argument used on
the right-hand side of the equal sign contains the inverse matrix. See Example 2 in Chapter 1,
“Linear Systems” of LIN soL GeN for an example of computing the inverse matrix.

For compatibility with previous versions of the IMSL Libraries, the NUMERICAL LIBRARIES
interface module includes backwards-compatible positional argument interfaces to all routines that
existed in the Fortran 77 version of the Library. Note that it is not necessary to include “use”
statements when calling these routines by themselves. Existing programs that called these
routines will continue to work in the same manner as before.

Some of the primary routines have arguments “epack="and “iopt=". As noted the “epack="
argument is of derived type s_error or d_error. The prefix “s_ or “d_” is chosen
depending on the precision of the data type for that routine. These optional arguments are part of
the interface to certain routines, and are used to modify internal algorithm choices or other
parameters.

Optional Data

This additional optional argument (available for some routines) is further distinguished—a derived
type array that contains a number of parameters to modify the internal algorithm of a routine. This
derived type has the name ? options, where “? ” iseither “s > or “d_”. The choice depends
on the precision of the data type. The declaration of this derived type is packaged within the
modules for these codes.

The definition of the derived types is:
type ?_ options
integer idummy; real (kind(?)) rdummy
end type

where the “2 > iseither “s_” or “d_”, and the kxind value matches the desired data type
indicated by the choice of “s™ or “d”.

Example 3 in Chapter 1, “Linear Systems” of LIN soL_GEN illustrates the use of iterative
refinement to compute a double-precision solution based on a single-precision factorization of the
matrix. This is communicated to the routine using an optional argument with optional data. For
efficiency of iterative refinement, perform the factorization step once, and then save the factored
matrix in the array A and the pivoting information in the rank-1 integer array, ipivots. By
default, the factorization is normally discarded. To enable the routine to be re-entered with a
previously computed factorization of the matrix, optional data are used as array entries in the
“iopt=" optional argument. The packaging of LIN soL_GEN includes the definitions of the self-
documenting integer parameters 1in sol gen save LU and lin sol gen solve A. These

IMSL MATH LIBRARY Introduction e ix

parameters have the values 2 and 3, but the programmer usually does not need to be aware of it.
The following rules apply to the “iopt=iopt™ optional argument:

1.Define a relative index, for example 10, for placing option numbers and data into the
array argument iopt. Initially, set 10 = 1. Before a call to the IMSL Library routine,
follow Steps 2 through 4.

2.The data structure for the optional data array has the following form:
iopt (I0) =2 options (Option_number, Optional_data)
[iopt (10 + 1) =? options (Option_number, Optional_data)]

The length of the data set is specified by the documentation for an individual routine.
(The Optional_data is output in some cases and may not be used in other cases.) The
square braces [. . .] denote optional items.

Illustration: Example 3 in Chapter 2, “Singular Value and Eigenvalue Decomposition” of
LIN EIG SELF, anew definition for a small diagonal term is passed to

LIN SOL SELF. There is one line of code required for the change and the new
tolerance:

iopt (1) = d options(d lin sol self set small,
epsilon (one) *abs (d(i)))

3.The internal processing of option numbers stops when Option_number == 0 or when
10 > sIze(iopt). This signals each routine having this optional argument that all
desired changes to default values of internal parameters have been made. This implies
that the last option number is the value zero or the value of S1ZE (iopt) matches the last
optional value changed.

4.To add more options, replace 1o with 10 + n, where n is the number of items required for
the previous option. Go to Step 2.

Option numbers can be written in any order, and any selected set of options can be changed from
the defaults. They may be repeated. Example 3 in Chapter 1, “Linear Solvers” of LIN SOL_SELF
uses three and then four option numbers for purposes of computing an eigenvector associated with
a known eigenvalue.

Overloaded =, /=, etc., for Derived Types

To assist users in writing compact and readable code, the IMSL Fortran Numerical Library
provides overloaded assignment and logical operations for the derived types s options,

d options, s_error, and d_error. Each of these derived types has an individual record
consisting of an integer and a floating-point number. The components of the derived types, in all
cases, are named idummy followed by rdummy. In many cases, the item referenced is the
component idummy. This integer value can be used exactly as any integer by use of the
component selector character (%). Thus, a program could assign a value and test after calling
a routine:

X e Introduction IMSL MATH LIBRARY

s_epack (1) ¥idummy = 0
call lin_sol_gen(A,b,x,epack=s_epack)
if (s_epack(l)%idummy > 0) call error_post(s_epack)

Using the overloaded assignment and logical operations, this code fragment can be written in the
equivalent and more readable form:

s_epack(l) = 0

call lin_sol_gen(A,b,x,epack=s_epack)

if (s_epack(l) > 0) call error_ post(s_epack)

Generally the assignments and logical operations refer only to component idummy. The
assignment “s_epack (1) =0 is equivalent to “s_epack (1)=s_error (0, 0E0)”. Thus, the
floating-point component rdummy is assigned the value 0E0. The assignment statement

“I=s epack(1)”, for I an integer type, is equivalent to “I=s epack (1) $idummy”. The value
of component rdummy is ignored in this assignment. For the logical operators, a single element of
any of the IMSL Fortran Numerical Library derived types can be in either the first or second
operand.

Derived Type | Overloaded Assignments and Tests

s_options I=s options(l);s options (1l)=I |= < <= > >=

s_options I=d options(l);d options(1)=I |= < <= > >=

d epack I=s epack(l);s epack(l)=I = < <= > >=

d epack I=d epack(l);d epack(l)=I = < <= > >=
In the examples, operator ex01, ..., ex37, the overloaded assignments and tests have been

used whenever they improve the readability of the code.

Error Handling

MPI

CAPABLE

The routines in the IMSL MATH/LIBRARY attempt to detect and report errors and invalid input.
Errors are classified and are assigned a code number. By default, errors of moderate or worse
severity result in messages being automatically printed by the routine. Moreover, errors of worse
severity cause program execution to stop. The severity level and the general nature of the error are
designated by an “error type” ranging from 0 to 5. An error type 0 is no error; types 1 through 5
are progressively more severe. In most cases, you need not be concerned with our method of
handling errors. For those interested, a complete description of the error-handling system is given
in the Reference Material, which also describes how you can change the default actions and access
the error code numbers.

A separate error handler is provided to allow users to handle errors of differing types being
reported from several nodes without danger of “jumbling” or mixing error messages. The design
of this error handler is described more fully in Hanson (1992). The primary feature of the design is
the use of a separate array for each parallel call to a routine. This allows the user to summarize
errors using the routine error post ina non-parallel part of an application. For a more detailed
discussion of the use of this error handler in applications which use MPI for distributed
computing, see the Reference Material.

IMSL MATH LIBRARY Introduction e xi

Printing Results

Most of the routines in the IMSL MATH/LIBRARY (except the line printer routines and special
utility routines) do not print any of the results. The output is returned in Fortran variables, and you
can print these yourself. See Chapter 11, “Utilities,” for detailed descriptions of these routines.

A commonly used routine in the examples is the IMSL routine uMaAcH (see the Reference Material),
which retrieves the Fortran device unit number for printing the results. Because this routine obtains
device unit numbers, it can be used to redirect the input or output. The section on “Machine-
Dependent Constants” in the Reference Material contains a description of the routine uMaAcCH.

Fortran 90 Constructs

MPI

CAPABLE

The IMSL Fortran Numerical Library contains routines which take advantage of Fortran 90
language constructs, including Fortran 90 array data types. One feature of the design is that the
default use may be as simple as the problem statement. Complicated, professional-quality
mathematical software is hidden from the casual or beginning user.

In addition, high-level operators and functions are provided in the Library. They are described in
Chapter 10, “Linear Algebra Operators and Generic Functions”.

Shared-Memory Multiprocessors and
Thread Safety

HIGH
PE%#MCE

The IMSL Fortran Numerical Library allows users to leverage the high-performance technology of
shared memory parallelism (SMP) when their environment supports it. Support for SMP systems
within the IMSL Library is delivered through various means, depending upon the availability of
technologies such as OpenMP, high performance LAPACK and BLAS, and hardware-specific
IMSL algorithms. Use of the IMSL Fortran Numerical Library on SMP systems can be achieved
by using the appropriate link environment variable when building your application. Details on

the available link environment variables for your installation of the IMSL Fortran Numerical
Library can be found in the online README file of the product distribution.

The IMSL Fortran Numerical Library is thread-safe in those environments that support OpenMP
2.0. This was achieved by using OpenMP directives that define global variables located in the
code so they are private to the individual threads. Thread safety allows users to create instances of
routines running on multiple threads and to include any routine in the IMSL Fortran Numerical
Library in these threads.

Xxii o Introduction IMSL MATH LIBRARY

Using Operators and Generic Functions

For users who are primarily interested in easy-to-use software for numerical linear algebra, see
Chapter 10, “Linear Algebra Operators and Generic Functions”. This compact notation for

writing Fortran 90 programs, when it applies, results in code that is easier to read and maintain
than traditional subprogram usage.

Users may begin their code development using operators and generic functions. If a more efficient
executable code is required, a user may need to switch to equivalent subroutine calls using IMSL
Fortran Numerical Library routines.

Table B contain lists of the defined operators and some of their generic functions.

Defined Array Operation

Matrix Operation

A .x. B AB

i. A A7

t. A .h. A AT A

A .ix. B A7'B

B .xi. A BA™!

A .tx. B,Oor (.t. A) .x. B AT'B,A"B
A .hx. B,or (.h. A) .x. B

B .xt. A 0B .x. (.t. A) BAT BA”
B .xh. A,0rB .x. (.h. A)

S=SVD(A [,U=U, V=V]) A=UsyT"
E=EIG(A [[,B=B, D=D], V=V, W=W]) (AV = VE), AVD = BVE, (AW = WE), AWD = BWE

R=CHOL (&) A=RTR
Q=ORTH (A [,R=R]) (A= QR) QTQ —
U=UNIT (A) ul,... = al/"al",...
F=DET (A) det(A) = determinant
K=RANK (A) rank(A) = rank

IMSL MATH LIBRARY

Introduction e xiii

Defined Array Operation Matrix Operation

P=NORM (A [, [type=]1i])

p =] Al, = max; (;‘aij U

p= ||A||2 =S, = largest singular value

P =[Al pugery = max; [Z;‘aij 0

C=COND (A) HAAH”A”
Z=EYE (N) Z=1Iy
A=DIAG (X) A:dlag(xl,..)
X=DIAGONALS (A) _

X=(Xy,...)
W=FFT (Z); Z=IFFT (W) Discrete Fourier Transform, Inverse
A=RAND (A) random numbers, 0 <A< 1
L=1isNaN (A) test for NaN, if (I) then...

Table B.1 — Defined Operators and Generic Functions for Dense Arrays

Defined Operation Matrix Operation
Data Management Define entries of sparse matrices
A .x. B AB

.t. A .h. A AT A

A .ix. B A'B

B .xi. A BA™!

A .tx. B,or (.t. A) .x. B A"B,A*B

A .hx. B,or (.h. A) .x. B

B .xt. A,OrB .x. (.t. A) BAT BA”

B .xh. AjorB .x. (.h. A)

A+B Sum of two sparse matrices

Xiv e Introduction IMSL MATH LIBRARY

Defined Operation Matrix Operation

C=COND (A) HA_lH”AH

Table B.2 — Defined Operators and Generic Functions for Harwell-Boeing Sparse Matrices

Using ScaLAPACK, LAPACK, LINPACK, and
EISPACK

Many of the codes in the IMSL Library are based on LINPACK, Dongarra et al. (1979), and
EISPACK, Smith et al. (1976), collections of subroutines designed in the 1970s and early 1980s.
LAPACK, Anderson et al. (1999), was designed to make the linear solvers and eigensystem
routines run more efficiently on high performance computers. For a number of IMSL routines, the
user of the IMSL Fortran Numerical Library has the option of linking to code which is based on
either the legacy routines or the more efficient LAPACK routines.

Table C below lists the IMSL routines that make use of LAPACK codes. The intent is to obtain
improved performance for IMSL codes by using LAPACK codes that have good performance by
virtue of using BLAS with good performance. To obtain improved performance we recommend
linking with High Performance versions of LAPACK and BLAS, if available. The LAPACK,
codes are listed where they are used. Details on linking to the appropriate IMSL Library and
alternate libraries for LAPACK and BLAS are explained in the online README file of the
product distribution.

Generic Name LAPACK Routines

of used when Linking with High
IMSL Routine Performance Libraries
LSARG ?GERFS, ?GETRF, ?GECON, ?=S/D
LSLRG ?GETRF, ?GETRS, ?=S/D
LFCRG ?GETRF, ?GECON, ?=S/D
LFTRG ?GETRF, ?=S/D
LFSRG ?GETRS, ?=S/D
LFIRG ?GETRS, ?=S/D
LINRG ?GETRF, ?GETRI ?=S/D
LSACG ?GETRF, GETRS, ?GECON, ?=C/Z
LSLCG ?GETRF, ?GETRS, ?=C/Z
LFCCG ?GETRF, °?GECON, ?=C/Z
LFTCG ?GETRF, 2C/7Z
LFSCG ?GETRS, ?2C/7%
LFICG ?GERFS, ?GETRS, ?2=C/7Z

IMSL MATH LIBRARY Introduction e xv

Generic Name LAPACK Routines

of used when Linking with High
IMSL Routine Performance Libraries
LINCG ?GETRF, ?GETRI, ?=C/Z
LSLRT ?TRTRS, ?=S/D
LECRT ?TRCON, ?=S/D
LSLCT ?TRTRS, ?2=C/Z
LEFCCT ?TRCON, ?=C/Z
LSADS ?PORFS, ?POTRS, ?2=S/D
LSLDS ?POTRF, ?POTRS, ?=S/D
LFCDS ?POTRF, ?POCON, ?2=S/D
LFTDS ?POTRF, ?-S/D
LFSDS ?POTRS, ?-S/D
LFIDS ?PORFS, ?POTRS, ?=S/D
LINDS ?POTRF, ?2=S/D
LSASF ?SYRFS, ?SYTRF, ?SYTRS, ?=S/D
LSLSF ?SYTRF, ?SYTRS, ?2=S/D
LFCSF ?SYTRF, ?SYCON, ?=S/D
LFTSF ?SYTRF, ?2=S/D
LFSSF ?SYTRF, ?2=S/D
LFISF ?SYRFS, ?=S/D
LSADH ?POCON, ?POTRF, ?POTRS, ?=C/Z
LSLDH ?TRTRS, ?POTRF, ?=C/Z
LFCDH ?POTRF, ?POCON, ?=C/Z
LFTDH ?POTRF, ?2=C/7Z
LFSDH ?TRTRS, ?=C/Z
LFIDH ?PORFS, ?POTRS, ?=C/Z
LSAHF ?HECON, ?HERFS, ?HETRF, ?HETRS, ?=C/Z
LSLHF ?HECON, ?HETRF, ?HETRS, ?=C/Z
LFCHF ?HETRF, ?HECON, ?2=C/Z
LFTHF ?HETRF, ?=C/Z
LFSHF ?HETRS, ?2=C/7Z
LFIHF ?HERFS, ?HETRS, ?=C/Z
LSARB ?GBTRF, ?2GBTRS, 2GBRFS ?2=S/D
LSLRB ?GBTRF, ?GBTRS, ?2=S/D
LFCRB ?GBTRF, °?GBCON, ?=S/D

xvi e Introduction

IMSL MATH LIBRARY

Generic Name LAPACK Routines
of used when Linking with High

IMSL Routine Performance Libraries

LFTRB ?GBTRF, ?=S/D

LEFSRB ?GBTRS, ?=S/D

LFIRB ?GBTRS, ?GBRFS, ?=S/D

LSQRR ?GEQP3, ?GEQRF, ?0RMQR, ?TRTRS. ?=S/D

LQRRV ?GEQP3, ?GEQRF, ?0RMQR, ?=S/D

LSBRR ?GEQRF, ?2=S/D

LORRR ?GEQRF, ?2=S/D

LSVRR ?GESVD, ?-S/D

LSVCR ?GESVD, ?=C/Z

LSGRR ?GESVD, ?=S/D

LQRSL ?TRTRS, ?0RMQR, ?=S/D

LQERR ?0RGQR, ?=S/D

EVLRG ?GEBAL, ?GEHRD, °?HSEQR ?=S/D

EVCRG ?GEEVX, ?=S/D

EVLCG ?HSEQR, ?GEBAL, ?GEHRD, ?=C/Z

EVCCG ?GEEV, ?2=C/Z

EVLSF ?SYEV, ?=S/D

EVCSF ?SYEV, ?=S/D

EVLHF ?HEEV, ?=C/7Z

EVCHF ?HEEV, ?=C/7Z

GVLRG ?GEQRF, ?0RMQR, ©?GGHRD, ?HGEQZ, ?=S/D

GVCRG ?GEQRF, ?0RMQR, °?GGHRD, ?HGEQZ,
?TGEVC, ?2=S/D

GVLCG ?GEQRF, ?UMMQR, ?GGHRD, ?HGEQZ,?=C/Z

GVCCG ?GEQRF, ?UMMQR, ?GGHRD,

?HGEQZ, ?TGEVC, ?=C/2
GVLSP ?SYGV, ?=S/D
GVCSP ?SYGV, ?=S/D

Table C — IMSL Routines and LAPACK Routines Utilized Within

ScaLAPACK, Blackford et al. (1997), includes a subset of LAPACK codes redesigned for use on
distributed memory MIMD parallel computers. A number of IMSL Library routines make use of a
subset of the ScaLAPACK library.

Table D below lists the IMSL routines that make use of ScaLAPACK codes. The intent is to

provide access to the ScaLAPACK codes through the familiar IMSL routine interface. The IMSL
routines that utilize ScaLAPACK codes have a ScaLAPACK Interface documented in addition to
the FORTRAN 90 Interface. Like the LAPACK codes, access to the ScaLAPACK codes is made

IMSL MATH LIBRARY

Introduction e xvii

by linking to the appropriate library. Details on linking to the appropriate IMSL Library and
alternate libraries for ScaLAPACK and BLAS are explained in the online README file of the
product distribution.

Generic Name ScaLAPACK Routines

of used when Linking with High Performance
IMSL Routine Libraries
LSARG P?GERFS, P?GETRF, P?GETRS, ?=S/D
LSLRG P?GETRF, P?GETRS, ?=S/D
LFCRG P?GETRF, P?GECON, ?=S/D
LFTRG P?GETRF, ?=S/D
LFSRG P?GETRS, ?=S/D
LFIRG P?GETRS, P?GERFS, ?=S/D
LINRG P?GETRF, P?GETRI ?=S/D
LSACG P?GETRF, P?GETRS, P?GERFS, ?=C/Z
LSLCG P?GETRF, P?GETRS, ?=C/Z
LFCCG P?GETRF, P?GECON, ?=C/Z
LFTCG P?GETRF, ?2C/7Z
LFSCG P?GETRS, ?C/Z
LFICG P?GERFS, P?GETRS, ?=C/Z
LINCG P?GETRF, P?GETRI, ?=C/Z
LSLRT P?TRTRS, ?=S/D
LEFCRT P?TRCON, ?=S/D
LSLCT P?TRTRS, ?=C/Z
LFCCT P?TRCON, ?=C/Z
LSADS P?PORFS, P?POTRF, P?POTRS, ?=S/D
LSLDS P?POTRF, P?POTRS, ?=S/D
LFCDS P?POTRF, P?POCON, ?=S/D
LFTDS P?POTRF, ?-S/D
LFSDS P?POTRS, ?-S/D
LFIDS P?PORFS, P?POTRS, ?=S/D
LINDS P?GETRF, P?GETRI, ?=S/D
LSADH P?POTRF, P?PORFS, P?POTRS, ?=C/Z
LSLDH P?POTRS, P?POTRF, ?=C/Z
LFCDH P?POTRF, P?POCON, ?=C/Z
LFTDH P?POTRF, ?=C/Z
LFSDH P?POTRS, ?=C/Z

xviii e Introduction IMSL MATH LIBRARY

Generic Name ScaLAPACK Routines

of used when Linking with High Performance
IMSL Routine Libraries
LFIDH P?PORFS, P?POTRS, 2=C/Z
LSLRB P?GBTRF, P?GBTRS, ?2=S/D
LSQRR P?GEQPF, P?GEQRF, P?0RMQR, P?TRTRS, ?=S/D
LORRV P?TRTRS, P?GEQRF, P?0RMQR, ?=S/D
LORRR P?GEQRF, P?GEQPF, P?0RMQR, ?=S/D
LSVRR P?GESVD, ?-S/D
LSGRR P?GESVD, ?=S/D
LQRSL P?TRTRS, P?0RMQR, ?=S/D
LOERR P?0RGQR, ?=5/D

Table D — IMSL Routines and ScaLAPACK Routines Utilized Within

Using ScaLAPACK Enhanced Routines

Emrr

CAPABLE
General Remarks

Use of the ScaLAPACK enhanced routines allows a user to solve large linear systems of algebraic
equations at a performance level that might not be achievable on one computer by performing the
work in parallel across multiple computers. One might also use these routines on linear systems
that prove to be too large for the address space of the target computer. Visual Numerics has tried
to facilitate the use of parallel computing in these situations by providing interfaces to

ScaL APACK routines which accomplish the task. The IMSL Library solver interface has the same
look and feel whether one is using the routine on a single computer or across multiple computers.

The basic steps required to utilize the IMSL routines which interface with ScaLAPACK routines
are:

Initialize MPI

Initialize the processor grid

Define any necessary array descriptors

Allocate space for the local arrays

Set up local matrices across the processor grid

Call the IMSL routine which interfaces with ScaLAPACK
Gather the results from across the processor grid

Release the processor grid

Exit MPI

© o N o gk~ 0w DdPRF

IMSL MATH LIBRARY

Introduction e xix

Utilities are provided in the IMSL Library that facilitate these steps for the user. Each of these
utilities is documented in Chapter 11, “Utilities”. We visit the steps briefly here:

1. Initialize MPI

The user should call Mp_sETUP () at this step. This function is described in detail in

“Getting Started with Modules MPI _setup int and MPI node int ” in Chapter 10, Linear
Algebra Operators and Generic Functions of this manual. For ScaLAPACK usage, suffice it to say
that following a call to the function Mp_SeTup (), the module MPI node int will contain
information about the number of processors, the rank of a processor, and the communicator for the
application. A call to this function will return the number of processors available to the program.
Since the module MPT node int isused by MPI setup int, itis notnecessary to explicitly
use the module MPTI node int. If MP_SETUP() is not called, then the program will compute
entirely on one node. No routine from MPI will be called.

2. Initialize the processor grid

SCALAPACK_SETUP (see Chapter 11, “Utilities”) is called at this step. This call will set up the
processor grid for the user, define the context ID variable, Mp_1cTxT, for the processor grid, and
place Mp_I1CTXT into the module GRIDINFO INT. Use of SCALAPACK SUPPORT Will make the
information in MPI_ NODE_INT and GRIDINFO INT available to the user’s program.

3. Define any necessary array descriptors

Consider the generic matrix A which is to be carved up and distributed across the processors in the
processor grid. In ScaLAPACK parlance, we refer to A as being the “global” array a which is to
be distributed across the processor grid in 2D block cyclic fashion (Chapter 11, “Utilities”). Each
processor in the grid will then have access to a subset of the global array a. We refer to the subset
array to which the individual processor has access as the “local” array A0. Just as it is sometimes
necessary for a program to be aware of the leading dimension of the global array 2, it is also
necessary for the program to be aware of other critical information about the local array 0. This
information can be obtained by calling the IMSL utility SCALAPACK GETDIM

(Chapter 11, “Utilities”). ScaLAPACK Library utility pEscInTT (See the Usage Notes section of
Chapter 11, “Utilities”) is then used to store this information in a vector.

4. Allocate space for the local arrays

The array dimensions, obtained in the previous step, are used at this point to allocate space for any
local arrays that will be used in the call to the IMSL routine.

5. Set up local matrices across the processor grid

If the matrices to be used by the solvers have not been distributed across the processor grid, IMSL
provides utility routines SCcALAPACK_READ and SCALAPACK MAP to help in the distribution of
global arrays across processors. SCALAPACK READ Will read data from a file while
scaLapAck_MaP will map a global array to the processor grid. Users may choose to distribute the
arrays themselves as long as they distribute the arrays in 2D block cyclic fashion consistent with
the array descriptors that have been defined.

6. Call the IMSL routine which interfaces with ScaLAPACK
The IMSL routines which interface with ScaLAPACK are listed in Table D.
7. Gather the results from across the processor grid

xx e Introduction IMSL MATH LIBRARY

IMSL provides utility routines SCALAPACK _WRITE and SCALAPACK UNMAP to help in the
gathering of results from across processors to a global array or file. scaLapACK WRITE will write
data to a file while scazapack _unmap will map local arrays from the processor grid to a global
array.

8. Release the processor grid
This is accomplished by a call to SCALAPACK EXIT.
9. Exit MPI

A call to Mp_SETUP with the argument ‘FINAL’ will shut down MPI and set the value of
MP_NPROCS = 0. This flags that MPI has been initialized and terminated. It cannot be initialized
again in the same program unit execution. No MPI routine is defined when Mp NPROCS has this
value.

IMSL MATH LIBRARY Introduction e xxi

Chapter 1: Linear Systems

Routines

1.1 Linear Solvers

1.1.1 Solves a general system of linear equations

AX S D LIN_SOL_GEN 10
1.1.2 Solves a system of linear equations Ax = b, where A is a self-adjoint

MALMX .o LIN_SOL_SELF 18
1.1.3 Solves a rectangular system of linear equations Ax = b,

iN @ least-SquUares SENSE........ccccevvvveeeeiieeee st LIN_SOL LSQ 27
1.1.4 Solves a rectangular least-squares system of linear equations

Ax = b using singular value decomposition............. LIN_SOL_SVD 36
1.1.5 Solves multiple systems of linear equations............. LIN_SOL_TRI 45
1.1.6 Computes the singular value decomposition (SVD)

of a rectangular matrix, A.......ccccoieiieeein i LIN_SVD 57
1.2. Large-Scale Parallel Solvers
1.2.1 Parallel Constrained Least-Squares Solversccccoceeiiinnee 66
1.2.2 Solves a linear, non-negative constrained least-squares

SYSIEM it PARALLEL_NONNEGATIVE_LSQ 67
1.2.3 Solves a linear least-squares system with bounds on

the unknowns........ccccccvvevicieeeeee, PARALLEL_BOUNDED_LSQ 75
1.3. Solution of Linear Systems, Matrix Inversion, and Q Determinant

Evaluation
1.3.1 Real General Matrices

High accuracy linear system solutioncccocccuiieeeeeenn. LSARG 83

Solves a linear SYStem ..o LSLRG 87

Factors and computes condition numbercccceeeneee. LFCRG 93

FACIONS . LFTRG 99

Solves after factoringceevvceeeeiiiiee e, LFSRG 103

High accuracy linear system solution after factoring LFIRG 108

Computes determinant after factoringccccceevviveennnen. LFDRG 113

IMSL MATH LIBRARY Chapter 1: Linear Systems o 1

INVEITS . LINRG 115
1.3.2 Complex General Matrices

High accuracy linear system solution............cccccceeee e, LSACG 119
Solves a linear SYStEMvveevieeiiiiiiieee e LSLCG 123
Factors and computes condition number..............cccceuvneee. LFCCG 128
FaCIOIS. ..o LFTCG 134
Solves a linear system after factoringcccecvvveveeenninns LFSCG 138
High accuracy linear system solution after factoring............. LFICG 143
Computes determinant after factoring..........ccccccovvveveinnnenn. LFDCG 148
INVEITS . LINCG 150
1.3.3 Real Triangular Matrices
Solves a linear SYStEMuvveeieeiiiiiiee e LSLRT 154
Computes condition NUMDETcevvvvvieieeiiieeeeeeeeeeeeveeeeeeenns LFCRT 158
Computes determinant after factoring...........cccccevvvvvvvvvenennns LFDRT 162
VIS e LINRT 163
1.3.4 Complex Triangular Matrices
Solves a linear SYSIEMcceeiiiiiiiiii e LSLCT 165
Computes condition NUMDETcevvveviiveeieiieieeeeeeeeevereeeeeens LFCCT 169
Computes determinant after factoring...........ccccevvvvvvvevennnnns LFDCT 173
VIS e LINCT 175
1.3.5 Real Positive Definite Matrices
High accuracy linear system solution............ccccccveeeiviieeeenns LSADS 177
Solves a linear SYSIEMcceeviiiiiiieiiie e LSLDS 181
Factors and computes condition number.............cccoevvveeeen. LFCDS 186
FACIONS. .. e LFTDS 191
Solve a linear system after factoringeevvvvvvveivviennnnns LFSDS 195
High accuracy linear system solution after factoring............. LFIDS 199
Computes determinant after factoring...........cccccevvvvvevevennnnns LFDDS 204
VIS s LINDS 206
1.3.6 Real Symmetric Matrices
High accuracy linear system Solution...........ccccocveeeiiiieeennns LSASF 210
Solves a linear SYSIEMccceeiiiiiiiiiiie e LSLSF 213
Factors and computes condition number............................ LFCSF 215
FaCIOIS. ..o LFTSF 218
Solves a linear system after factoringccccvvevvvvvvivvenennns LFSSF 221
High accuracy linear system solution after factoring.............. LFISF 223
Computes determinant after factoring...........cccccevevvvvvvveeennns LFDSF 226
1.3.7 Complex Hermitian Positive Definite Matrices
High accuracy linear system solution............cccocceeeeiiieeenne LSADH 227
Solves a linear SYSIEMccceeiiiiiiiiiiie e LSLDH 232
Factors and computes condition number...............ccoccuvueee. LFCDH 237
FaCIOrS. ..o LFTDH 243
Solves a linear system after factoringcccceeveeeeerinnins LFSDH 248
High accuracy linear system solution after factoring............. LFIDH 252
Computes determinant after factoring.............cccccceeennis LFDDH 258

1.3.8 Complex Hermitian Matrices
High accuracy linear system solution............cccccceeeiiiieenenns LSAHF 259

2 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Solves a linear SYSIEMcoiiiiiiieiiiee e LSLHF 262

Factors and computes condition numbercccccceeeeeennn. LFCHF 265
= (o1 0] £ TP PRPRPRPRPRIR LFTHF 268
Solves a linear system after factoring..........ccccccoeeeviienernn LFSHF 271
High accuracy linear system solution after factoring LFIHF 273
Computes determinant after factoringcccceevvcvvveennnnn. LFDHF 276
1.3.9 Real Band Matrices in Band Storage
Solves a tridiagonal SyStemccccveeviiviiiiieeee e, LSLTR 278
Solves a tridiagonal system: Cyclic Reduction.................... LSLCR 279
High accuracy linear system solutionccccceevivieeennnee. LSARB 282
Solves a linear SYSIEMcoiiiiiiieiee e LSLRB 285
Factors and compute condition numberccccceeeeenn. LFCRB 290
= (o1 0] £ TP PP PRPRTRPRPRIN LFTRB 293
Solves a linear system after factoring........cccccccevevcvvieneeeennn. LFSRB 296
High accuracy linear system solution after factoring LFIRB 298
Computes determinant after factoringcccooeeevieiiiiinnn. LFDRB 301
1.3.10 Real Band Symmetric Positive Definite Matrices in Band Storage
High accuracy linear system solutionccccceeviveeeennnen. LSAQS 303
Solves a linear SYStemMcovciviiiiiiii e LSLQS 305
Solves a linear SYSEMcooiiiiiiiiee e LSLPB 308
Factors and computes condition numbercccccceeeeeennn. LFCQS 311
FACIOIS .. e LFTQS 314
Solves a linear system after factoring...........ccooeeevivieeiiicennn. LFSQS 316
High accuracy linear system solution after factoring LFIQS 318
Computes determinant after factoringccccoeeeviiiiiiinnn. LFDQS 320
1.3.11 Complex Band Matrices in Band Storage
Solves a tridiagonal SYSteMcovcviieiiiiiieiiiee e LSLTQ 322
Solves a tridiagonal system: Cyclic Reduction.................... LSLCQ 324
High accuracy linear system solutionccccceeviieeennnen. LSACB 327
Solves alinear system ..., LSLCB 330
Factors and computes condition numberccccceeeeinnn. LFCCB 333
FFAICTONS ..ttt LFTCB 336
Solves a linear system after factoring...........cccoeeeeieieiiiiennnn. LFSCB 339
High accuracy linear system solution after factoring LFICB 341
Computes determinant after factoringc.cccceevvieeinnnen. LFDCB 344
1.3.12 Complex Band Positive Definite Matrices in Band Storage
High accuracy linear system solutioncccccceeeeiiieiiinnnn. LSAQH 346
Solves a linear Systemccoooieeiviiiiiiice e LSLQH 349
Solves a linear SYystemccoooeeeieiiiiiei e LSLQB 352
Factors and compute condition numberccccoeeeeiiinnn. LFCQH 355
FACIOIS .o LFTQH 358
Solves a linear system after factoring...........cccoeeeeieieiiiiennnn. LFSQH 360
High accuracy linear system solution after factoring LFIQH 362
Computes determinant after factoringcccceevvceeennnn. LFDQH 365
1.3.13 Real Sparse Linear Equation Solvers
Solves a sparse linear SYStemc.oovviieeiiieeiiiiiiiiieeeeeeene LSLXG 366
FACTOIS ..ttt LFTXG 372
Solves a linear system after factoring.........ccccccoevcvveeeeenennn. LFSXG 377

1.3.14 Complex Sparse Linear Equation Solvers

IMSL MATH LIBRARY Chapter 1: Linear Systems ¢ 3

1.3.15

1.3.16

1.3.17

1.3.18

1.3.19

1.3.20

1.4.
141

1.4.2

143

Solves a sparse linear SyStemcccoceeveeviiieieiiiiee e LSLZG

FaCIOrS. ..o LFTZG
Solves a linear system after factoringccccccoecvveveininnnen. LFSZG
Real Sparse Symmetric Positive Definite Linear Equation Solvers
Solves a sparse linear SysStemccccccveveeeiivciieeeee e LSLXD
SYMDBOIIC FACION....uiiiiiiiiicceee e LSCXD
ComMPULES FACIONuuiiiiiiiiciieii e LNFXD
Solves a linear system after factoringcccccvveeeeeeiinnns LFSXD
Complex Sparse Hermitian Positive Definite Linear Equation Solvers
Solves a sparse linear SysStemccccccveveeeiivciieeeee e LSLZD
COomMPULES FACIONuuiiiiiiiciiiiie e LNFzZD
Solves a linear system after factoringccccvvvveeeeeiiinnns LFSZD
Real Toeplitz Matrices in Toeplitz Storage

Solves a linear SYSIEMcceeiiiiiiiiiiii e LSLTO
Complex Toeplitz Matrices in Toeplitz Storage

Solves a linear SYSIEMevvvieiiiiiiiiieiieeeeeeeeeeeeveeeeeeeeeveaeaeens LSLTC
Complex Circulant Matrices in Circulant Storage

Solves a linear SYSIEMcceeiiiiiiiiii e LSLCC
Iterative Methods

Preconditioned conjugate gradient.................cccccoeeeeeeee. PCGRC
Jacobi conjugate gradientcccoeeviiiiiie i, JCGRC
Generalized minimum residual............cccccooiiniiiiiins GMRES
Partial Singular Value Decomposition..................... ARPACK_SVD

Linear Least Squares and Matrix Factorization
Least Squares, QR Decomposition and Generalized Inverse

Solves a Least-squares SYStemcccveeeveeevriiciiiieeeeennnnnns LSQORR
Solves a Least-squares SYStemccceeevveeeveiiciiiineneennnnnns LQRRV
High accuracy Least SQUAreS........cccocveeeiiiiieeeniiiieee e e LSBRR
Linearly constrained Least SQUArescccceeviiieeeeviineeeenns LCLSQ
QR deCOMPOSILIONuviiiiiiiiiiiiieieieieieieieierrereerererererrnn LQRRR
Accumulation of QR decomposition...............oeeeeeeeeeeeeeeennn, LQERR
QR decomposition ULIHtIeSeevvveeiieieeiiiieiieiiveeevieeveieeens LQRSL
(O] = T3 (o] g0 oo F= | = PP LUPQR
Cholesky Factorization

Cholesky factoring for rank deficient matrices LCHRG
Cholesky factor update............eeeieiiiiiiiiieiiieee e LUPCH
Cholesky factor down-date................eevvvivveivininininininininininn, LDNCH
Singular Value Decomposition (SVD)

Real singular value decompositioncccccevviiieiiiiieeeens LSVRR
Complex singular value decomposition............cccccvvvveeernnnnns LSVCR
GeneraliZzed INVEISEcccvviieiieee e e e LSGRR

380
385
391

394
399
403
408

412
416
421

424

426

428

431
437
440
451

451
457
463
467
471
478
483
489

494
496
499

503
510
514

4 o Chapter 1: Linear Systems

IMSL MATH LIBRARY

Usage Notes

Section 1.1 describes routines for solving systems of linear algebraic equations by direct matrix
factorization methods, for computing only the matrix factorizations, and for computing linear
least-squares solutions.

Section 1.2 describes routines for solving systems of parallel constrained least-squares.

Many of the routines described in sections 1.3 and 1.4 are for matrices with special properties or
structure. Computer time and storage requirements for solving systems with coefficient matrices
of these types can often be drastically reduced, using the appropriate routine, compared with using
a routine for solving a general complex system.

The appropriate matrix property and corresponding routine can be located in the “Routines”
section. Many of the linear equation solver routines in this chapter are derived from subroutines
from LINPACK, Dongarra et al. (1979). Other routines have been developed by Visual Numerics,
derived from draft versions of LAPACK subprograms, Bischof et al. (1988), or were obtained
from alternate sources.

A system of linear equations is represented by Ax = b where A is the n X n coefficient data matrix,
b is the known right-hand-side n-vector, and x is the unknown or solution n-vector. Figure 1-1
summarizes the relationships among the subroutines. Routine names are in boxes and input/output
data are in ovals. The suffix == in the subroutine names depend on the matrix type. For example,
to compute the determinant of A use Lrc** or LET** followed by LED**.

The paths using Lsa** or LFI** use iterative refinement for a more accurate solution. The path
using Lsax* is the same as using Lrc** followed by LF1**. The path using LsL** is the same as
the path using Lrc** followed by LEs=**. The matrix inversion routines L.IN** are available only
for certain matrix types.

Matrix Types

The two letter codes for the form of coefficient matrix, indicated by ** in Figure 1-1, are as

follows:
RG Real general (square) matrix.
CG Complex general (square) matrix.
TR Or CR Real tridiagonal matrix.
RB Real band matrix.
TQ or CQ Complex tridiagonal matrix.
CB Complex band matrix.
SF Real symmetric matrix stored in the upper half of a square matrix.
DS Real symmetric positive definite matrix stored in the upper half of a square matrix.
DH Complex Hermitian positive definite matrix stored in the upper half of a complex
square matrix.
HF Complex Hermitian matrix stored in the upper half of a complex square matrix.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 5

QS or PB Real symmetric positive definite band matrix.
QH or OB Complex Hermitian positive definite band matrix.
XG Real general sparse matrix.
ZG Complex general sparse matrix.
XD Real symmetric positive definite sparse matrix.
7D Complex Hermitian positive definite sparse matrix.
; v v
LET** LEC**
: | |
Condition
number
A 4
(Factorization)
A 4 A4 Y v v v
LIN** LSA** LFI** LFD**
LSL** LES**
I |
Y 4
° X=A'b (Determinant)
or T
x=A"b

Figure 1- 1 Solution and Factorization of Linear Systems

Solution of Linear Systems

The simplest routines to use for solving linear equations are LsL** and Lsa**. For example, the
mnemonic for matrices of real general form is RG. So, the routines LSARG and LSLRG are
appropriate to use for solving linear systems when the coefficient matrix is of real general form.
The routine LSARG uses iterative refinement, and more time than LSLRG, to determine a high

accuracy solution.

The high accuracy solvers provide maximum protection against extraneous computational errors.
They do not protect the results from instability in the mathematical approximation. For a more
complete discussion of this and other important topics about solving linear equations, see Rice
(1983), Stewart (1973), or Golub and van Loan (1989).

6 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Multiple Right Sides

There are situations where the LsL** and Lsax** routines are not appropriate. For example, if the
linear system has more than one right-hand-side vector, it is most economical to solve the system
by first calling a factoring routine and then calling a solver routine that uses the factors. After the
coefficient matrix has been factored, the routine LFs** or LFI** can be used to solve for one
right-hand side at a time. Routines LEI** uses iterative refinement to determine a high accuracy
solution but requires more computer time and storage than routines LES* *,

Determinants

The routines for evaluating determinants are named LED* *. As indicated in Figure 1-1, these
routines require the factors of the matrix as input. The values of determinants are often badly
scaled. Additional complications in structures for evaluating them result from this fact. See Rice
(1983) for comments on determinant evaluation.

Iterative Refinement

Iterative refinement can often improve the accuracy of a well-posed numerical solution. The
iterative refinement algorithm used is as follows:

Xo=ATlhb
Fori=1,50
ri = Ax;-;— b computed in higher precision
pi=ATT
Xj = Xi-1- Pi
if (Il pi [l < €]l Xi [|o) Exit
End for

Error — Matrix is too ill-conditioned

If the matrix A is in single precision, then the residual rj = Ax;-;— b is computed in double
precision. If A is in double precision, then quadruple-precision arithmetic routines are used.

The use of the value 50 is arbitrary. In fact a single correction is usually sufficient. It is also
helpful even when r; is computed in the same precision as the data.

Matrix Inversion

An inverse of the coefficient matrix can be computed directly by one of the routines named
LIN**. These routines are provided for general matrix forms and some special matrix forms.
When they do not exist, or when it is desirable to compute a high accuracy inverse, the two-step
technique of calling the factoring routine followed by the solver routine can be used. The inverse

IMSL MATH LIBRARY Chapter 1: Linear Systems o 7

is the solution of the matrix system AX = | where | denotes the n X n identity matrix, and the
solution is X = A-1

Singularity

The numerical and mathematical notions of singularity are not the same. A matrix is considered
numerically singular if it is sufficiently close to a mathematically singular matrix. If error
messages are issued regarding an exact singularity then specific error message level reset actions
must be taken to handle the error condition. By default, the routines in this chapter stop. The
solvers require that the coefficient matrix be numerically nonsingular. There are some tests to
determine if this condition is met. When the matrix is factored, using routines Lrc**, the
condition number is computed. If the condition number is large compared to the working
precision, a warning message is issued and the computations are continued. In this case, the user
needs to verify the usability of the output. If the matrix is determined to be mathematically
singular, or ill-conditioned, a least-squares routine or the singular value decomposition routine
may be used for further analysis.

Special Linear Systems

Toeplitz matrices have entries which are constant along each diagonal, for example:

Po P P2 P
P Po P P2
P2 Pa P B
P3s P2 P Po

Real Toeplitz systems can be solved using LsL.T0. Complex Toeplitz systems can be solved using
LSLTC.

A=

Circulant matrices have the property that each row is obtained by shifting the row above it one
place to the right. Entries that are shifted off at the right reenter at the left. For example:

Pr P2 P3Py
Ao Ps PL P2 B3
Pz Ps P P2
P P3 Py Py

Complex circulant systems can be solved using L.sL.CC.

Iterative Solution of Linear Systems

The preconditioned conjugate gradient routines PCGRC and JCGRC can be used to solve symmetric
positive definite systems. The routines are particularly useful if the system is large and sparse.
These routines use reverse communication, so A can be in any storage scheme. For general linear
systems, use GMRES.

8 e Chapter 1: Linear Systems IMSL MATH LIBRARY

QR Decomposition

The QR decomposition of a matrix A consists of finding an orthogonal matrix Q, a permutation
matrix P, and an upper trapezoidal matrix R with diagonal elements of nonincreasing magnitude,
such that AP = QR. This decomposition is determined by the routines LORRR or LORRV. It returns
R and the information needed to compute Q. To actually compute Q use LOERR. Figure 1-2
summarizes the relationships among the subroutines.

The QR decomposition can be used to solve the linear system Ax = b. This is equivalent to

Rx = Q'Pb. The routine LorsL, can be used to find Q'Pb from the information computed by
LORRR. Then x can be computed by solving a triangular system using LSLRT. If the system Ax=b
is overdetermined, then this procedure solves the least-squares problem, i.e., it finds an x for which

2
||AX—b||z

is a minimum.

If the matrix A is changed by a rank-1 update, A — A + axy', the QR decomposition of A can be
updated/down-dated using the routine LUPQR. In some applications a series of linear systems
which differ by rank-1 updates must be solved. Computing the QR decomposition once and then
updating or down-dating it usually faster than newly solving each system.

LORRR Or LOQRRV

A—A + OtxyT v

LUPQR QR decomposition)

LOERR LORSL

Qb, Q'b,

Least-squares
solution

Figure 1- 2 Least-Squares Routine

IMSL MATH LIBRARY Chapter 1: Linear Systems ¢ 9

LIN_SOL_GEN

.

Solves a general system of linear equations Ax = b. Using optional arguments, any of several
related computations can be performed. These extra tasks include computing the LU factorization
of A using partial pivoting, representing the determinant of A, computing the inverse matrix A,

and solving ATXx=b orAx=b given the LU factorization of A.

Required Arguments

A — Array of size n X n containing the matrix. (Input [/Output])
If the packaged option 1in sol gen save LU is used then the LU factorization of a
is saved in A. For solving efficiency, the diagonal reciprocals of the matrix U are saved
in the diagonal entries of a.

B — Array of size n X nb containing the right-hand side matrix. (Input [/Output])
If the packaged option 1in sol gen save LU isused then input B is used as work
storage and is not saved.

X — Array of size n X nb containing the solution matrix.(Output)

Optional Arguments

NROWS = n (Input)
Uses array A(1:n, 1:n) for the input matrix.
Default: n = size (a, 1)

NRHS = nb (Input)
Uses array b(1:n, 1:nb) for the input right-hand side matrix.
Default: nb = size(b, 2)
Note that b must be a rank-2 array.

pivots = pivots(:) (Output [/Input])
Integer array of size n that contains the individual row interchanges. To construct the
permuted order so that no pivoting is required, define an integer array ip(n). Initialize
ip(i) =1, i =1, n and then execute the loop, after calling 1in_sol gen,

k=pivots (i)
interchange ip (i) and ip(k), i=1,n

The matrix defined by the array assignment that permutes the rows,
A(1:n,1:n)=2(ip(1:n), 1:n), requires no pivoting for maintaining numerical

10 e Chapter 1: Linear Systems IMSL MATH LIBRARY

stability. Now, the optional argument “iopt=" and the packaged option number
2 lin sol gen no pivoting can be safely used for increased efficiency during

the LU factorization of A.

= det (1:2) (Output)

Aurray of size 2 of the same type and kind as a for representing the determinant of the
input matrix. The determinant is represented by two numbers. The first is the base with
the sign or complex angle of the result. The second is the exponent. When det(2) is

within exponent range, the value of this expression is given by

abs(det(1))**det(2) * (det(1))/abs(det(1)). If the matrix is not singular,
abs(det(1)) = radix(det); otherwise, det(1) = 0., and det(2) = — huge(abs(det(1))).

= ainv(:,:) (Output)

Array of the same type and kind as A(1:n, 1:n). It contains the inverse matrix, A™,
when the input matrix is nonsingular.

= iopt(:) (Input)

Derived type array with the same precision as the input matrix; used for passing
optional data to the routine. The options are as follows:

Packaged Options for 1in_sol_gen

Option Prefix = ? Option Name Option Value
s ,d,c ,z_ lin sol gen set small 1
s ,d,c ,z_ lin sol gen save LU 2
s ,d,c ,z_ lin sol gen solve A 3
s ,d,c ,z_ lin sol gen solve ADJ 4
s ,d ,c ,z_ lin sol gen no_pivoting 5
s ,d ,c ,z lin sol gen scan for NaN 6
s ,d,c ,z_ lin sol gen no_sing mess 7
s ,d,c ,z_ lin sol gen A is sparse 8

iopt (I0) = 2 options(? lin sol gen set small, Small)

Replaces a diagonal term of the matrix U if it is smaller in magnitude than the value
Small using the same sign or complex direction as the diagonal. The system is declared
singular. A solution is approximated based on this replacement if no overflow results.

Default: the smallest number that can be reciprocated safely

iopt (I0) = ? options(? _lin sol gen save LU, ? dummy)

Saves the LU factorization of A. Requires the optional argument “pivots=" if the
routine will be used later for solving systems with the same matrix. This is the only
case where the input arrays 2 and b are not saved. For solving efficiency, the diagonal

reciprocals of the matrix U are saved in the diagonal entries of a.

IMSL MATH LIBRARY

Chapter 1: Linear Systems o 11

iopt (I0) = ? options(? lin sol gen solve A, ? dummy)
Uses the LU factorization of A computed and saved to solve Ax = b.

iopt (IO) = ? options(? lin sol gen solve ADJ,? dummy)
Uses the LU factorization of A computed and saved to solve ATx = b.

iopt (IO) = ? options(? lin sol gen no pivoting, ?_ dummy)
Does no row pivoting. The array pivots (:), if present, are output as pivots (i) =1,
fori=1,...,n.

iopt (I0) = ? options(? 1lin sol gen scan for NaN, ? dummy)

Examines each input array entry to find the first value such that

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.

See the i snan() function, Chapter 10.
Default: Does not scan for NaNs.

iopt (I0) = ? options(? lin sol gen no sing mess,? dummy)
Do not point an error message when the matrix A is singular.

iopt (IO) = ? options(?_lin sol gen A is sparse,? dummy)
Uses an indirect updating loop for the LU factorization that is efficient for sparse
matrices where all matrix entries are stored.

FORTRAN 90 Interface
Generic: CALL LIN SOL GEN (A,B, X [,..])

Specific: The specific interface names are S LIN SOL GEN, D LIN SOL_GEN,
C_LIN SOL GEN,and z LIN SOL_GEN.

Description

Routine LIN sSoL_GEN solves a system of linear algebraic equations with a nonsingular
coefficient matrix A. It first computes the LU factorization of A with partial pivoting such that

LU = A. The matrix U is upper triangular, while the following is true:
“1p _ -
L~A=L,R L, 4P --LPA=U
The factors Pj and L; are defined by the partial pivoting. Each Pj is an interchange of row i with
row j = i. Thus, P; is defined by that value of j. Every
Li = I + mle;r

is an elementary elimination matrix. The vector M; is zero in entries 1, ..., i. This vector is stored

as column i in the strictly lower-triangular part of the working array containing the decomposition
information. The reciprocals of the diagonals of the matrix U are saved in the diagonal of the
working array. The solution of the linear system Ax = b is found by solving two simpler systems,

12 e Chapter 1: Linear Systems IMSL MATH LIBRARY

-1 -1
y=L"b,4x=U"y
More mathematical details are found in Golub and Van Loan (1989, Chapter 3).

Fatal and Terminal Error Messages

See the messages.gls file for error messages for LIN soL GEN. The messages are numbered
161-175; 181-195; 201-215; 221-235.

Example 1: Solving a Linear System of Equations

This example solves a linear system of equations. This is the simplest use of 1in _sol gen. The
equations are generated using a matrix of random numbers, and a solution is obtained
corresponding to a random right-hand side matrix. Also, see operator ex01, supplied with the
product examples, for this example using the operator notation.

use lin sol gen int
use rand gen_int
use error option packet

implicit none

! This is Example 1 for LIN SOL GEN.

integer, parameter :: n=32

real (kind(1e0)), parameter :: one=lel

real (kind (1e0)) err

real (kind(1e0)) A(n,n), b(n,n), x(n,n), res(n,n), y(n**2)

! Generate a random matrix.
call rand gen(y)
A = reshape(y, (/n,n/))

! Generate random right-hand sides.
call rand gen(y)
b = reshape(y, (/n,n/))

! Compute the solution matrix of Ax=b.
call lin sol gen(A, b, x)

! Check the results for small residuals.
res = b - matmul (A, x)
err = maxval (abs (res)) /sum(abs (A)+abs (b))

if (err <= sqgrt(epsilon(one))) then
write (*,*) 'Example 1 for LIN SOL GEN is correct.'
end 1if
end
Output

Example 1 for LIN SOL GEN is correct.

IMSL MATH LIBRARY Chapter 1: Linear Systems o 13

Additional Examples

Example 2: Matrix Inversion and Determinant

This example computes the inverse and determinant of A, a random matrix. Tests are made on the
conditions

AAL = |
and

det(A™) = det(A) ™"

Also, see operator ex02.

use lin sol gen int
use rand gen int

implicit none
! This is Example 2 for LIN SOL GEN.

integer i

integer, parameter :: n=32

real (kind (1e0)), parameter :: one=1.0e0, zero=0.0e0

real (kind (1e0)) err

real (kind(1e0)) A(n,n), b(n,0), inv(n,n), x(n,0), res(n,n), &

y(n**2), determinant (2), inv determinant (2)
! Generate a random matrix.

call rand gen(y)
A = reshape(y, (/n,n/))

! Compute the matrix inverse and its determinant.

call lin sol gen(A, b, x, nrhs=0, &
ainv=inv, det=determinant)

! Compute the determinant for the inverse matrix.

call lin sol gen(inv, b, x, nrhs=0, &
det=inv_determinant)

! Check residuals, A times inverse = Identity.

res = matmul (A, inv)
do i=1, n

res(i,i) = res(i,i) - one
end do
err = sum(abs(res)) / sum(abs(a))
if (err <= sqgrt(epsilon(one))) then

14 e Chapter 1: Linear Systems IMSL MATH LIBRARY

if (determinant(l) == inv_determinant (1) .and. &

(abs (determinant (2) +inv_determinant (2)) &
<= abs (determinant (2)) *sqgrt (epsilon(one)))) then
write (*,*) 'Example 2 for LIN SOL GEN is correct.'
end if
end 1if
end
Output

Example 2 for LIN SOL GEN is correct.

Example 3: Solving a System with Iterative Refinement

This example computes a factorization of a random matrix using single-precision arithmetic. The
double-precision solution is corrected using iterative refinement. The corrections are added to the
developing solution until they are no longer decreasing in size. The initialization of the derived

type array iopti(1:2) = s_option(0,0.0e0) leaves the integer part of the second element

of iopti (:) atthe value zero. This stops the internal processing of options inside 1in sol gen.

It results in the LU factorization being saved after exit. The next time the routine is entered the
integer entry of the second element of iopt (:) results in a solve step only. Since the LU
factorization is saved in arrays a(:, :) and ipivots (:), at the final step, solve only steps can
occur in subsequent entries to 1in sol gen. AlSO, See operator ex03, Chapter 10.

use lin sol gen int
use rand gen_int

implicit none

! This is Example 3 for LIN SOL GEN.

integer, parameter :: n=32
real (kind (1e0)), parameter :: one=1.0e0, zero=0.0e0
real (kind (1d0)), parameter :: d zero=0.0d0

integer ipivots (n)

real (kind (1e0) a(n,n), b(n,1), x(n,1), w(n**2)
real (kind (1e0) change new, change old

real (kind (1d0) c(n,1l), d(n,n), y(n,1l)

type (s_options iopti(2)=s_options (0, zero)

! Generate a random matrix.

call rand gen (w)
a = reshape(w, (/n,n/))

! Generate a random right hand side.
call rand gen(b(l:n,1))
! Save double precision copies of the matrix and right hand side.

d = a
c =Db

IMSL MATH LIBRARY Chapter 1: Linear Systems o 15

! Start solution at zero.

y = d _zero
change old = huge (one)

! Use packaged option to save the factorization.
iopti(l) = s options(s_1lin sol gen save LU, zero)
iterative refinement: do
b = c¢c - matmul (d,vy)
call lin sol gen(a, b, x, &
pivots=ipivots, iopt=iopti)
y =x+ty
change new = sum(abs (x))
! Exit when changes are no longer decreasing.
if (change new >= change old) &
exit iterative refinement
change old = change new
! Use option to re-enter code with factorization saved; solve only.
iopti(2) = s options(s_lin sol gen solve A, zero)
end do iterative refinement

write (*,*) 'Example 3 for LIN SOL GEN is correct.'
end

Output

Example 3 for LIN SOL GEN is correct.

Example 4: Evaluating the Matrix Exponential

This example computes the solution of the ordinary differential equation problem

dy _
dt

with initial values y(0) = y,. For this example, the matrix A is real and constant with respect to .
The unique solution is given by the matrix exponential:

At
y(t)=e"y,
This method of solution uses an eigenvalue-eigenvector decomposition of the matrix
A=XDX*
to evaluate the solution with the equivalent formula

y(t)=Xe 'z,

Ay

where

16 e Chapter 1: Linear Systems IMSL MATH LIBRARY

zo=X"y,

is computed using the complex arithmetic version of 1in sol gen. The results for y(t) are real
quantities, but the evaluation uses intermediate complex-valued calculations. Note that the
computation of the complex matrix X and the diagonal matrix D is performed using the IMSL
MATH/LIBRARY FORTRAN 77 interface to routine EvCRG. This is an illustration of intermixing
interfaces of FORTRAN 77 and Fortran 90 code. The information is made available to the Fortran
90 compiler by using the FORTRAN 77 interface for EVCRG. Also, see operator ex04, supplied
with the product examples, where the Fortran 90 function £1G () has replaced the call to EvCRG.

use lin sol gen int
use rand gen_ int
use Numerical Libraries

implicit none

! This is Example 4 for LIN SOL GEN.

integer, parameter :: n=32, k=128
real (kind(1le0)), parameter :: one=1.0e0, t max=1, delta_t=t_max/(k—l)
real (kind(1e0)) err, A(n,n), atemp(n,n), ytemp(n**2)

real (kind(1le0O)) t(k), y(n,k), y prime(n,k)

complex (kind(1e0)) EVAL(n), EVEC(n,n)

complex (kind(1e0)) x(n,n), z 0(n,1), y 0(n,1), d(n)
integer i

! Generate a random matrix in an F90 array.

call rand gen (ytemp)
atemp = reshape (ytemp, (/n,n/))

! Assign data to an F77 array.
A = atemp

! Use IMSL Numerical Libraries F77 subroutine for the
! eigenvalue-eigenvector calculation.
CALL EVCRG(N, A, N, EVAL, EVEC, N)

! Generate a random initial value for the ODE system.
call rand gen(ytemp(l:n))
y 0(1:n,1) = ytemp(l:n)

! Assign the eigenvalue-eigenvector data to F90 arrays.
d = EVAL; x = EVEC

! Solve complex data system that transforms the initial values, Xz 0=y 0.
call lin sol gen(x, y 0, z 0)
t = (/(i*delta t,i=0,k-1)/)

! Compute y and y' at the values t(l:k).
y = matmul (x, exp (spread(d,?2,k)*spread(t,1l,n))* &
spread(z_0(1:n,1),2,k))
y _prime = matmul (x, spread(d,2,k)* &
exp (spread(d, 2, k) *spread(t,1,n))* &
spread(z_0(1l:n,1),2,k))

IMSL MATH LIBRARY Chapter 1: Linear Systems o 17

! Check results. Is y' - Ay = 0?

err = sum(abs(y_prime—matmul(atemp,y))) / &
(sum (abs (atemp)) *sum (abs (y)))
if (err <= sqgrt(epsilon(one))) then
write (*,*) 'Example 4 for LIN SOL GEN is correct.'
end 1if
end
Output

Example 4 for LIN SOL GEN is correct.

LIN_SOL_SELF

T,
PE%FMCE

Solves a system of linear equations Ax = b, where A is a self-adjoint matrix. Using optional
arguments, any of several related computations can be performed. These extra tasks include
computing and saving the factorization of A using symmetric pivoting, representing the
determinant of A, computing the inverse matrix A", or computing the solution of Ax = b given the
factorization of A. An optional argument is provided indicating that A is positive definite so that
the Cholesky decomposition can be used.

Required Arguments

A — Array of size n X n containing the self-adjoint matrix. (Input [/Output]
If the packaged option 1in sol self save factors iS used then the factorization
of a is saved in A. For solving efficiency, the diagonal reciprocals of the matrix R are
saved in the diagonal entries of a when the Cholesky method is used.

B — Array of size n X nb containing the right-hand side matrix. (Input [/Output]
If the packaged option 1in sol self save factors isused then input B is used as
work storage and is not saved.

X — Array of size n X nb containing the solution matrix. (Output)

Optional Arguments

NROWS = n (Input)
Uses array 2(1:n, 1:n) for the input matrix.
Default: n = size(a, 1)

18 e Chapter 1: Linear Systems IMSL MATH LIBRARY

NRHS = nb (Input)
Uses the array b(1:n, 1:nb) for the input right-hand side matrix.
Default; nb = size(b, 2)
Note that b must be a rank-2 array.

pivots = pivots(:) (Output [/Input])
Integer array of size n + 1 that contains the individual row interchanges in the first n
locations. Applied in order, these yield the permutation matrix P. Location n + 1
contains the number of the first diagonal term no larger than Small, which is defined on
the next page of this chapter.

det = det(1:2) (Output)
Array of size 2 of the same type and kind as a for representing the determinant of the
input matrix. The determinant is represented by two numbers. The first is the base with
the sign or complex angle of the result. The second is the exponent. When det(2) is
within exponent range, the value of the determinant is given by the expression
abs(det(1))**det(2) * (det(1))/abs(det(1)). If the matrix is not singular,
abs(det (1)) = radix(det); otherwise, det(1) =0., and det(2) = —huge(abs(det(1))).

ainv = ainv(:,:) (Output)
Array of the same type and kind as 2(1:n, 1:n). It contains the inverse matrix, A™
when the input matrix is nonsingular.

iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix; used for passing
optional data to the routine. The options are as follows:

Packaged Options for 1in_sol_self

Option Prefix = ? Option Name Option Value
s ,d,c ,z_ lin sol self set small 1

s ,d,c ,z_ lin sol self save factors 2

s ,d,c ,z_ lin sol self no pivoting 3

s ,d,c ,z_ lin sol self use Cholesky 4

s ,d,c ,z_ lin sol self solve A 5

s ,d,c ,z_ lin sol self scan_ for NaN 6

s ,d,c ,z_ lin sol self no sing mess 7

iopt (I0) = ? options(? lin sol self set small, Small)

When Aasen’s method is used, the tridiagonal system Tu = v is solved using LU
factorization with partial pivoting. If a diagonal term of the matrix U is smaller in
magnitude than the value Small, it is replaced by Small. The system is declared
singular. When the Cholesky method is used, the upper-triangular matrix R, (see
“Description™), is obtained. If a diagonal term of the matrix R is smaller in magnitude
than the value Small, it is replaced by Small. A solution is approximated based on this

IMSL MATH LIBRARY Chapter 1: Linear Systems o 19

replacement in either case.
Default: the smallest number that can be reciprocated safely

iopt (I0) = ? options(? 1lin sol self save factors, ?_ dummy)
Saves the factorization of A. Requires the optional argument “pivots=" if the routine
will be used for solving further systems with the same matrix. This is the only case
where the input arrays A and b are not saved. For solving efficiency, the diagonal
reciprocals of the matrix R are saved in the diagonal entries of A when the Cholesky
method is used.

iopt (I0) = ? options(? 1lin sol self no pivoting, ?_ dummy)
Does no row pivoting. The array pivots(:), if present, satisfies pivots(i) =i+ 1 for
i=1,...,n—1 when using Aasen’s method. When using the Cholesky method,
pivots(i)=ifori=1,..., n.

iopt (IO) = ? options(?_lin sol self use Cholesky, ? dummy)
The Cholesky decomposition PAP" = R'R is used instead of the Aasen method.

iopt (I0) = ? options(? lin sol self solve A, ? dummy)
Uses the factorization of Ao computed and saved to solve Ax = b.

iopt (I0O) = ? options(?_lin sol self scan for NaN, ? dummy)
Examines each input array entry to find the first value such that
isNaN(a(i,j)) .or. isNan(b(i,]j)) ==.true.

See the i sNan() function, Chapter 10.
Default: Does not scan for NaNs

iopt (I0) = ? options(? lin sol self no sing mess,? dummy)
Do not print an error message when the matrix A is singular.

FORTRAN 90 Interface

Generic: CALL LIN SOL SELF (A, B, X [,..])

Specific: The specific interface names are S LIN SOL_SELF, D_LIN SOL_SELF,
C_LIN SOL SELF, and Z LIN SOL_SELF.

Description

Routine LIN sSoL_SELF routine solves a system of linear algebraic equations with a nonsingular
coefficient matrix A. By default, the routine computes the factorization of A using Aasen’s
method. This decomposition has the form

PAPT = LTL'

where P is a permutation matrix, L is a unit lower-triangular matrix, and T is a tridiagonal
self-adjoint matrix. The solution of the linear system Ax = b is found by solving simpler systems,

20 e Chapter 1: Linear Systems IMSL MATH LIBRARY

and
x=PTL v
More mathematical details for real matrices are found in Golub and Van Loan (1989, Chapter 4).

When the optional Cholesky algorithm is used with a positive definite, self-adjoint matrix, the
factorization has the alternate form

PAPT =R'R

where P is a permutation matrix and R is an upper-triangular matrix. The solution of the linear
system Ax = b is computed by solving the systems

u=RTPb
and
x=PTRl

The permutation is chosen so that the diagonal term is maximized at each step of the
decomposition. The individual interchanges are optionally available in the argument “pivots”.

Fatal and Terminal Error Messages

See the messages.gls file for error messages for LIN soL sELF. These error messages are
numbered 321-336; 341-356; 361-376; 381-396.

Example 1: Solving a Linear Least-squares System

This example solves a linear least-squares system Cx = d, where Cpyy, is a real matrix with m > n.
The least-squares solution is computed using the self-adjoint matrix

A=C'C
and the right-hand side
b=ATd

The n X n self-adjoint system Ax = b is solved for x. This solution method is not as satisfactory, in

terms of numerical accuracy, as solving the system Cx = d directly by using the routine
lin sol 1lsg. Also, see operator ex05, Chapter 10.

use lin sol self int
use rand gen_ int

implicit none
! This is Example 1 for LIN SOL SELF.

integer, parameter :: m=64, n=32

IMSL MATH LIBRARY Chapter 1: Linear Systems e 21

real (kind (1e0)), parameter :: one=lel

real (kind (1e0)) err

real (kind(1e0)), dimension(n,n) :: A, b, x, res, y(m*n),&
C(m,n), d(m,n)

! Generate two rectangular random matrices.
call rand gen(y)
C = reshape(y, (/m,n/))

call rand gen(y)
d = reshape(y, (/m,n/))

! Form the normal equations for the rectangular system.
A = matmul (transpose (C),C)
b = matmul (transpose (C),d)

! Compute the solution for Ax = Db.
call lin sol self(A, b, x)

! Check the results for small residuals.
res = b - matmul (A, x)
err = maxval (abs(res)) /sum(abs (A)+abs (b))

if (err <= sgrt(epsilon(one))) then
write (*,*) 'Example 1 for LIN SOL SELF is correct.'
end 1if
end
Output

Example 1 for LIN SOL SELF is correct.
Additional Examples

Example 2: System Solving with Cholesky Method

This example solves the same form of the system as Example 1. The optional argument “iopt="
is used to note that the Cholesky algorithm is used since the matrix A is positive definite and self-
adjoint. In addition, the sample covariance matrix

=c?A™"
is computed, where
2
o _le-ox
m-—n

. .. . 2
the inverse matrix is returned as the “ainv=" optional argument. The scale factor &~ and I are
computed after returning from the routine. Also, see operator ex06, Chapter 10.

use lin sol self int
use rand gen_int
use error option packet

22 e Chapter 1: Linear Systems IMSL MATH LIBRARY

implicit none

! This is Example 2 for LIN SOL SELF.

integer, parameter :: m=64, n=32

real (kind (1e0)), parameter :: one=1.0e0, zero=0.0e0

real (kind (1e0)) err

real (kind(1e0)) a(n,n), b(n,1), c(m,n), d(m,1), cov(n,n), x(n,1l), &
res(n,1l), y(m*n)

type (s _options) :: iopti(l)=s options(0,zero)

! Generate a random rectangular matrix and a random right hand side.

call rand gen(y)
¢ = reshape(y, (/m,n/))

call rand gen(d(l:n,1))

! Form the normal equations for the rectangular system.

a matmul (transpose (c),c)
b = matmul (transpose(c),d)

! Use packaged option to use Cholesky decomposition.
iopti(l) = s options(s lin sol self Use Cholesky, zero)
! Compute the solution of Ax=b with optional inverse obtained.

call lin sol self(a, b, %, ainv=cov, &
iopt=iopti)

! Compute residuals, x - (inverse) *b, for consistency check.
res = X - matmul (cov,Db)
! Scale the inverse to obtain the covariance matrix.
cov = (sum((d-matmul (c,x))**2)/(m-n)) * cov
! Check the results.
err = sum(abs(res))/sum(abs (cov))
if (err <= sgrt(epsilon(one))) then
write (*,*) 'Example 2 for LIN SOL SELF is correct.'

end 1if

end

Output

Example 2 for LIN SOL SELF is correct.

IMSL MATH LIBRARY Chapter 1: Linear Systems o 23

Example 3: Using Inverse Iteration for an Eigenvector

This example illustrates the use of the optional argument “iopt="' to reset the value of a Small
diagonal term encountered during the factorization. Eigenvalues of the self-adjoint matrix

A=C'C

are computed using the routine 1in _eig self. An eigenvector, corresponding to one of these
eigenvalues, A, is computed using inverse iteration. This solves the near singular system
(A — ADx = b for an eigenvector, x. Following the computation of a normalized eigenvector

o X
I

the consistency condition
A= yT Ay

is checked. Since a singular system is expected, suppress the fatal error message that normally
prints when the error post-processor routine error post is called within the routine
lin sol self. Also, see operator ex07, Chapter 10.

use lin sol self int
use lin eig self int
use rand gen int

use error option packet
implicit none

! This is Example 3 for LIN SOL SELF.

integer i, tries

integer, parameter :: m=8, n=4, k=2

integer ipivots (n+l)

real (kind (1d0)), parameter :: one=1.0d0, zero=0.0d0

real (kind (1d0)) err

real (kind (1d0)) a(n,n), b(n,1l), c(m,n), x(n,l), y(m*n), &
e(n), atemp(n,n)

type (d options) :: iopti(4)

! Generate a random rectangular matrix.

call rand_gen(y)
c = reshape(y, (/m,n/))

! Generate a random right hand side for use in the inverse
! iteration.

call rand gen(y(l:n))
b = reshape(y, (/n,1/))

! Compute the positive definite matrix.

24 e Chapter 1: Linear Systems IMSL MATH LIBRARY

a = matmul (transpose(c),c)
! Obtain just the eigenvalues.
call lin eig self(a, e)

! Use packaged option to reset the value of a small diagonal.
iopti = d options (0, zero)
iopti(l) = d options(d lin sol self set small,s&
epsilon (one) * abs(e(l)))
! Use packaged option to save the factorization.
iopti(2) = d options(d lin sol self save factors, zero)
! Suppress error messages and stopping due to singularity
! of the matrix, which is expected.

iopti(3) = d options(d lin sol self no sing mess, zero)
atemp = a
do i=1, n
a(i,i) = a(i,i) - e(k)
end do

! Compute A-eigenvalue*I as the coefficient matrix.
do tries=1, 2
call lin sol self(a, b, x, &
pivots=ipivots, iopt=iopti)
! When code is re-entered, the already computed factorization
! is used.
iopti(4) = d options(d lin sol self solve A, zero)
! Reset right-hand side nearly in the direction of the eigenvector.
b = x/sqgrt (sum(x**2))
end do

! Normalize the eigenvector.
X = x/sqgrt(sum(x**2))

! Check the results.
err = dot product(x(l:n,1),matmul (atemp(l:n,1:n),x(1l:n,1))) - &
e (k)

! If any result is not accurate, quit with no summary printing.

if (abs(err) <= sqgrt(epsilon(one))*e(l)) then
write (*,*) 'Example 3 for LIN SOL SELF is correct.'
end 1if
end
Output

Example 3 for LIN SOL SELF is correct.

Example 4: Accurate Least-squares Solution with Iterative Refinement

This example illustrates the accurate solution of the self-adjoint linear system
I Allr]| [b
AT o|lx] [0

IMSL MATH LIBRARY Chapter 1: Linear Systems e 25

computed using iterative refinement. This solution method is appropriate for least-squares
problems when an accurate solution is required. The solution and residuals are accumulated in
double precision, while the decomposition is computed in single precision. Also, see
operator ex08, supplied with the product examples.

use lin sol self int
use rand gen int

implicit none
This is Example 4 for LIN SOL SELF.

integer i

integer, parameter :: m=8, n=4

real (kind(1e0)), parameter :: one=1.0e0, zero=0.0e0

real (kind (1d0)), parameter :: d zero=0.0d0

integer ipivots ((n+m)+1)

real (kind(1e0)) a(m,n), b(m,1), w(m*n), f(n+m,n+m), &
g (n+m, 1) h(n+m, 1)

4
real (kind(le0O)) change new, change old
real (kind (1d0)) c¢(m,1), d(m,n), y(n+m,1)
type (s_options) iopti(2)=s_options (0, zero)
Generate a random matrix.
call rand gen (w)
a = reshape(w, (/m,n/))
Generate a random right hand side.
call rand gen(b(l:m,1))

Save double precision copies of the matrix and right hand side.

d = a
c =Db

Fill in augmented system for accurately solving the least-squares
problem.

f = zero
do i=1, m
f(i,1) = one
end do
f(l:im,m+l:) = a
f(m+l:,1:m) = transpose(a)

Start solution at zero.

y = d _zero
change old = huge (one)

Use packaged option to save the factorization.

26 e Chapter 1: Linear Systems

IMSL MATH LIBRARY

iopti(l) = s options(s lin sol self save factors, zero)

iterative refinement: do
g(l:m,1) = c(l:m,1) - y(l:m,1) - matmul(d,y(m+l:m+n,1))
g(mtl:m+n,1l) = - matmul (transpose(d),y(l:m,1))
call lin sol self(f, g, h, &
pivots=ipivots, iopt=iopti)
y =h+y
change new = sum(abs (h))

! Exit when changes are no longer decreasing.

if (change new >= change old) &
exit iterative refinement
change old = change new

! Use option to re-enter code with factorization saved; solve only.
iopti(2) = s _options(s_lin sol self solve A, zero)
end do iterative refinement
write (*,*) 'Example 4 for LIN SOL SELF is correct.'
end

Output

Example 4 for LIN SOL SELF is correct.

LIN_SOL_LSQ

Solves a rectangular system of linear equations Ax = b, in a least-squares sense. Using optional
arguments, any of several related computations can be performed. These extra tasks include
computing and saving the factorization of A using column and row pivoting, representing the
determinant of A, computing the generalized inverse matrix Af, or computing the least-squares
solution of

Ax=b
or
Aly = b,

given the factorization of A. An optional argument is provided for computing the following
unscaled covariance matrix

-1
C=(ATA
Least-squares solutions, where the unknowns are non-negative or have simple bounds, can be

computed with PARALLEL NONNEGATIVE LSQ and PARALLEL BOUNDED LSQ. These codes can
be restricted to execute without MPI.

Required Arguments

A — Array of size m X n containing the matrix. (Input [/Output])
If the packaged option 1in sol 1sq save QR isused then the factorization of & is

IMSL MATH LIBRARY Chapter 1: Linear Systems e 27

saved in a. For efficiency, the diagonal reciprocals of the matrix R are saved in the
diagonal entries of a.

B — Array of size m X nb containing the right-hand side matrix. When using the option to

solve adjoint systems A'x = b, the size of b is n x nb. (Input [/Output])
If the packaged option 1in sol 1sg save QR isused then input B is used as work
storage and is not saved.

X — Array of size m X nb containing the right-hand side matrix. When using the option to
solve adjoint systems A'x = b, the size of x is m X nb. (Output)

Optional Arguments

MROWS = m (Input)
Uses array A(1:m, 1:n) for the input matrix.
Default: m = size(a, 1)

NCOLS = n (Input)
Uses array A(1:m, 1:n) for the input matrix.
Default: n = size(a, 2)

NRHS = nb (Input)
Uses the array b(1:, 1:nb) for the input right-hand side matrix.
Default: nb = size(b, 2)
Note that b must be a rank-2 array.

pivots = pivots(:) (Output [/Input])
Integer array of size 2 * min(m, n) + 1 that contains the individual row followed by the
column interchanges. The last array entry contains the approximate rank of a.

trans = trans(:) (Output [/Input])
Array of size 2 *~ min(m, n) that contains data for the construction of the orthogonal
decomposition.

det = det(1:2) (Output)
Array of size 2 of the same type and kind as a for representing the products of the
determinants of the matrices Q, P, and R. The determinant is represented by two
numbers. The first is the base with the sign or complex angle of the result. The second
is the exponent. When det(2) is within exponent range, the value of this expression is
given by abs (det(1))**det(2) * (det(1))/abs(det(1)). If the matrix is not singular,
abs(det (1)) = radix(det); otherwise, det(1) = 0., and det(2) = — huge(abs(det(1))).

ainv = ainv(:,:) (Output)

Array with size n X m of the same type and kind as A(1:m, 1:n). It contains the
generalized inverse matrix, Af.

28 e Chapter 1: Linear Systems IMSL MATH LIBRARY

cov = cov(:,:) (Output)

Array with size n X n of the same type and kind as 2(1:m, 1:n). It contains the
unscaled covariance matrix, C = (ATA)'l.

iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix; used for passing
optional data to the routine. The options are as follows:

Packaged Options for 1in_sol_1sq
Option Prefix = ? Option Name Option Value
s ,d,c ,z_ lin sol 1sqg set small 1
s ,d ,c ,z_ lin sol 1sg save QR 2
s ,d ,c ,z_ lin sol 1sg solve A 3
s ,d,c_,z_ lin sol 1sg solve ADJ 4
s ,d ,c ,z_ lin sol 1sg no row pivoting 5
s ,d ,c ,z_ lin sol 1sg no col pivoting 6
s ,d,c_,z_ lin sol 1sg scan for NaN 7
s ,d ,c ,z_ lin sol 1sg no sing mess 8
iopt (I0) = ? options(? lin sol 1lsq set small, Small)

Replaces with Small if a diag_onalferm of the matrix R is smaller in magnitude than the
value Small. A solution is approximated based on this replacement in either case.
Default: the smallest number that can be reciprocated safely

iopt (IO) = ? options(?_lin sol 1lsqg save QR, ? dummy)
Saves the factorization of A. Requires the optional arguments “pivots=" and
“trans=" if the routine is used for solving further systems with the same matrix. This
is the only case where the input arrays A and b are not saved. For efficiency, the
diagonal reciprocals of the matrix R are saved in the diagonal entries of a.

iopt (I0) = ? options(?_lin sol 1lsqg solve A, ? dummy)
Uses the factorization of A computed and saved to solve Ax = b.

iopt (I0) = ? options(? lin sol 1lsq solve ADJ, ? dummy)
Uses the factorization of A computed and saved to solve ATx = b.

iopt (I0) = ? options(?_1lin sol 1lsg no row pivoting, ?_ dummy)
Does no row pivoting. The array pivots(:), if present, satisfies pivots(i) =i fori=1,
..., min (m, n).

iopt (I0) = ? options(? lin sol 1lsq no _col pivoting, ?_ dummy)
Does no column pivoting. The array pivots(:), if present, satisfies pivots(i + min (m,
n))=ifori=1,..., min (m, n).

iopt (I0) = ? options(? 1lin sol 1sqg scan for NaN, ? dummy)
Examines each input array entry to find the first value such that

IMSL MATH LIBRARY Chapter 1: Linear Systems o 29

isNaN(a(i,j)) .or. isNan(b(i,]j)) ==.true.

See the isNaN() function, Chapter 10.
Default: Does not scan for NaNs

iopt (IO) = ? options(? lin sol 1lsq no sing mess,? dummy)
Do not print an error message when A is singular or k < min(m, n).

FORTRAN 90 Interface
Generic: CALL LIN_SOL LSQ (A,B, X [,...])

Specific: ~ The specific interface namesare S LIN SOL LSQ,D LIN SOL LSQ,
C_LIN SOL LSQ,and Z LIN SOL LSOQ.

Description

Routine LIN soL_L1so solves a rectangular system of linear algebraic equations in a least-squares
sense. It computes the decomposition of A using an orthogonal factorization. This decomposition

has the form
kak 0
AP =
e)

where the matrices Q and P are products of elementary orthogonal and permutation matrices. The
matrix R is k X k, where Kk is the approximate rank of A. This value is determined by the value of
the parameter Small. See Golub and Van Loan (1989, Chapter 5.4) for further details. Note that the
use of both row and column pivoting is nonstandard, but the routine defaults to this choice for en-
hanced reliability.

Fatal and Terminal Error Messages

See the messages.qgls file for error messages for LIN soL_LsQ. These error messages are
numbered 241-256; 261-276; 281-296; 301-316.

Example 1: Solving a Linear Least-squares System

This example solves a linear least-squares system Cx = d, where

C

mxn

is a real matrix with m > n. The least-squares problem is derived from polynomial data fitting to
the function

y(x)=e" +cos(7z§)

using a discrete set of values in the interval -1 < x < 1. The polynomial is represented as the
series

30 e Chapter 1: Linear Systems IMSL MATH LIBRARY

where the T; (X) are Chebyshev polynomials. It is natural for the problem matrix and solution to

have a column or entry corresponding to the subscript zero, which is used in this code. Also, see
operator ex09, supplied with the product examples.

use lin sol 1sqg int

use rand gen_ int

use error option packet
implicit none

This is Example 1 for LIN SOL LSQ.

integer i

integer, parameter :: m=128, n=8
real (kind (1d0)), parameter :: one=1d0, zero=0d0
real (kind(1d0)) A(m,0:n), c¢(0:n,1), pi over 2, x(m), y(m,1), &

u(m), v(m), w(m), delta x

Generate a random grid of points.
call rand gen (x)

Transform points to the interval -1,1.
X = x*2 - one

Compute the constant 'PI/2'.
pi over 2 = atan(one) *2

Generate known function data on the grid.
y(l:m,1) = exp(x) + cos(pi over 2*x)

Fill in the least-squares matrix for the Chebyshev polynomials.
A(:,0) = one; A(:,1) = x

do i=2, n
A(:,1) = 2*x*A(:,1-1) - A(:,1-2)
end do

Solve for the series coefficients.
call lin sol 1sg(A, y, c)

Generate an equally spaced grid on the interval.
delta x = 2/real (m-1,kind(one))

do i=1,

x (1)

end do

(-1

-one + (i-1)*delta x

Evaluate residuals using backward recurrence formulas.

u = zero
vV = zero
do i=n, 0, -1
w = 2*x*u - v + c(i, 1)
v = u

IMSL MATH LIBRARY Chapter 1: Linear Systems o 31

u=w
end do

y(l:m,1) = exp(x) + cos(pi over 2*x) - (u-x*v)
! Check that n+l sign changes in the residual curve occur.
X = one
X = sign(x,y(l:m,1))
if (count(x(l:m-1) /= x(2:m)) >= n+l) then
write (*,*) 'Example 1 for LIN SOL LSQ is correct.'

end 1if

end

Output

Example 1 for LIN SOL LSQ is correct.
Additional Examples

Example 2: System Solving with the Generalized Inverse

This example solves the same form of the system as Example 1. In this case, the grid of evaluation
points is equally spaced. The coefficients are computed using the “smoothing formulas” by rows
of the generalized inverse matrix, Af, computed using the optional argument “ainv=". Thus, the
coefficients are given by the matrix-vector product ¢ = (Af) y, where y is the vector of values of
the function y(x) evaluated at the grid of points. Also, see operator ex10, supplied with the
product examples.

use lin sol 1lsg_ int
implicit none
! This is Example 2 for LIN SOL LSQ.

integer i

integer, parameter :: m=128, n=8
real (kind (1d0)), parameter :: one=1.0d0, zero=0.0d0
real (kind(1d0)) a(m,0:n), ¢(0:n,1), pi over 2, x(m), y(m,1), &

u(m), v(m), w(m), delta x, inv(0:n, m)
! Generate an array of equally spaced points on the interval -1,1.

delta x = 2/real (m-1,kind(one))
do i=1,

x (1)
end do

(=i

-one + (i-1)*delta x

! Compute the constant 'PI/2'.
pi over 2 = atan(one) *2

! Compute data values on the grid.

32 e Chapter 1: Linear Systems IMSL MATH LIBRARY

y(l:m,1) = exp(x) + cos(pi over 2*x)
! Fill in the least-squares matrix for the Chebyshev polynomials.

a(:,0) = one
a(:,1) = x

do i=2, n
a(:,1) = 2*x*a(:,i-1) - a(:,1-2)
end do
! Compute the generalized inverse of the least-squares matrix.

call lin sol 1sqg(a, y, ¢, nrhs=0, ainv=inv)

! Compute the series coefficients using the generalized inverse
! as 'smoothing formulas.'

c(0:n,1l) = matmul (inv(0O:n,l:m),y(l:m,1))

! Evaluate residuals using backward recurrence formulas.

u = zero
vV = zero
do i=n, 0, -1
w = 2*x*u - v + c(i, 1)
v = u
u=w
end do
y(l:m,1) = exp(x) + cos(pi over 2*x) - (u-x*v)

! Check that n+2 sign changes in the residual curve occur.
! (This test will fail when n is larger.)

X = one
x = sign(x,y(l:m,1))
if (count (x(l:m-1) /= x(2:m)) == n+2) then
write (*,*) 'Example 2 for LIN SOL LSQ is correct.'
end 1if
end
Output

Example 2 for LIN SOL LSQ is correct.

Example 3: Two-Dimensional Data Fitting

This example illustrates the use of radial-basis functions to least-squares fit arbitrarily spaced data
points. Let m data values {y;} be given at points in the unit square, {p;}. Each p; is a pair of real
values. Then, n points {q;} are chosen on the unit square. A series of radial-basis functions is used
to represent the data,

IMSL MATH LIBRARY Chapter 1: Linear Systems o 33

f(p)=2c;(p-ay|f +62
j=1

where &2 is a parameter. This example uses 8° = 1, but either larger or smaller values can give a
better approximation for user problems. The coefficients {c;} are obtained by solving the

following m X n linear least-squares problem:

f(pi)=v;
This example illustrates an effective use of Fortran 90 array operations to eliminate many details

required to build the matrix and right-hand side for the {c;} . For this example, the two sets of

points {pi} and {q;} are chosen randomly. The values {y;} are computed from the following
formula:

112
y, el

The residual function

r(p):e—"p"z —f(p)

is computed at an N X N square grid of equally spaced points on the unit square. The magnitude of
r(p) may be larger at certain points on this grid than the residuals at the given points, { P } . Also,
see operator ex1l, supplied with the product examples.

use lin sol 1lsg_int
use rand gen int

implicit none
! This is Example 3 for LIN SOL LSQ.
integer i, J
integer, parameter :: m=128, n=32, k=2, n eval=16
real (kind(1d0)), parameter :: one=1.0d0, delta sqr=1.0d0
real (kind(1d0)) a(m,n), b(m,1), c(n,1), p(k,m), g(k,n), &
x(k*m), y(k*n), t(k,m,n), res(n eval,n eval), &
w(n _eval), delta

! Generate a random set of data points in k=2 space.

call rand gen (x)
p = reshape (%, (/k,m/))

! Generate a random set of center points in k-space.

call rand gen (y)
q = reshape(y, (/k,n/))

! Compute the coefficient matrix for the least-squares system.

34 e Chapter 1: Linear Systems IMSL MATH LIBRARY

t = spread(p,3,n)
do j=1, n
t(l:,:,3) = t(l:,:,3) - spread(g(l:,j),2,m)
end do
a = sgrt(sum(t**2,dim=1) + delta sqr)
! Compute the right hand side of data values.
b(l:,1) = exp(-sum(p**2,dim=1))
! Compute the solution.

call lin sol 1lsg(a, b, c)

! Check the results.

if (sum(abs (matmul (transpose (a),b-matmul (a,c))))/sum(abs(a)) &
<= sqgrt (epsilon(one))) then
write (*,*) 'Example 3 for LIN SOL LSQ is correct.'

end 1if

! Evaluate residuals, known function - approximation at a square

! grid of points. (This evaluation is only for k=2.)
delta = one/real(n_eval—l,kind(one))
do i=1, n eval
w(i) = (i-1)*delta
end do
res = exp (- (spread(w,1l,n eval)**2 + spread(w,2,n_eval)**2))
do j=1, n
res = res - c(j,l)*sqrt((spread(w,l,n_eval) - g(l,3))**2 + &
(spread(w,2,n _eval) - q(2,3))**2 + delta sqgr)
end do
end
Output

Example 3 for LIN SOL LSQ is correct.

Example 4: Least-squares with an Equality Constraint

This example solves a least-squares system Ax = b with the constraint that the solution values
have a sum equal to the value 1. To solve this system, one heavily weighted row vector and right-
hand side component is added to the system corresponding to this constraint. Note that the weight
used is

841/2

where ¢ is the machine precision, but any larger value can be used. The fact that 1in sol 1sqg
performs row pivoting in this case is critical for obtaining an accurate solution to the constrained
problem solved using weighting. See Golub and Van Loan (1989, Chapter 12) for more
information about this method. Also, see operator ex12, supplied with the product examples.

IMSL MATH LIBRARY Chapter 1: Linear Systems o 35

use lin sol 1sqg int
use rand gen int

implicit none

! This is Example 4 for LIN SOL LSQ.

integer, parameter :: m=64, n=32
real (kind(1e0)), parameter :: one=1.0e0
real (kind(1e0)) :: a(m+l,n), b(m+l,1), x(n,1l), y(m*n)

! Generate a random matrix.

call rand gen(y)
a(l:m,1:n) = reshape(y, (/m,n/))

! Generate a random right hand side.
call rand gen(b(l:m,1))

! Heavily weight desired constraint. All variables sum to one.
a(m+l,1:n) = one/sqgrt (epsilon (one))
b(m+l,1) = one/sqgrt (epsilon (one))

call lin sol 1lsqg(a, b, x)

if (abs(sum(x) - one)/sum(abs(x)) <= &
sqgrt (epsilon(one))) then
write (*,*) 'Example 4 for LIN SOL LSQ is correct.'
end 1if
end
Output

Example 4 for LIN SOL LSQ is correct.

LIN_SOL_SVD

Solves a rectangular least-squares system of linear equations Ax = b using singular value
decomposition

A=UsVT
With optional arguments, any of several related computations can be performed. These extra tasks

include computing the rank of A, the orthogonal m X m and n X n matrices U and V, and the m X n
diagonal matrix of singular values, S.

36 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Required Arguments

A — Array of size m X n containing the matrix. (Input [/Output])
If the packaged option 1in sol svd overwrite input is used, this array is not
saved on output.

B — Array of size m X nb containing the right-hand side matrix. (Input [/Output]
If the packaged option 1in sol svd overwrite input isused, this array is not
saved on output.

X— Array of size n X nb containing the solution matrix. (Output)

Optional Arguments

MROWS = m (Input)
Uses array A(1:m, 1:n) for the input matrix.
Default: m = size (2, 1)

NCOLS = n (Input)
Uses array A (1:m, 1:n) for the input matrix.
Default: n = size(a, 2)

NRHS = nb (Input)
Uses the array b(1:, 1:nb) for the input right-hand side matrix.
Default: nb = size(b, 2)
Note that b must be a rank-2 array.

RANK = k (Output)
Number of singular values that are at least as large as the value Small. It will satisfy
<= min(m, n).

u = u(:,:) (Output)

Array of the same type and kind as A(1:m, 1:n). It contains the m X m orthogonal
matrix U of the singular value decomposition.

s = s(:) (Output)
Array of the same precision as A(1:m, 1:n). This array is real even when the matrix

data is complex. It contains the m X n diagonal matrix S in a rank-1 array. The singular
values are nonnegative and ordered non-increasing.

v = v(:,:) (Output)

Array of the same type and kind as A(1:m, 1:n). It contains the n X n orthogonal
matrix V.

iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix. Used for passing
optional data to the routine. The options are as follows:

IMSL MATH LIBRARY Chapter 1: Linear Systems o 37

Packaged Options for 1in_sol_svd

Option Prefix = ? Option Name Option Value

s ,d,c ,z_ lin sol svd set small 1

s ,d,c ,z_ lin sol svd overwrite input 2

s ,d ,c ,z_ lin sol svd safe reciprocal 3

s ,d,c ,z_ lin sol svd scan for NaN 4
iopt (I0) = 2 options(? lin sol svd set small, Small)

Replaces with zero a diagonal term of the matrix S if it is smaller in magnitude than the
value Small. This determines the approximate rank of the matrix, which is returned as
the “rank="" optional argument. A solution is approximated based on this
replacement.

Default: the smallest number that can be safely reciprocated

iopt (I0) = ? options(? lin sol svd overwrite input,? dummy)
Does not save the input arrays a(:,:) and b(:,:).

iopt (I0) = 2 options(? lin sol svd safe reciprocal, safe)
Replaces a denominator term with safe if it is smaller in magnitude than the value safe.
Default: the smallest number that can be safely reciprocated

iopt (I0) = ? options(? lin sol svd scan for NaN, ? dummy)
Examines each input array entry to find the first value such that

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.
See the i sNan() function, Chapter 10.
Default: Does not scan for NaNs
FORTRAN 90 Interface
Generic: CALL LIN SOL SVD (A,B, X [,...])

Specific: ~ The specific interface names are S LIN SOL SVD, D_LIN SOL_SVD,
C LIN SOL SvD,and z LIN SOL_ SVD.

Description

Routine LIN soL_svD solves a rectangular system of linear algebraic equations in a least-squares
sense. It computes the factorization of A known as the singular value decomposition. This
decomposition has the following form:

A=USV'

The matrices U and V are orthogonal. The matrix S is diagonal with the diagonal terms non-in-
creasing. See Golub and Van Loan (1989, Chapters 5.4 and 5.5) for further details.

38 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messages for LIN soL_svD. These error messages are
numbered 401-412; 421-432; 441-452; 461-472.

Example 1: Least-squares solution of a Rectangular System

The least-squares solution of a rectangular m X n system Ax = b is obtained. The use of
lin sol 1lsqg is more efficient in this case since the matrix is of full rank. This example
anticipates a problem where the matrix A is poorly conditioned or not of full rank; thus,
lin sol svd isthe appropriate routine. Also, see operator ex13, Chapter 10.

use lin sol svd int
use rand gen_ int

implicit none

! This is Example 1 for LIN SOL SVD.

integer, parameter :: m=128, n=32
real (kind (1d0)), parameter :: one=1d0
real (kind (1d0)) A(m,n), b(m,1), x(n,1), y(m*n), err

! Generate a random matrix and right-hand side.
call rand gen(y)
A = reshape(y, (/m,n/))
call rand gen(b(l:m,1))

! Compute the least-squares solution matrix of Ax=b.
call lin sol svd(A, b, x)

! Check that the residuals are orthogonal to the
! column vectors of A.

err = sum(abs (matmul (transpose (A),b-matmul (A,x))))/sum(abs (A))
if (err <= sgrt(epsilon(one))) then

write (*,*) 'Example 1 for LIN SOL SVD is correct.'
end 1if

end

Output

Example 1 for LIN SOL SVD is correct.
Additional Examples

Example 2: Polar Decomposition of a Square Matrix

A polar decomposition of an n X n random matrix is obtained. This decomposition satisfies
A = PQ, where P is orthogonal and Q is self-adjoint and positive definite.

Given the singular value decomposition

IMSL MATH LIBRARY Chapter 1: Linear Systems o 39

A=USVT
the polar decomposition follows from the matrix products
P=UV' and Q=VSV'

This example uses the optional arguments “u=", “s=", and “v=", then array intrinsic functions to
calculate P and Q. Also, see operator ex14, Chapter 10.

use lin sol svd int
use rand gen_ int

implicit none
! This is Example 2 for LIN SOL SVD.

integer i

integer, parameter :: n=32
real (kind (1d0)), parameter :: one=1.0d0, zero=0.0d0
real (kind (1d0)) a(n,n), b(n,0), ident(n,n), p(n,n), g(n,n), &

s_d(n), u d(n,n), v_d(n,n), x(n,0), y(n*n)
! Generate a random matrix.

call rand gen(y)
a = reshape(y, (/n,n/))

! Compute the singular value decomposition.

call lin sol svd(a, b, x, nrhs=0, s=s d, &
u=u d, v=v_d)

! Compute the (left) orthogonal factor.
p = matmul (u d, transpose (v_d))
! Compute the (right) self-adjoint factor.
q = matmul (v_d*spread(s_d,1,n), transpose(v_d))
ident=zero
do i=1, n
ident (i,i) = one

end do

! Check the results.

if (sum(abs (matmul (p,transpose(p)) - ident))/sum(abs(p)) &
<= sqgrt (epsilon(one))) then
if (sum(abs(a - matmul (p,q)))/sum(abs(a)) &
<= sqgrt (epsilon(one))) then
write (*,*) 'Example 2 for LIN SOL SVD is correct.'
end if
end if

40 e Chapter 1: Linear Systems IMSL MATH LIBRARY

end

Output

Example 2 for LIN SOL SVD is correct.

Example 3: Reduction of an Array of Black and White

Ann X narray A contains entries that are either 0 or 1. The entry is chosen so that as a two-
dimensional object with origin at the point (1, 1), the array appears as a black circle of radius n/4
centered at the point (n/2, n/2).

A singular value decomposition
A=UsVT

is computed, where S is of low rank. Approximations using fewer of these nonzero singular values
and vectors suffice to reconstruct A. Also, see operator ex15, supplied with the product
examples.

use lin sol svd int

use rand gen_int

use error option packet
implicit none

! This is Example 3 for LIN SOL SVD.

integer i, Jj, k

integer, parameter :: n=32
real (kind(1e0)), parameter :: half=0.5e0, one=le0, zero=0e0
real (kind(1e0)) a(n,n), b(n,0), x(n,0), s(n), u(n,n), &

v(n,n), c(n,n)

! Fill in value one for points inside the circle.

a = zero
do i=1, n
do j=1, n
if ((i-n/2)**2 + (j-n/2)**2 <= (n/4)**2) a(i,j) = one
end do
end do

! Compute the singular value decomposition.
call lin sol svd(a, b, x, nrhs=0, &
s=s, u=u, V=V)

! How many terms, to the nearest integer, exactly
! match the circle?

c = zero; k = count (s > half)
do i=1, k
c = c + spread(u(l:n,i),2,n)*spread(v(l:n,i),1,n)*s (1)
if (count (int(c-a) /= 0) == 0) exit
end do

if (1 < k) then
write (*,*) 'Example 3 for LIN SOL SVD is correct.'

IMSL MATH LIBRARY Chapter 1: Linear Systems e 41

end 1f
end

Output

Example 3 for LIN SOL SVD is correct.

Example 4: Laplace Transform Solution

This example illustrates the solution of a linear least-squares system where the matrix is poorly
conditioned. The problem comes from solving the integral equation:

ie‘“f (t)dt= s—l(l-e—S) =g(s)

The unknown function f(t) = 1 is computed. This problem is equivalent to the numerical inversion
of the Laplace Transform of the function g(s) using real values of t and s, solving for a function
that is nonzero only on the unit interval. The evaluation of the integral uses the following
approximate integration rule:

1 n g
[f(tedt= le f(t;) [e ot
0 = t]

The points {t ;

j } are chosen equally spaced by using the following:

The points {sj } are computed so that the range of g(s) is uniformly sampled. This requires the
solution of m equations
i
9(si)=0i=—:
(s1) =9, m+1

forj=1,...,nandi=1, ..., m. Fortran 90 array operations are used to solve for the collocation
points {Si } as a single series of steps. Newton's method,

h
S<S— -
h
is applied to the array function

h(s)=e™+sg-1

where the following is true:

42 e Chapter 1: Linear Systems IMSL MATH LIBRARY

g=[01 . On]

Note the coefficient matrix for the solution values

f=[f(ﬁ)“”’f0”ﬂT

whose entry at the intersection of row i and column j is equal to the value
tj+1
I e Sildt
Y
is explicitly integrated and evaluated as an array operation. The solution analysis of the resulting
linear least-squares system

Af =g
is obtained by computing the singular value decomposition
A=USVT
An approximate solution is computed with the transformed right-hand side
b=UTg

followed by using as few of the largest singular values as possible to minimize the following
squared error residual:

1-f)
>(1-1;)
j=1
This determines an optimal value k to use in the approximate solution
k V.
=)
= J
Also, see operator ex16, supplied with the product examples.
use lin sol svd int
use rand gen int
use error option packet
implicit none

This is Example 4 for LIN_ SOL SVD.

integer i, Jj, k

integer, parameter :: m=64, n=16
real (kind (1e0)), parameter :: one=le0, zero=0.0e0
real (kind(1e0)) :: g(m), s(m), t(n+l), a(m,n), b(m,1), &

f(n,1), U_S(m,m), V_S(n,n), S_S(n), &
rms, oldrms

IMSL MATH LIBRARY

Chapter 1: Linear Systems e 43

real (kind(1le0O)) :: delta g, delta t
delta g = one/real (m+l,kind(one))

! Compute which collocation equations to solve.
do i=1,m
g(i)=i*delta g
end do

! Compute equally spaced quadrature points.
delta t =one/real (n,kind(one))
do j=1,n+1
t(3j)=(j-1)*delta t
end do

! Compute collocation points.

s=m
solve equations: do
s=s- (exp (-s) - (one-s*qg))/ (g-—exp(-s))
if (sum(abs((one-exp(-s))/s - g)) <= &

epsilon (one) *sum(g)) &
exit solve equations
end do solve equations

! Evaluate the integrals over the quadrature points.
a = (exp(-spread(t(l:n),1l,m)*spread(s,2,n)) &
- exp(-spread(t(2:n+1),1,m) *spread(s,2,n))) / &
spread(s,2,n)
b(l:,1)=g

! Compute the singular value decomposition.

call lin sol svd(a, b, f, nrhs=0, &
rank=k, u=U_S, v=V_S, s=S 9)

! Singular values that are larger than epsilon determine

! the rank=k.
k = count(S_S > epsilon(one))
oldrms = huge (one)

g = matmul (transpose(U_S), b(l:m,1))

! Find the minimum number of singular values that gives a good
! approximation to f(t) = 1.

do i=1,k
f(l:n,1) = matmul (V_S(1:,1:1), g(l:i)/S_S(l:i))
f = £f - one
rms = sum(f**2)/n

if (rms > oldrms) exit

oldrms = rms
end do
write (*,"(' Using this number of singular values, ', &
&1i4 / ' the approximate R.M.S. error is ', 1lpel2.4)") &

i-1, oldrms

44 e Chapter 1: Linear Systems IMSL MATH LIBRARY

if (sgrt(oldrms) <= delta t**2) then
write (*,*) 'Example 4 for LIN SOL SVD is correct.'
end 1if

end

Output

Example 4 for LIN SOL SVD is correct.

LIN_SOL_TRI

Solves multiple systems of linear equations

Each matrix Ay is tridiagonal with the same dimension, n. The default solution method is based on
LU factorization computed using cyclic reduction or, optionally, Gaussian elimination with partial
pivoting.

Required Arguments

C — Array of size 2n X k containing the upper diagonals of the matrices A;. Each upper
diagonal is entered in array locations c(1:n — 1, j). The data C(n, 1:Kk) are not used.
(Input [/Output])

The input data is overwritten. See note below.

D — Array of size 2n X k containing the diagonals of the matrices A;. Each diagonal is
entered in array locations p(1:n, j). (Input [/Output])
The input data is overwritten. See note below.

B — Array of size 2n X k containing the lower diagonals of the matrices A;. Each lower
diagonal is entered in array locations B(2:n, j). The data
B(1, 1:Kk) are not used. (Input [/Output])
The input data is overwritten. See note below.

Y — Avrray of size 2n X k containing the right-hand sides, y;. Each right-hand side is entered

in array locations v(1:n, j). The computed solution x; is returned in locations v(1:n, j).
(Input [/Output])

NOTE: The required arguments have the Input data overwritten. If these quantities are
used later, they must be saved in user-defined arrays. The routine uses each array's
locations (n + 1:2 * n, 1:k) for scratch storage and intermediate data in the LU
factorization. The default values for problem dimensions are n = (size (p, 1))/2 and

k = size (p, 2).

IMSL MATH LIBRARY Chapter 1: Linear Systems e 45

Optional Arguments

NCOLS = n (Input)
Usesarraysc(l1:n—1,1:k),D(1:n, 1:k), and B(2:n, 1:k) as the upper, main and
lower diagonals for the input tridiagonal matrices. The right-hand sides and solutions
areinarray v(1:n, 1:k). Note that each of these arrays are rank-2.
Default: n = (size(p, 1))/2

NPROB = k (Input)
The number of systems solved.
Default; k = size(p, 2)

iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix. Used for passing
optional data to the routine. The options are as follows:

Packaged Options for LIN_SOL_TRI
Option Prefix = ? Option Name Option Value
s ,d,c ,z_ lin sol tri set small 1
s ,d,c ,z_ lin sol tri set jolt 2
s ,d,c ,z_ lin sol tri scan for NaN 3
s ,d,c ,z_ lin sol tri factor only 4
s ,d,c ,z_ lin sol tri solve only 5
s ,d,c ,z_ lin sol tri use Gauss_elim 6
iopt (I0) = 2 options(? lin sol tri set small, Small)

Whenever a reciprocation is performed on a quantity smaller than Small, it is replaced
by that value plus 2 X jolt.
Default: 0.25 X epsilon()

iopt (I0) = 2 options(? lin sol tri set jolt, jolt)
Default: epsilon(), machine precision

iopt (I0) = ? options(? lin sol tri scan for NaN, ? dummy)
Examines each input array entry to find the first value such that
isNaN(C(i,3j)) .Or.
isNaN(D(i,3j)) .Or.
isNaN(B(i,Jj)) .Or.
isNaN(Y (i,])) ==.true.

See the isNaN () function, Chapter 10.
Default: Does not scan for NaNs.

46 e Chapter 1: Linear Systems IMSL MATH LIBRARY

iopt (I0) = ? options(? lin sol tri factor only, ? dummy)
Obtain the LU factorization of the matrices A;. Does not solve for a solution.
Default; Factor the matrices and solve the systems.

iopt (IO) = ? options(? lin sol tri solve only, ? dummy)
Solve the systems Ajx; = y; using the previously computed LU factorization.
Default; Factor the matrices and solve the systems.

iopt (I0) = ? options(? lin sol tri use Gauss elim, ? dummy)
The accuracy, numerical stability or efficiency of the cyclic reduction algorithm may
be inferior to the use of LU factorization with partial pivoting.
Default; Use cyclic reduction to compute the factorization.

FORTRAN 90 Interface

Generic: CALL LIN SOL TRI(C,D,B,Y [,..])

Specific: The specific interface names are S LIN SOL TRI,D LIN SOL_ TRI,
C LIN SOL TRI,and z LIN SOL_ TRI.

Description

Routine 1in sol tri solves k systems of tridiagonal linear algebraic equations, each problem of

dimension n X n. No relation between k and n is required. See Kershaw, pages 86—88 in Rodrigue
(1982) for further details. To deal with poorly conditioned or singular systems, a specific
regularizing term is added to each reciprocated value. This technique keeps the factorization
process efficient and avoids exceptions from overflow or division by zero. Each occurrence of an

. -1 . . -1
array reciprocal a ! is replaced by the expression (a+t) , Where the array temporary t has the

value 0 whenever the corresponding entry satisfies |a| > Small. Alternately, t has the value 2 x jolt.
(Every small denominator gives rise to a finite “jolt”.) Since this tridiagonal solver is used in the
routines 1in svd and lin eig self for inverse iteration, regularization is required. Users can
reset the values of Small and jolt for their own needs. Using the default values for these
parameters, it is generally necessary to scale the tridiagonal matrix so that the maximum
magnitude has value approximately one. This is normally not an issue when the systems are
nonsingular.

The routine is designed to use cyclic reduction as the default method for computing the LU
factorization. Using an optional parameter, standard elimination and partial pivoting will be used
to compute the factorization. Partial pivoting is numerically stable but is likely to be less efficient
than cyclic reduction.

Fatal, Terminal, and Warning Error Messages

See the messages.qgls file for error messages for LIN soL_TRI. These error messages are
numbered 1081-1086; 1101-1106; 1121-1126; 1141-1146.

Example 1: Solution of Multiple Tridiagonal Systems

The upper, main and lower diagonals of n systems of size n x n are generated randomly. A scalar
is added to the main diagonal so that the systems are positive definite. A random vector x; is

IMSL MATH LIBRARY Chapter 1: Linear Systems e 47

generated and right-hand sides y; = A; y; are computed. The routine is used to compute the
solution, using the A; and y;. The results should compare closely with the x; used to generate the
right-hand sides. Also, see operator ex17, supplied with the product examples.

use lin sol tri int

use rand gen_ int

use error option packet
implicit none

! This is Example 1 for LIN SOL TRI.

integer i

integer, parameter :: n=128

real (kind (1d0)), parameter :: one=1d0, zero=0d0

real (kind (1d0)) err

real (kind (1d0)), dimension(2*n,n) :: d, b, ¢, res(n,n), &

t(n), x, y

! Generate the upper, main, and lower diagonals of the

! n matrices A 1. For each system a random vector x is used
! to construct the right-hand side, Ax = y. The lower part
! of each array remains zero as a result.

c = zero; d=zero; b=zero; x=zero
do i =1, n
call rand gen
call rand gen
call rand gen
call rand gen
end do

~

xoaa
bbb e

(
(
(
(

o e e
[ole Re e}

~

! Add scalars to the main diagonal of each system so that
! all systems are positive definite.

t = sum(c+d+b,DIM=1)

d(l:n,1l:n) = d(l:n,1l:n) + spread(t,DIM=1,NCOPIES=n)

! Set Ax = y. The vector x generates y. Note the use
! of EOSHIFT and array operations to compute the matrix
! product, n distinct ones as one array operation.

y(l:n,l:n)=d(l:n,1l:n)*x(l:n,1l:n) + &
(l:n,1:n)*EOSHIFT(x(1l:n,1:n),SHIFT=+1,DIM=1) + &
(l:n,1:n)*EOSHIFT (x(1l:n,1:n),SHIFT=-1,DIM=1)

o Q

! Compute the solution returned in y. (The input values of c,
! d, b, and y are overwritten by lin sol tri.) Check for any
! error messages.

call lin sol tri (c, d, b, vy)

! Check the size of the residuals, y-x. They should be small,
! relative to the size of values in x.

res = x(l:n,1:n) - y(l:n,1l:n)

err = sum(abs(res)) / sum(abs(x(l:n,1l:n)))

48 e Chapter 1: Linear Systems IMSL MATH LIBRARY

if (err <= sqgrt(epsilon(one))) then
write (*,*) 'Example 1 for LIN SOL TRI is correct.'
end 1if

end

Output

Example 1 for LIN SOL TRI is correct.
Additional Examples

Example 2: Iterative Refinement and Use of Partial Pivoting

This program unit shows usage that typically gives acceptable accuracy for a large class of prob-
lems. Our goal is to use the efficient cyclic reduction algorithm when possible, and keep on using
it unless it will fail. In exceptional cases our program switches to the LU factorization with partial
pivoting. This use of both factorization and solution methods enhances reliability and maintains
efficiency on the average. Also, see operator ex18, supplied with the product examples.

use lin sol tri int
use rand gen int

implicit none
! This is Example 2 for LIN SOL TRI.

integer i, nopt

integer, parameter :: n=128
real (kind(1e0)), parameter :: s one=le0, s zero=0e0
real (kind (1d0)), parameter :: d one=1d0, d zero=0d0
real (kind(1e0)), dimension(2*n,n) :: d, b, ¢, res(n,n), &
X, ¥
real (kind(1e0)) change new, change old, err
type (s _options) :: iopt(2) = s options(0,s zero)
real (kind(1d0)), dimension(n,n) :: d save, b save, c_save, &

X save, y save, X sol
logical solve only

c = s _zero; d=s_zero; b=s zero; x=s_zero

! Generate the upper, main, and lower diagonals of the
! matrices A. A random vector x is used to construct the
! right-hand sides: y=A*x.

do i =1, n

call rand gen (c(l:n,i))
call rand gen (d(l:n,i))
call rand gen (b(l:n,1i))
call rand gen (x(l:n,i))

end do

! Save double precision copies of the diagonals and the
! right-hand side.

c save = c(l:n,1:n); d save = d(l:n,1:n)

b save = b(l:n,1:n); X save =

|
B
=
=}
=
2

IMSL MATH LIBRARY Chapter 1: Linear Systems o 49

y save(l:n,1l:n) = d(l:n,1l:n)*x save + &
c(l:n,1:n)*EOSHIFT (x save,SHIFT=+1,DIM=1) + &
b(l:n,1:n)*EOSHIFT (x_save, SHIFT=-1,DIM=1)

! Tterative refinement loop.
factorization choice: do nopt=0, 1

! Set the logical to flag the first time through.

solve only = .false.
x sol = d zero
change old = huge(s_one)

iterative refinement: do

! This flag causes a copy of data to be moved to work arrays
! and a factorization and solve step to be performed.
if (.not. solve only) then
c(l:n,1l:n)=c save; d(l:n,1l:n)=d save
b(l:n,1:n)=b save
end 1if

! Compute current residuals, y - A*x, using current x.
y(l:n,1:n) = -y save + &
d save*x sol + &
Cc save*EOSHIFT (x sol, SHIFT=+1,DIM=1) + &
b save*EOSHIFT (x sol,SHIFT=-1,DIM=1)

call lin sol tri (c, d, b, y, ilopt=iopt)
x sol = x sol + y(l:n,1:n)
change new = sum(abs(y(l:n,1:n)))

! If size of change is not decreasing, stop the iteration.
if (change new >= change old) exit iterative refinement

change old = change new
iopt (nopt+l) = s options(s lin sol tri solve only,s zero)
solve only = .true.

end do iterative refinement

! Use Gaussian Elimination if Cyclic Reduction did not get an

! accurate solution.

! It is an exceptional event when Gaussian Elimination is required.
if (sum(abs(x_sol - x save)) / sum(abs(x save)) &

<= sgrt(epsilon(d one))) exit factorization choice

iopt = s options(0,s_ zero)
iopt (nopt+l) = s options(s_lin sol tri use Gauss_elim,s zero)

end do factorization choice

! Check on accuracy of solution.

50 e Chapter 1: Linear Systems IMSL MATH LIBRARY

res = x(l:n,1:n)- x save
err = sum(abs(res)) / sum(abs(x_save))
if (err <= sqrt(epsilon(d one))) then
write (*,*) 'Example 2 for LIN SOL TRI is correct.'
end 1if

end

Output

Example 2 for LIN SOL TRI is correct.

Example 3: Selected Eigenvectors of Tridiagonal Matrices

The eigenvalues 4y,..., 4, of a tridiagonal real, self-adjoint matrix are computed. Note that the

computation is performed using the IMSL MATH/LIBRARY FORTRAN 77 interface to routine
EVASB. The user may write this interface based on documentation of the arguments (IMSL 2003,
p. 480), or use the module Numerical_Libraries as we have done here. The eigenvectors
corresponding to k < n of the eigenvalues are required. These vectors are computed using inverse
iteration for all the eigenvalues at one step. See Golub and Van Loan (1989, Chapter 7). The
eigenvectors are then orthogonalized. Also, see operator ex19, supplied with the product
examples.

use lin sol tri int

use rand gen int

use Numerical Libraries
implicit none

! This is Example 3 for LIN SOL TRI.

integer i, Jj, nopt

integer, parameter :: n=128, k=n/4, ncoda=1, lda=2

real (kind(le0O)), parameter :: s one=le0, s zero=0e0

real (kind(1e0)) A(lda,n), EVAL(k)

type (s_options) 1opt()=s_options(0,s zero)

real (kind (1e0)) d(n), n), d t(2*n,k), c t(2*n,k), perf ratio, &
b t(2*n,k), y t(2*n,k), eval t(k), res(n,k), temp

logical small

! This flag is used to get the k largest eigenvalues.
small = .false.

! Generate the main diagonal and the co-diagonal of the
! tridiagonal matrix.

call rand gen (b)
call rand gen (d)

A(l,1:)=b; A(2,1:)=d

! Use Numerical Libraries routine for the calculation of k
! largest eigenvalues.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 51

CALL EVASB (N, K, A, LDA, NCODA, SMALL, EVAL)
EVAL T = EVAL

! Use DNFL tridiagonal solver for inverse iteration
! calculation of eigenvectors.
factorization choice: do nopt=0,1

! Create k tridiagonal problems, one for each inverse
! iteration system.

b t(l:n,1:k) = spread(b,DIM=2,NCOPIES=k)
c t(l:n,1:k) = EOSHIFT(b_t(l:n,l:k),SHIFT=1,DIM=1)
d t(l:n,1:k) = spread(d,DIM=2,NCOPIES=k) - &

spread(EVAL_T,DIM:l,NCOPIES:n)

! Start the right-hand side at random values, scaled downward
! to account for the expected 'blowup' in the solution.
do i=1, k
call rand gen (y t(l:n,i))
end do

! Do two iterations for the eigenvectors.

do i=1, 2
y t(l:n,1:k) = y_t(l:n,l:k)*epsilon(s_one)
call lin sol tri(c t, d t, b t, y t, &
iopt=iopt)
iopt (nopt+l) = s options(s lin sol tri solve only,s zero)
end do
! Orthogonalize the eigenvectors. (This is the most

! intensive part of the computing.)
do j=1,k-1 ! Forward sweep of HMGS orthogonalization.
temp=s_one/sqrt (sum(y_t(l:n,j)**2))
y t(l:n,j)=y t(l:n,J)*temp

y t(l:n,j+l:k)=y t(l:n,Jj+1l:k)+ &

spread (-matmul (y t(l:n,j),y t(l:n,j+1:k)), &
DIM=1,NCOPIES=n)* spread(y t(l:n,Jj),DIM=2,NCOPIES=k-7j)
end do
temp=s_one/sqrt(sum(y_t(1:n,k)**2))
y t(l:n,k)=y t(l:n,k)*temp

do j=k-1,1,-1 ! Backward sweep of HMGS.

y t(l:n,j+l:k)=y t(l:n,Jj+1l:k)+ &

spread (-matmul (y t(l:n,j),y t(l:n,j+l:k)), &
DIM=1,NCOPIES=n)* spread(y t(l:n,Jj),DIM=2,NCOPIES=k-7j)
end do

! See if the performance ratio is smaller than the value one.

! If it is not the code will re-solve the systems using Gaussian
! Elimination. This is an exceptional event. It is a necessary
! complication for achieving reliable results.

res(l:n,1:k) = spread(d,DIM=2,NCOPIES=k)*y t(l:n,1:k) + &
spread (b, DIM=2,NCOPIES=k) * &
EOSHIFT(y t(l:n,1:k),SHIFT=-1,DIM=1) + &

52 e Chapter 1: Linear Systems IMSL MATH LIBRARY

EOSHIFT (spread (b, DIM=2,NCOPIES=k) *y t(l:n,1:k),SHIFT=1) &
—y_t(l:n,l:k)*spread(EVAL_T(l:k),DIM:l,NCOPIES:n)

If the factorization method is Cyclic Reduction and perf ratio is
larger than one, re-solve using Gaussian Elimination. If the
method is already Gaussian Elimination, the loop exits
and perf ratio is checked at the end.
perf ratio = sum(abs(res(l:n,1:k))) / &
sum(abs (EVAL T(1l:k))) / &
epsilon(s_one) / (5*n)
if (perf ratio <= s one) exit factorization choice
iopt (nopt+l) = s options(s lin sol tri use Gauss elim,s zero)

end do factorization choice
if (perf ratio <= s one) then
write (*,*) 'Example 3 for LIN SOL TRI is correct.'

end 1if

end

Output

Example 3 for LIN SOL TRI is correct.

Example 4: Tridiagonal Matrix Solving within Diffusion Equations

The normalized partial differential equation

_ou Al
Ut=5—%=uxx

is solved for values of 0 < x < Trand t > 0. A boundary value problem consists of choosing the

value
u(0,t)=u
such that the equation
u(x,t)=u
is satisfied. Arbitrary values
X, = z U = 1
2 2
and
t =1

are used for illustration of the solution process. The one-parameter equation

u(x,t)—u =0

IMSL MATH LIBRARY Chapter 1: Linear Systems 53

The variables are changed to
v(x,t)=u(x,t)—ug

that v(0, t) = 0. The function v(x, t) satisfies the differential equation. The one-parameter equation
solved is therefore

V(% t)—(u—ug)=0

To solve this equation for Uy, use the standard technique of the variational equation,

oV
w=——
Ouy
Thus
2
oW J°w
ot ox?
Since the initial data for
v(x,0)=—ug
the variational equation initial condition is
w(x, 0) =-1

This model problem illustrates the method of lines and Galerkin principle implemented with the
differential-algebraic solver, p2spc (IMSL 2003, pp. 889-911). We use the integrator in “reverse
communication” mode for evaluating the required functions, derivatives, and solving linear
algebraic equations. See Example 4 of routine paspG for a problem that uses reverse
communication. Next see Example 4 of routine Tveac for the development of the piecewise-
linear Galerkin discretization method to solve the differential equation. This present example
extends parts of both previous examples and illustrates Fortran 90 constructs. It further illustrates
how a user can deal with a defect of an integrator that normally functions using only dense linear
algebra factorization methods for solving the corrector equations. See the comments in Brenan et
al. (1989, esp. p. 137). Also, see operator ex20, supplied with the product examples.

use lin sol tri int
use rand gen int
use Numerical Libraries

implicit none

! This is Example 4 for LIN SOL TRI.

integer, parameter :: n=1000, ichap=5, iget=1l, iput=2, &
inum=6, irnum=7
real (kind(1e0)), parameter :: zero=0e0, one = 1le0
integer i, ido, in(50), inr(20), diopt(e6), ival(7), &
iwk (35+n)
real (kind (1e0)) hx, pi value, t, u 0, u 1, atol, rtol, sval(2), &

54 e Chapter 1: Linear Systems IMSL MATH LIBRARY

tend, wk(41+11*n), y(n), ypr(n), a diag(n),
a off(n), r_diag(n), r off(n), t y(n), t ypr
t g(n), t diag(2*n,1), t upper(2*n,1l), &

t lower(2*n,1), t sol(2*n,1)

type (s _options) :: iopti(2)=s_options(0,zero)

character(2) :: pi(l) = 'pi'
! Define initial data.

t = 0.0e0

ul=1

ul=20.5

tend = one

! Initial values for the variational equation.
y = -one; ypr= zero
pi value = const(pi)
hx = pi value/ (n+1)

a diag = 2*hx/3

a off = hx/6
r diag = -2/hx
r off = 1/hx

! Get integer option numbers.
iopt(l) = inum
call iumag ('math', ichap, iget, 1, iopt, in)

! Get floating point option numbers.
iopt(l) = irnum

call iumag ('math', ichap, iget, 1, iopt, inr)

! Set for reverse communication evaluation of the DAE.

iopt(l) = in(26)
ival(l) = 0
! Set for use of explicit partial derivatives.
iopt(2) = in(5)
ival(2) =1

! Set for reverse communication evaluation of partials.
iopt(3) = in(29)

ival(3) = 0

! Set for reverse communication solution of linear equations.
iopt(4) = in(31)
ival(4) =0

! Storage for the partial derivative array are not allocated or
! required in the integrator.

iopt(5) = in(34)
ival(5) =1
! Set the sizes of iwk, wk for internal checking.
iopt(6) = 1in(35)
ival(6) = 35 + n

ival(7) = 41 + 1l1l*n
! Set integer options:

call iumag ('math', ichap, iput, 6, iopt, ival)
! Reset tolerances for integrator:

atol = le-3; rtol= le-3

sval(l) = atol; sval(2) = rtol

iopt(l) = inr(5)

IMSL MATH LIBRARY Chapter 1: Linear Systems e 55

Set floating point options:

call sumag ('math', ichap, iput, 1, iopt, sval)
Integrate ODE/DAE. Use dummy external names for g(y,y"')
and partials.

ido =1

Integration Loop: do

call d2spg (n, t, tend, ido, vy, ypr, dgspg, djspg, iwk, wk)

Find where g(y,y') goes. (It only goes in one place here, but can
vary where divided differences are used for partial derivatives.)
iopt(l) = in(27)

call iumag ('math', ichap, iget, 1, iopt, ival)
Direct user response:
select case (ido)

case(1,4)
This should not occur.
write (*,*) ' Unexpected return with ido = ', ido
stop
case (3)
Reset options to defaults. (This is good housekeeping but not
required for this problem.)
in = -in
call iumag ('math', ichap, iput, 50, in, ival)
inr = -inr

call sumag ('math', ichap, iput, 20, inr, sval)
exit Integration Loop
case (5)
Evaluate partials of g(y,y"') .

ty=y; t_ypr ypr

t g = r diag*t y + r off*EOSHIFT (t_ y,SHIFT=+1) &
+ EOSHIFT (r off*t y,SHIFT=-1) &
- (a_diag*t _ypr + a off*EOSHIFT(t ypr,SHIFT=+1) &
+ EOSHIFT (a_off*t ypr,SHIFT=-1))
Move data from the assumed size to assumed shape arrays.
do i=1, n
wk(ival(l)+i-1) = t g(i)
end do
cycle Integration Loop

case (6)
Evaluate partials of g(y,y"').
Get value of c j for partials.
iopt(l) = inr(9)
call sumag ('math', ichap, iget, 1, iopt, sval)

Subtract c_j from diagonals to compute (partials for y')*c j.
The linear system is tridiagonal.

t diag(l:n,1) = r diag - sval(l)*a diag

t upper(l:n,1) = r off - sval(l)*a off

t lower = EOSHIFT (t upper, SHIFT=+1,DIM=1)

cycle Integration Loop

56 e Chapter 1: Linear Systems IMSL MATH LIBRARY

case (7)
! Compute the factorization.
iopti(l) = s options(s _1lin sol tri factor only, zero)
call lin sol tri (t upper, t diag, t lower, &
t sol, iopt=iopti)
cycle Integration Loop

case (8)
! Solve the system.
iopti(l) = s options(s_lin sol tri solve only, zero)
! Move data from the assumed size to assumed shape arrays.
t sol(l:n,1)=wk(ival(l):ival(l)+n-1)

call lin sol tri (t upper, t diag, t lower, &
t sol, iopt=iopti)

! Move data from the assumed shape to assumed size arrays.
wk(ival (1) :ival(1l)+n-1)=t sol(l:n,1)

cycle Integration Loop

case (2)
! Correct initial value to reach u 1 at t=tend.
u0=u0- (uO*y(n/2) - (ul-u 0)) / (y(n/2) + 1)

! Finish up internally in the integrator.
ido = 3
cycle Integration Loop
end select
end do Integration Loop

write (*,*) 'The equation u t = u xx, with u(0,t) ="', u 0
write (*,*) 'reaches the value ',u 1, ' at time = ', tend, '.'

write (*,*) 'Example 4 for LIN SOL TRI is correct.'

end

Output

Example 4 for LIN SOL TRI is correct.

LIN_SVD

Computes the singular value decomposition (SVD) of a rectangular matrix, A. This gives the
decomposition

A=USV'

where V is an n x n orthogonal matrix, U is an m x m orthogonal matrix, and S is a real,
rectangular diagonal matrix.

IMSL MATH LIBRARY Chapter 1: Linear Systems o 57

Required Arguments

A — Array of size m x n containing the matrix. (Input [/Output])
If the packaged option 1in svd overwrite input is used, this array is not saved
on output.

S— Array of size min(m, n) containing the real singular values. These nonnegative values
are in non-increasing order. (Output)

U — Array of size m x m containing the singular vectors, U. (Output)

V — Array of size n x n containing the singular vectors, V. (Output)

Optional Arguments

MROWS = m (Input)
Uses array A(1:m, 1:n) for the input matrix.
Default: m = size(a, 1)

NCOLS = n (Input)
Uses array A(1:m, 1:n) for the input matrix.
Default: n = size(a, 2)

RANK = k (Output)
Number of singular values that exceed the value Small. rRank will satisfy
k <= min(m, n).

iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix. Used for passing
optional data to the routine. The options are as follows:

Packaged Options for LIN_SvD
Option Prefix = ? Option Name Option Value
S ,d ,c ,z_ lin svd set small 1
S ,d ,c ,z_ lin svd overwrite input 2
S ,d ,c ,z_ lin svd scan_ for NaN 3
S ,d ,c ,z_ lin svd use gr 4
S .,d,c ,z_ lin svd skip orth 5
S ,d,c ,z_ lin svd use gauss_elim 6
S ,d ,c ,z_ lin svd set perf ratio 7

58 e Chapter 1: Linear Systems IMSL MATH LIBRARY

iopt (I0) = ? options(? lin svd set small, Small)
If a singular value is smaller than Small, it is defined as zero for the purpose of
computing the rank of A.
Default: the smallest number that can be reciprocated safely

iopt (I0) = ? options(? lin svd overwrite input, ? dummy)
Does not save the input array a(:, :).

iopt (IO) = ? options(?_lin svd scan_ for NaN, ? dummy)
Examines each input array entry to find the first value such that

isNaN(a(i,j)) == .true.

See the isNaN () function, Chapter 10.
Default: The array is not scanned for NaNs.

iopt (IO) = ? options(?_ lin svd use qr, ?_ dummy)
Uses a rational QR algorithm to compute eigenvalues. Accumulate the singular vectors
using this algorithm.
Default: singular vectors computed using inverse iteration

iopt (IO) = ? options(? lin svd skip Orth, ? dummy)
If the eigenvalues are computed using inverse iteration, skips the final
orthogonalization of the vectors. This method results in a more efficient computation.
However, the singular vectors, while a complete set, may not be orthogonal.
Default: singular vectors are orthogonalized if obtained using inverse iteration

iopt (I0) = ? options(? lin svd use gauss elim, ? dummy)
If the eigenvalues are computed using inverse iteration, uses standard elimination with
partial pivoting to solve the inverse iteration problems.
Default: singular vectors computed using cyclic reduction

iopt (I0) = ?_options(?_lin_svd_set_perf_ratio,pertfaﬁO)
Uses residuals for approximate normalized singular vectors if they have a performance
index no larger than perf_ratio. Otherwise an alternate approach is taken and the
singular vectors are computed again: Standard elimination is used instead of cyclic
reduction, or the standard QR algorithm is used as a backup procedure to inverse
iteration. Larger values of perf_ratio are less likely to cause these exceptions.
Default: perf_ratio=4

FORTRAN 90 Interface
Generic: CALL LIN SVD (A,S,U,V [,..])

Specific: The specific interface names are S_LIN SvD, D LIN SVD,C LIN svD, and
Z LIN_ SVD.

IMSL MATH LIBRARY Chapter 1: Linear Systems o 59

Description

Routine 1in svd is an implementation of the QR algorithm for computing the SVD of
rectangular matrices. An orthogonal reduction of the input matrix to upper bidiagonal form is

performed. Then, the SVD of a real bidiagonal matrix is calculated. The orthogonal decomposition

AV = US results from products of intermediate matrix factors. See Golub and Van Loan (1989,
Chapter 8) for details.

Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messages for LIn svD. These error messages are numbered
1001-1010; 1021-1030; 1041-1050; 1061-1070.

Example 1: Computing the SVD

The SVD of a square, random matrix A is computed. The residuals R = AV — US are small with
respect to working precision. Also, see operator ex21, supplied with the product examples.

use lin svd int
use rand gen int

implicit none

This is Example 1 for LIN SVD.

integer, parameter :: n=32

real (kind (1d0)), parameter :: one=1d0

real (kind (1d0)) err

real (kind (1d0)), dimension(n,n) :: A, U, V, S(n), y(n*n)

! Generate a random n by n matrix.

call rand_gen(y)
A = reshape(y, (/n,n/))

! Compute the singular value decomposition.

call lin svd(aA, s, U, V)

! Check for small residuals of the expression A*V - U*S.

err = sum(abs (matmul (A,V) - U*spread(S,dim=1,ncopies=n))) &
/ sum(abs (S))
if (err <= sqgrt(epsilon(one))) then
write (*,*) 'Example 1 for LIN SVD is correct.'
end 1if
end
Output

Example 1 for LIN SVD is correct.

60 e Chapter 1: Linear Systems

IMSL MATH LIBRARY

Additional Examples

Example 2: Linear Least Squares with a Quadratic Constraint

An m x n matrix equation Ax = b, m > n, is approximated in a least-squares sense. The matrix b is
size m x k. Each of the k solution vectors of the matrix x is constrained to have Euclidean length of

value o > 0. The value of «; is chosen so that the constrained solution is 0.25 the length of the
nonregularized or standard least-squares equation. See Golub and Van Loan (1989, Chapter 12)
for more details. In the Example 2 code, Newton’s method is used to solve for each regularizing
parameter of the k systems. The solution is then computed and its length is checked. Also, see
operator_ex22, supplied with the product examples.

use lin svd int
use rand gen_ int

implicit none

! This is Example 2 for LIN SVD.

integer, parameter :: m=64, n=32, k=4
real (kind (1d0)), parameter :: one=1d0, zero=0d0
real (kind (1d0)) a(m,n), s(n), u(m,m), v(n,n), y(m*max(n,k)), &

b(m,k), x(n,k), g(m,k), alpha(k), lamda(k), &
delta lamda(k), t g(n,k), s sqg(n), phi(n,k), &
phi dot(n, k), rand(k), err

! Generate a random matrix for both A and B.
call rand gen(y)
a = reshape(y, (/m,n/))

call rand gen(y)
b = reshape(y, (/m,k/))

! Compute the singular value decomposition.
call lin svd(a, s, u, V)

! Choose alpha so that the lengths of the regularized solutions
! are 0.25 times lengths of the non-regularized solutions.

g = matmul (transpose (u),b)
X matmul (v, spread (one/s,dim=2,ncopies=k) *g(l:n,1:k))
alpha = 0.25*sqgrt (sum(x**2,dim=1))

t g = g(l:n,1:k)*spread(s,dim=2,ncopies=k)
S sq = s**2; lamda = zero

solve for lamda: do
x=one/ (spread(s_sq,dim=2,ncopies=k)+ &
spread (lamda,dim=1,ncopies=n))
phi = (t _g*x)**2; phi dot = -2*phi*x
delta_lamda = (sum(phi,dim=1)-alpha**2)/sum(phi dot,dim=1)

! Make Newton method correction to solve the secular equations for
! lamda.
lamda = lamda - delta lamda

IMSL MATH LIBRARY Chapter 1: Linear Systems e 61

if (sum(abs(delta lamda)) <= &
sqgrt (epsilon (one)) *sum(lamda)) &
exit solve for lamda

! This is intended to fix up negative solution approximations.
call rand gen(rand)
where (lamda < 0) lamda = s(l) * rand

end do solve for lamda
! Compute solutions and check lengths.

x = matmul (v, t g/ (spread(s_sq,dim=2,ncopies=k)+ &
spread (lamda,dim=1,ncopies=n)))

err = sum(abs (sum(x**2,dim=1) - alpha**2))/sum(abs (alpha**2))
if (err <= sgrt(epsilon(one))) then
write (*,*) 'Example 2 for LIN SVD is correct.'
end 1if
end
Output

Example 2 for LIN SVD is correct.

Example 3: Generalized Singular Value Decomposition

The n x n matrices A and B are expanded in a Generalized Singular Value Decomposition
(GSVD). Two n x n orthogonal matrices, U and V, and a nonsingular matrix X are computed such
that

AX =U diag(c,,...,C,)
and

BX =V diag(s,...,sp)

The values S; and C; are normalized so that

The C;are nonincreasing, and the S; are nondecreasing. See Golub and Van Loan (1989, Chapter

8) for more details. Our method is based on computing three SVDs as opposed to the QR
decomposition and two SVDs outlined in Golub and Van Loan. As a bonus, an SVD of the matrix
X'is obtained, and you can use this information to answer further questions about its conditioning.
This form of the decomposition assumes that the matrix

A
D=
B

62 e Chapter 1: Linear Systems IMSL MATH LIBRARY

has all its singular values strictly positive. For alternate problems, where some singular values of

D are zero, the GSVD becomes
UTA=diag(c,...,cp)W
and

VB =diag(s,...,8,)W

The matrix W has the same singular values as the matrix D. Also, see operator ex23, supplied

with the product examples.

use lin svd int
use rand gen_ int

implicit none

This is Example 3 for LIN SVD.

integer, parameter n=32

integer i

real (kind (1d0)), parameter one=1.0d0

real (kind (1d0)) a(n,n), b(n, d(2*n,n), x(n,n), u d(2*n,2*n),

n),
v d(n,n), v c(n,n), uc(n,n), v_s(n,n), u s(n,n), &
y(n*n), s_d(n), c(n), s(n), sc_c(n), sc_s(n), &
errl, err2

Generate random square matrices for both A and B.

call rand gen(y)
a = reshape(y, (/n,n/))

call rand gen(y)

b = reshape(y, (/n,n/))
Construct D; A is on the top; B is on the bottom.
d(l:n,1l:n) = a
d(n+l:2*n,1:n) = b
Compute the singular value decompositions used for the GSVD.

call lin svd(d, s d, u d, v_d)
call lin svd(u d(l:n,1:n), c, u.c, v c)
call lin svd(u d(n+l:,1:n), s, u.s, v_s)

Rearrange c(:)
vectors accordingly.
x 1is required.)

so it is non-increasing. Move singular
(The use of temporary objects sc_c and

sc ¢ = c(n:1:-1); ¢ = sc_c
x =u c(l:n,n:1:-1); uc = x
x =v c(l:n,n:1:-1); vc = Xx

The columns of v_c and v_s have the same span. They are
equivalent by taking the signs of the largest magnitude values

&

IMSL MATH LIBRARY

Chapter 1: Linear Systems e 63

! positive.

do i=1, n

sc_c(i) = sign(one,v_c(sum(maxloc(abs(v_c(l:n,i)))),1))
sc_s (i) = sign(one,v_s(sum(maxloc(abs(v_s(l:n,i)))),1))
end do

v_c = v_c*spread(sc_c,dim=1,ncopies=n)
u ¢ = u c*spread(sc_c,dim=1,ncopies=n)

v_s = v_s*spread(sc_s,dim=1,ncopies=n)
u s = u s*spread(sc_s,dim=1,ncopies=n)

! In this form of the GSVD, the matrix X can be unstable if D
! is ill-conditioned.
X = matmul(v_d*spread(one/s_d,dim=l,ncopies=n),v_c)

! Check residuals for GSVD, A*X = u c*diag(c_1l, ..., c n), and
! B*X = u_s*diag(s_1, ..., s n).
errl = sum(abs (matmul (a,x) - u_c*spread(c,dim=l,ncopies=n))) &
/ sum(s_d)
err2 = sum(abs (matmul (b,x) - u s*spread(s,dim=1,ncopies=n))) &
/ sum(s_d)
if (errl <= sgrt(epsilon(one)) .and. &
err2 <= sqgrt(epsilon(one))) then
write (*,*) 'Example 3 for LIN SVD is correct.'
end 1if
end

Example 4: Ridge Regression as Cross-Validation with Weighting

This example illustrates a particular choice for the ridge regression problem: The least-squares
problem Ax = b is modified by the addition of a regularizing term to become

min, ([Ax-bfj + 2% |

The solution to this problem, with row k deleted, is denoted by xk(A). Using nonnegative weights
(wy, ..., Wp), the cross-validation squared error C(A) is given by:

mc<z>=§lwk(azxk (2)-b,)

With the SVD A = USV' and product g = U'b, this guantity can be written as

64 e Chapter 1: Linear Systems IMSL MATH LIBRARY

s S
N ATE
mC (1) =Y w,
“ 1- Zn:uz

This expression is minimized. See Golub and VVan Loan (1989, Chapter 12) for more details. In the
Example 4 code, mC()), at p = 10 grid points are evaluated using a log-scale with respect to A,

0.1s; <A <10s;. Array operations and intrinsics are used to evaluate the function and then to
choose an approximate minimum. Following the computation of the optimum 2, the regularized

solutions are computed. Also, see operator ex24, supplied with the product examples.

use lin svd int
use rand gen_int

implicit none
! This is Example 4 for LIN SVD.

integer i

integer, parameter :: m=32, n=16, p=10, k=4

real (kind (1d0)), parameter :: one=1d0

real (kind(1d0)) log lamda, log lamda t, delta log lamda

real (kind(1d0)) a(m,n), b(m,k), w(m, k), g(m, k), t(n), s(n), &
s sq(n), u(m,m), v(n,n), y(m*max(n,k)), &
c lamda(p, k), lamda(k), x(n,k), res(n,k)

! Generate random rectangular matrices for A and right-hand
! sides, b.

call rand gen(y)

a = reshape(y, (/m,n/)

call rand gen(y)
b = reshape(y, (/m,k/))

! Generate random weights for each of the right-hand sides.
call rand gen(y)
w = reshape (y, (/m,k/))

! Compute the singular value decomposition.
call lin svd(a, s, u, V)

g = matmul (transpose (u),b)
S _sq = s**2

log lamda = 1log(10.*s(1l)); log lamda t=log lamda
delta log lamda = (log lamda - log(0.l*s(n))) / (p-1)

! Choose lamda to minimize the "cross-validation" weighted
! square error. First evaluate the error at a grid of points,
! uniform in log scale.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 65

cross validation error: do i=1, p
t = s _sqg/(s_sqgtexp(log lamda))
c lamda (i, :) = sum(w* ((b-matmul(u(l:m,1:n),g(l:n,1l:k)* &
spread (t, DIM=2,NCOPIES=k)))/ &
(one-matmul (u(l:m,1l:n)**2, &
spread (t,DIM=2,NCOPIES=k)))) **2,DIM=1)
log lamda = log lamda - delta log lamda
end do cross validation error

! Compute the grid value and lamda corresponding to the minimum.

do i=1, k
lamda (i) = exp(log lamda t - delta log lamda* &
(sum(minloc(c_ lamda(l:p,1)))-1))
end do

! Compute the solution using the optimum "cross-validation"
! parameter.

x = matmul (v,g(l:n,1l:k)*spread(s,DIM=2,NCOPIES=k)/ &
(spread(s_sq,DIM=2,NCOPIES=k)+ &
spread (lamda, DIM=1,NCOPIES=n)))

! Check the residuals, using normal equations.
res = matmul (transpose(a),b-matmul (a,x)) - &
spread (lamda, DIM=1,NCOPIES=n) *x
if (sum(abs(res))/sum(s_sq) <= &

sgrt (epsilon (one))) then
write (*,*) 'Example 4 for LIN SVD is correct.'
end 1if
end
Output

Example 4 for LIN SVD is correct.

Parallel Constrained Least-Squares Solvers

Solving Constrained Least-Squares Systems

The routine PARALLEL NONNEGATIVE LSQ iS used to solve dense least-squares systems. These
are represented by AX = b where Aisan mxn coefficient data matrix, b is a given right-hand
side M -vector, and X is the solution N -vector being computed. Further, there is a constraint
requirement, X > 0. The routine PARALLEL,_ BOUNDED_LSQ is used when the problem has lower
and upper bounds for the solution, & <X < . By making the bounds large, individual
constraints can be eliminated. There are no restrictions on the relative sizes of m and N. When
N is large, these codes can substantially reduce computer time and storage requirements,
compared with using a routine for solving a constrained system and a single processor.

The user provides the matrix partitioned by blocks of columns:

66 e Chapter 1: Linear Systems IMSL MATH LIBRARY

A=[AlA .1 A]

An individual block of the partitioned matrix, say Ap , is located entirely on the processor with

rank MP_RANK=p —1, where vp_rank is packaged in the module mpT_SETUP 1NT. This

module, and the function Mp_SETUP () , define the Fortran Library MPI communicator,
MP_ LIBRARY WORLD. See Chapter 10, Dense Matrix Parallelism Using MPI.

PARALLEL_NONNEGATIVE_LSQ

(MPI

REQUIRED

For a detailed description of MPI Requirements see “Dense Matrix Parallelism Using MPI” in
Chapter 10 of this manual.

Solves a linear, non-negative constrained least-squares system.

Usage Notes

CALL PARALLEL NONNEGATIVE LSQ (A, B, X, RNORM, W, INDEX, IPART, IOPT
= IOPT)

Required Arguments

A(1:M,:)— (Input/Output) Columns of the matrix with limits given by entries in the array
IPART (1:2,1:max (1,MP_NPROCS)). Onoutput A is replaced by the product
QA . where Q is an orthogonal matrix. The value sT1zE (2, 1) defines the value of .
Each processor starts and exits with its piece of the partitioned matrix.

B(1:M) — (Input/Output) Assumed-size array of length m containing the right-hand side
vector, b . On output b is replaced by the product Qb , where Q is the orthogonal

matrix applied to A. All processors in the communicator start and exit with the same
vector.

X(1:N) — (Output) Assumed-size array of length N containing the solution, X > 0. The
value s1zE (x) defines the value of n. All processors exit with the same vector.

RNORM — (Output) Scalar that contains the Euclidean or least-squares length of the residual
vector, ||AX - b|| . All processors exit with the same value.

W(1:N) — (Output) Assumed-size array of length n containing the dual vector,
w=AT (b — AX) < 0. All processors exit with the same vector.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 67

INDEX(1:N) — (Output) Assumed-size array of length n containing the NSETP indices of
columns in the positive solution, and the remainder that are at their constraint. The
number of positive components in the solution X is given by the Fortran intrinsic
function value,

NSETP=COUNT (x > 0) . All processors exit with the same array.

IPART(1:2,1:max(1,MP_NPROCS)) — (Input) Assumed-size array containing the
partitioning describing the matrix A. The value Mp_NPROCS is the number of
processors in the communicator,
except when MP1 has been finalized with a call to the routine Mp_SETUP (‘Final’).
This causes Mp_NPROCS to be assigned 0. Normally users will give the partitioning to
processor of rank = MP_RANK by setting IPART (1,MP RANK+1) = first column index,
and IPART (2,MP RANK+1)= last column index. The number of columns per node is
typically based on their relative computing power. To avoid a node with rank
MP_RANK doing any work except communication, set ITPART (1,MP RANK+1) = 0 and
IPART (2,MP_RANK+1)= -1. In this exceptional case there is no reference to the
array A(:,:) at that node.

Optional Argument

I0PT(:)— (Input) Assumed-size array of derived type s OPTIONS Or D_OPTIONS. This
argument is used to change internal parameters of the algorithm. Normally users will
not be concerned about this argument, so they would not include it in the argument list
for the routine.

Packaged Options for PARALLEL NONNEGATIVE_ LSQ
Option Name Option Value
PNLSQ_SET_ TOLERANCE 1
PNLSQ_SET_MAX ITERATIONS 2
PNLSQ SET MIN RESIDUAL 3

IOPT (I0)=7? OPTIONS (PNLSQ SET TOLERANCE, TOLERANCE) Replaces the
default rank tolerance for using a column, from EPSILON(TOLERANCE) to
TOLERANCE. Increasing the value of ToLERANCE will cause fewer columns to
be moved from their constraints, and may cause the minimum residual RNORM
to increase.

IOPT (I0)=? OPTIONS (PNLSQ SET MIN RESIDUAL, RESID) Replacesthe
default target for the minimum residual vector length from 0 to RESTD.
Increasing the value of RESID can result in fewer iterations and thus increased
efficiency. The descent in the optimization will stop at the first point where the
minimum residual RNORM is smaller than RESID. Using this option may result in
the dual vector not satisfying its optimality conditions, as noted above.

IOPT (I0)= PNLSQ SET MAX ITERATIONS

68 e Chapter 1: Linear Systems IMSL MATH LIBRARY

IOPT (IO+1)= NEW MAX ITERATIONS Replaces the default maximum number of
iterations from 3*N to NEW _MAX ITERATIONS. Note that this option requires
two entries in the derived type array.

FORTRAN 90 Interface

Generic: CALL PARALLEL NONNEGATIVE LSQ (2, B, X, RNORM, W, INDEX,
IPART [,..])

Specific: ~ The specific interface names are S PARALLEL NONNEGATIVE LsQ and
D_PARALLEL NONNEGATIVE LSQ.

Description

Subroutine PARALLEL NONNEGATIVE LSQ solves the linear least-squares system
Ax=b, x>0, using the algorithm NNLS found in Lawson and Hanson, (1995), pages 160-161.

The code now updates the dual vector W of Step 2, page 161. The remaining new steps involve
exchange of required data, using MPI.

Example 1: Distributed Linear Inequality Constraint Solver

The program pNLsQ_EX1 illustrates the computation of the minimum Euclidean length solution of
an m'x n' system of linear inequality constraints, Gy > h. The solution algorithm is based on

Algorithm LDP, page 165-166, loc. cit. The rows of E = [G : h] are partitioned and assigned

random values. When the minimum Euclidean length solution to the inequalities has been
calculated, the residuals r = Gy —h >0 are computed, with the dual variables to the NNLS
problem indicating the entries of I that are precisely zero.

The fact that matrix products involving both E and ET are needed to compute the constrained
solution Y and the residuals I, implies that message passing is required. This occurs after the

NNLS solution is computed.

PROGRAM PNLSQ EXI1
! Use Parallel nonnegative LSQ to solve an inequality
! constraint problem, Gy >= h. This algorithm uses
! Algorithm LDP of Solving Least Squares Problems,
! page 165. The constraints are allocated to the
! processors, by rows, in columns of the array A(:,:).
USE PNLSQ INT
USE MPI SETUP INT
USE RAND_ INT
USE SHOW INT

IMPLICIT NONE
INCLUDE "mpif.h"

INTEGER, PARAMETER :: MP=500, NP=400, M=NP+1l, N=MP

REAL (KIND(1DO)), PARAMETER :: ZERO=0D0O, ONE=1DO
REAL (KIND(1DO)), ALLOCATABLE :: &

IMSL MATH LIBRARY Chapter 1: Linear Systems e 69

A(:y,:), B(:), X(:), Y(:), W(:), ASAVE(:,:)
REAL (KIND (1D0)) RNORM
INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:)

INTEGER K, L, DN, J, JSHIFT, IERROR
LOGICAL :: PRINT=.false.

! Setup for MPI:
MP_NPROCS=MP_ SETUP ()

DN=N/max (1, max (1,MP NPROCS))-1
ALLOCATE(IPART(2,maX(l,MP_NPROCS)))

! Spread constraint rows evenly to the processors.
IPART (1,1)=1
DO L=2,MP_NPROCS
IPART (2,L-1)=IPART(1,L-1)+DN
IPART (1,L)=IPART (2,L-1)+1
END DO
IPART (2,MP_NPROCS) =N

! Define the constraint data using random values.
K=max (0, IPART (2,MP_RANK+1)-IPART (1,MP RANK+1)+1)
ALLOCATE (A (M,K), ASAVE(M,K), X(N), W(N), &
B(M), Y(M), INDEX(N))

! The use of ASAVE can be removed by regenerating
! the data for A(:,:) after the return from
! Parallel nonnegative LSQ.
A=rand (A); ASAVE=A
IF (MP_RANK == .and. PRINT) &
CALL SHOW (IPART, &
"Partition of the constraints to be solved")

! Set the right-hand side to be one in the last component, zero elsewhere.
B=ZERO; B (M) =ONE

! Solve the dual problem.
CALL Parallel nonnegative LSQ &
(A, B, X, RNORM, W, INDEX, IPART)

! Each processor multiplies its block times the part of
! the dual corresponding to that part of the partition.
Y=ZERO
DO J=IPART (1,MP RANK+1), IPART (2,MP RANK+1)
JSHIFT=J—IPART(1,MP_RANK+1)+1
Y=Y+ASAVE (:, JSHIFT) *X (J)
END DO

! Accumulate the pieces from all the processors. Put sum into B(:)
! on rank 0 processor.
B=Y
IF (MP_NPROCS > 1) &
CALL MPI REDUCE(Y, B, M, MPI DOUBLE PRECISION, &
MPI SUM, 0, MP LIBRARY WORLD, IERROR)
IF(MP_RANK == (0) THEN

70 e Chapter 1: Linear Systems IMSL MATH LIBRARY

! Compute constrained solution at the root.
! The constraints will have no solution if B(M) = ONE.
! A1l of these example problems have solutions.
B (M) =B (M) -ONE ; B=-B/B (M)
END IF

! Send the inequality constraint solution to all nodes.
IF(MP_NPROCS > 1) &
CALL MPI BCAST(B, M, MPI DOUBLE PRECISION, &
0, MP LIBRARY WORLD, IERROR)

! For large problems this printing needs to be removed.
IF (MP_RANK == .and. PRINT) &
CALL SHOW(B(1:NP), &
"Minimal length solution of the constraints")

! Compute residuals of the individual constraints.
! If only the solution is desired, the program ends here.
X=ZERO
DO J=IPART (1,MP_RANK+1),IPART (2,MP RANK+1)
JSHIFT=J-IPART (1,MP RANK+1)+1
X (J)=dot product (B,ASAVE (:,JSHIFT))
END DO

This cleans up residuals that are about rounding
error unit (times) the size of the constraint

equation and right-hand side. They are replaced
by exact zero.
WHERE (W == ZERO) X=ZERO; W=X

! Each group of residuals is disjoint, per processor.
! We add all the pieces together for the total set of
! constraints.
IF(MP_NPROCS > 1) &
CALL MPI_REDUCE(X, W, N, MPI_DOUBLE_PRECISION,&
MPI sSUM, 0, MP_ LIBRARY WORLD, IERROR)
IF(MP_RANK == .and. PRINT) &
CALL SHOW (W, "Residuals for the constraints")

! See to any errors and shut down MPI.
MP_NPROCS=MP_SETUP ('Final')

IF (MP_RANK == () THEN
IF (COUNT (W < ZERO) == 0) WRITE(*,*)&
" Example 1 for PARALLEL NONNEGATIVE LSQ is correct."
END IF
END
Output

Example 1 for PARALLEL NONNEGATIVE LSQ is correct.

IMSL MATH LIBRARY Chapter 1: Linear Systems o 71

Additional Examples

Example 2: Distributed Non-negative Least-Squares

The program pnLsQ_ Ex2 illustrates the computation of the solution to a system of linear least-
squares equations with simple constraints: aiT X= bi ,i1=1...,m, subjectto X >0. In this

example we write the row vectors [aiT : bi } on a file. This illustrates reading the data by rows

and arranging the data by columns, as required by PARALLEL NONNEGATIVE LSQ. After reading
the data, the right-hand side vector is broadcast to the group before computing a solution, X. The
block-size is chosen so that each participating processor receives the same number of columns,
except any remaining columns sent to the processor with largest rank. This processor contains the
right-hand side before the broadcast.

This example illustrates connecting a BLACS ‘context’ handle and the Fortran Library MPI
communicator, MP_LIBRARY WORLD, described in Chapter 10.

PROGRAM PNLSQ EX2
Use Parallel Nonnegative LSQ to solve a least-squares
problem, A x = b, with x >= 0. This algorithm uses a
distributed version of NNLS, found in the book
Solving Least Squares Problems, page 165. The data is
read from a file, by rows, and sent to the processors,
as array columns.

USE PNLSQ INT
USE SCALAPACK IO INT
USE BLACS_INT

USE MPI SETUP_ INT
USE RAND INT
USE ERROR OPTION_ PACKET

IMPLICIT NONE
INCLUDE "mpif.h"

INTEGER, PARAMETER :: M=128, N=32, NP=N+1, NIN=10

real (kind (1d0)), ALLOCATABLE, DIMENSION(:) :: &
d A(:,:), A(:y:), B, C, W, X, ¥

real (kind (1d0)) RNORM, ERROR

INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:)

INTEGER I, J, K, L, DN, JSHIFT, IERROR, &
CONTXT, NPROW, MYROW, MYCOL, DESC A (9)
TYPE (d_OPTIONS) IOPT (1)

! Routines with the "BLACS " prefix are from the
! BLACS library.
CALL BLACS PINFO (MP RANK, MP NPROCS)

! Make initialization for BLACS.
CALL BLACS GET (0,0, CONTXT)

72 e Chapter 1: Linear Systems IMSL MATH LIBRARY

! Define processor grid to be 1 by MP NPROCS.
NPROW=1
CALL BLACS GRIDINIT (CONTXT, 'N/A', NPROW, MP NPROCS)

! Get this processor's role in the process grid.
CALL BLACS GRIDINFO (CONTXT, NPROW, MP NPROCS, &
MYROW, MYCOL)

! Connect BLACS context with communicator MP LIBRARY WORLD.
CALL BLACS GET (CONTXT, 10, MP LIBRARY WORLD)

! Setup for MPI:
MP NPROCS=MP SETUP ()

DN=max (1, NP/MP_NPROCS)
ALLOCATE (IPART (2, MP_NPROCS))

! Spread columns evenly to the processors. Any odd
! number of columns are in the processor with highest
! rank.
IPART(1,:)=1; IPART(2,:)=0
DO L=2,MP_NPROCS
IPART (2,L-1)=IPART(1,L-1)+DN
IPART (1,L)=IPART (2,L-1)+1

END DO
IPART (2, MP_NPROCS) =NP
IPART (2, :)=min (NP, IPART (2, :))

! Note which processor (L-1) receives the right-hand side.
DO L=1,MP NPROCS
IF (IPART(1,L) <= NP .and. NP <= IPART(2,L)) EXIT
END DO

K=max (0, IPART (2,MP_RANK+1) -IPART (1,MP_RANK+1)+1)
ALLOCATE (d_A(M,K), W(N), X(N), Y(N),&
B(M), C(M), INDEX(N))

IF(MP_RANK == 0) THEN
ALLOCATE (A (M, N))
! Define the matrix data using random values.
A=rand (A); B=rand(B)

! Write the rows of data to an external file.
OPEN (UNIT=NIN, FILE='Atest.dat', STATUS='UNKNOWN')
DO I=1,M
WRITE (NIN,*) (A(I,J),J=1,N), B(I)
END DO
CLOSE (NIN)
ELSE

! No resources are used where this array is not saved.
ALLOCATE (A (M, 0))
END IF

! Define the matrix descriptor. This includes the
! right-hand side as an additional column. The row

IMSL MATH LIBRARY Chapter 1: Linear Systems o 73

! block size, on each processor, is arbitrary, but is
! chosen here to match the column block size.
DESC_A=(/1, CONTXT, M, NP, DN+l, DN+1, 0, 0, M/)

! Read the data by rows.
IOPT (1) =ScaLAPACK READ BY ROWS
CALL ScaLAPACK READ ("Atest.dat", DESC A, &
d A, IOPT=IOPT)

! Broadcast the right-hand side to all processors.
JSHIFT=NP-IPART (1,L)+1
IF(K > 0) B=d A(:,JSHIFT)
IF (MP_NPROCS > 1) &
CALL MPI BCAST(B, M, MPI DOUBLE PRECISION , L-1, &
MP LIBRARY WORLD, IERROR)

! Adjust the partition of columns to ignore the
! last column, which is the right-hand side. It is
! now moved to B(:).

IPART (2, :)=min (N, IPART (2, :))

! Solve the constrained distributed problem.
C=B
CALL Parallel Nonnegative LSQ &
(d A, B, X, RNORM, W, INDEX, IPART)

! Solve the problem on one processor, with data saved
! for a cross-check.
IPART (2, :)=0; IPART(2,1)=N; MP NPROCS=1

! Since all processors execute this code, all arrays
! must be allocated in the main program.

CALL Parallel Nonnegative LSQ &

(A, C, Y, RNORM, W, INDEX, IPART)

! See to any errors.
CALL elpop ("Mp Setup")

! Check the differences in the two solutions. Unique solutions
! may differ in the last bits, due to rounding.
IF(MP_RANK == 0) THEN
ERROR=SUM (ABS (X-Y)) /SUM(Y)
IF (ERROR <= sqrt (EPSILON (ERROR))) write(*,*) &

' Example 2 for PARALLEL NONNEGATIVE LSQ is correct.'
OPEN (UNIT=NIN, FILE='Atest.dat', STATUS='OLD'")
CLOSE (NIN, STATUS='Delete')
END IF

! Exit from using this process grid.
CALL BLACS GRIDEXIT (CONTXT)
CALL BLACS EXIT(0)
END

Output

74 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Example 2 for PARALLEL NONNEGATIVE LSQ is correct.'

PARALLEL_BOUNDED_LSQ

EMPI

REQUIRED

For a detailed description of MPI Requirements see “Dense Matrix Parallelism Using MPI” in
Chapter 10 of this manual.

Solves a linear least-squares system with bounds on the unknowns.

Usage Notes

CALL PARALLEL BOUNDED LSQ (A, B, BND, X, RNORM, W, INDEX, IPART,
NSETP, NSETZ, IOPT=IOPT)

Required Arguments

A(1:M,:)— (Input/Output) Columns of the matrix with limits given by entries in the array
IPART (1:2,1:max (1,MP_NPROCS)). Onoutput A, is replaced by the product

QA , where Q is an orthogonal matrix. The value s1zE (2, 1) defines the value of .
Each processor starts and exits with its piece of the partitioned matrix.

B(1:M) — (Input/Output) Assumed-size array of length M containing the right-hand side
vector, b . On output b is replaced by the product Q(b - Ag) , where Q is the
orthogonal matrix applied to A and ¢ is a set of active bounds for the solution. All
processors in the communicator start and exit with the same vector.

BND(1:2,1:N) — (Input) Assumed-size array containing the bounds for X. The lower
bound a; isinBND (1, J), and the upper bound ﬂj isin BND (2, J).

X(1:N) — (Output) Assumed-size array of length n containing the solution, @ < X< 3.
The value s1zE (x) defines the value of n. All processors exit with the same vector.

RNORM — (Output) Scalar that contains the Euclidean or least-squares length of the residual
vector, ||AX - b|| . All processors exit with the same value.

W(1:N) — (Output) Assumed-size array of length n containing the dual vector,
w=A" (b — AX) . At a solution exactly one of the following is true for each
1, 1< j<n,

IMSL MATH LIBRARY Chapter 1: Linear Systems e 75

o =X; :ﬂj,and w; arbitrary
°q; =xj,andwj <0
°aj <Xj<pj andw;=0

All processors exit with the same vector.

INDEX(1:N) — (Output) Assumed-size array of length n containing the NsETP indices of

columns in the solution interior to bounds, and the remainder that are at a constraint.
All processors exit with the same array.

IPART(1:2,1:max(1,MP_NPROCS)) — (Input) Assumed-size array containing the

partitioning describing the matrix A. The value MP_NPROCS is the number of
processors in the communicator, except when MPI has been finalized with a call to the
routine Mp_SETUP (‘Final’) . This causes MP_NPROCS to be assigned 0. Normally
users will give the partitioning to processor of rank = MP_RANK by setting

IPART (1,MP_RANK+1) = first column index, and IPART (2, MP_RANK+1)= last
column index. The number of columns per node is typically based on their relative
computing power. To avoid a node with rank Mp_RaNK doing any work except
communication, set ITPART (1,MP_RANK+1) = 0 and IPART (2,MP RANK+1)= -1.
In this exceptional case there is no reference to the array A(:,:) at that node.

NSETP— (Output) An INTEGER indicating the number of solution components not at

constraints. The column indices are output in the array INDEX (:).

NSETZ— (Output) An INTEGER indicating the solution components held at fixed values.

The column indices are output in the array INDEX (:).

Optional Argument

I0PT(:)— (Input) Assumed-size array of derived type s OPTIONS Or D_OPTIONS. This

argument is used to change internal parameters of the algorithm. Normally users will
not be concerned about this argument, so they would not include it in the argument list
for the routine.

Packaged Options for PARALLEL_ BOUNDED_LSQ

Option Name Option Value
PBLSQ SET TOLERANCE 1
PBLSQ SET MAX ITERATIONS 2
PBLSQ SET MIN RESIDUAL

76 e Chapter 1:

Linear Systems IMSL MATH LIBRARY

IOPT (I0)=? OPTIONS (PBLSQ SET TOLERANCE, TOLERANCE) Replaces the
default rank tolerance for using a column, from EPSILON (TOLERANCE) t0
TOLERANCE. Increasing the value of ToLERANCE will cause fewer columns to
be increased from their constraints, and may cause the minimum residual
RNORM t0 increase.

IOPT (I0)=7? OPTIONS (PBLSQ SET MIN RESIDUAL, RESID) Replacesthe
default target for the minimum residual vector length from 0 to RESID.
Increasing the value of RESID can result in fewer iterations and thus increased
efficiency. The descent in the optimization will stop at the first point where the
minimum residual RNORM is smaller than RESID. Using this option may result in
the dual vector not satisfying its optimality conditions, as noted above.

IOPT (I0)= PBLSQ SET MAX ITERATIONS

IOPT (I0+1)= NEW MAX ITERATIONS Replaces the default maximum number of
iterations from 3*N to NEW _MAX ITERATIONS. Note that this option requires
two entries in the derived type array.

FORTRAN 90 Interface

Generic: CALL PARALLEL BOUNDED LSQ (A, B, X [,..])

Specific: The specific interface names are S_PARALLEL BOUNDED LsQ and
D PARALLEL BOUNDED LSQ.

Description

Subroutine PARALLEL BOUNDED_ LSQ Solves the least-squares linear system
AX=b, a <x< [, using the algorithm BVLS found in Lawson and Hanson, (1995), pages

279-283. The new steps involve updating the dual vector and exchange of required data, using
MPI. The optional changes to default tolerances, minimum residual, and the number of iterations
are new features.

Example 1: Distributed Equality and Inequality Constraint Solver

The program pBLsQ_Ex1 illustrates the computation of the minimum Euclidean length solution of
an m'x n' system of linear inequality constraints, Gy > h . Additionally the first f >0 of the
constraints are equalities. The solution algorithm is based on Algorithm LDP, page 165-166, loc.
cit. By allowing the dual variables to be free, the constraints become equalities. The rows of

E-= [G : h] are partitioned and assigned random values. When the minimum Euclidean length

solution to the inequalities has been calculated, the residuals r = Gy —h >0 are computed, with
the dual variables to the BVLS problem indicating the entries of I that are exactly zero.

PROGRAM PBLSQ EX1
Use Parallel bounded LSQ to solve an inequality
constraint problem, Gy >= h. Force F of the constraints
to be equalities. This algorithm uses LDP of
Solving Least Squares Problems, page 165.

IMSL MATH LIBRARY Chapter 1: Linear Systems o 77

! Forcing equality constraints by freeing the dual is
! new here. The constraints are allocated to the
! processors, by rows, in columns of the array A(:,:).
USE PBLSQ INT
USE MPI_SETUP INT
USE RAND_ INT
USE SHOW INT

IMPLICIT NONE
INCLUDE "mpif.h"

INTEGER, PARAMETER :: MP=500, NP=400, M=NP+1, &
N=MP, F=NP/10

REAL (KIND(1D0O)), PARAMETER :: ZERO=0D0O, ONE=1DO
REAL (KIND(1D0)), ALLOCATABLE :: &
A(:,:), B(:), BND(:,:), X(:), Y(:), &
W(:), ASAVE (:,:)
REAL (KIND(1D0)) RNORM
INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:)

INTEGER K, L, DN, J, JSHIFT, IERROR, NSETP, NSETZ
LOGICAL :: PRINT=.false.

! Setup for MPI:
MP_NPROCS=MP_ SETUP ()

DN=N/max (1,max (1,MP_NPROCS))-1
ALLOCATE(IPART(2,maX(l,MP_NPROCS)))

! Spread constraint rows evenly to the processors.
IPART (1,1)=1
DO L=2,MP_NPROCS
IPART (2,L-1)=IPART(1,L-1)+DN
IPART (1,L)=IPART (2,L-1)+1
END DO
IPART (2,MP_NPROCS) =N

! Define the constraints using random data.
K=max (0, IPART (2,MP_RANK+1)-IPART (1,MP RANK+1)+1)
ALLOCATE (A (M,K), ASAVE(M,K), BND(2,N), &
X(N), w(N), B(M), Y(M), INDEX(N))

! The use of ASAVE can be replaced by regenerating the
! data for A(:,:) after the return from
! Parallel bounded LSQ
A=rand (A); ASAVE=A
IF(MP_RANK == .and. PRINT) &
call show (IPART, &
"Partition of the constraints to be solved")

! Set the right-hand side to be one in the last
! component, zero elsewhere.

B=ZERO; B (M) =ONE

! Solve the dual problem. Letting the dual variable

78 e Chapter 1: Linear Systems IMSL MATH LIBRARY

! have no constraint forces an equality constraint
! for the primal problem.
BND(1,1:F)=-HUGE (ONE); BND(1l,F+1:)=ZERO
BND (2, :) =HUGE (ONE)
CALL Parallel bounded LSQ &
(A, B, BND, X, RNORM, W, INDEX, IPART, &
NSETP, NSETZ)

! Each processor multiplies its block times the part
! of the dual corresponding to that partition.
Y=ZERO
DO J=IPART (1,MP RANK+1), IPART (2,MP RANK+1)
JSHIFT=J-IPART (1,MP RANK+1)+1
Y=Y+ASAVE (:, JSHIFT) *X (J)
END DO

! Accumulate the pieces from all the processors.
! Put sum into B(:) on rank 0 processor.
B=Y
IF (MP_NPROCS > 1) &
CALL MPI_REDUCE(Y, B, M, MPI DOUBLE PRECISION, &
MPI SUM, 0, MP_ LIBRARY WORLD, IERROR)
IF (MP_RANK == 0) THEN

! Compute constraint solution at the root.
! The constraints will have no solution if B(M) = ONE.
! A1l of these example problems have solutions.
B (M) =B (M) ~ONE ; B=-B/B (M)
END IF

! Send the inequality constraint or primal solution to all nodes.
IF (MP_NPROCS > 1) &
CALL MPI BCAST(B, M, MPI DOUBLE PRECISION, 0, &
MP LIBRARY WORLD, IERROR)

! For large problems this printing may need to be removed.
IF(MP_RANK == 0 .and. PRINT) &
call show(B(1l:NP), &
"Minimal length solution of the constraints")

! Compute residuals of the individual constraints.
X=ZERO
DO J=IPART (1,MP RANK+1), IPART (2,MP RANK+1)
JSHIFT=J-IPART (1,MP RANK+1)+1
X (J)=dot product (B,ASAVE (:, JSHIFT))
END DO

! This cleans up residuals that are about rounding error
! unit (times) the size of the constraint equation and

! right-hand side. They are replaced by exact zero.
WHERE (W == ZERO) X=ZERO
W=X

! Each group of residuals is disjoint, per processor.
! We add all the pieces together for the total set of
! constraints.

IF (MP_NPROCS > 1) &

IMSL MATH LIBRARY Chapter 1: Linear Systems o 79

CALL MPIiREDUCE(X, W, N, MPI DOUBLE PRECISION, &
MPI SUM, 0, MP LIBRARY WORLD, IERROR)
IF(MPiRANK == .and. PRINT) &
call show (W, "Residuals for the constraints")

! See to any errors and shut down MPI.
MP_NPROCS=MP_ SETUP ('Final')
IF(MP_RANK == 0) THEN
IF(COUNT (W < ZERO) == 0 .and.&
COUNT (W == ZERO) >= F) WRITE(*,*)é&
" Example 1 for PARALLEL BOUNDED LSQ is correct."
END IF
END

Output

Example 1 for PARALLEL BOUNDED LSQ is correct.
Additional Examples

Example 2: Distributed Newton-Raphson Method with Step Control

The program pBLSQ_Ex2 illustrates the computation of the solution of a non-linear system of
equations. We use a constrained Newton-Raphson method.

This algorithm works with the problem chosen for illustration. The step-size control used here,
employing only simple bounds, may not work on other non-linear systems of equations. Therefore
we do not recommend the simple non-linear solving technique illustrated here for an arbitrary
problem. The test case is Brown'’s Almost Linear Problem, Moré, et al. (1982). The components
are given by:

n

of (X)=x+> xj—(n+1),i=1..,n-1
i1

o f (X) =X, —1

T
The functions are zero at the point X = (5, vy O, st) , where ¢ >1 is a particular root of the
polynomial equation NS" —(n +1) "1 +1=0. Toavoid convergence to the local minimum

X = (0, .,0,n +1)T , We start at the standard point X = (1/ 2,..,1/2,1/ Z)T and develop the
Newton method using the linear terms f (X— y) ~ f (X)— J (X) y =0, where J (X) is the

Jacobian matrix. The update is constrained so that the first N —1 components satisfy
Xj—Y;j >1/2,or Vi <X —1/2. The last component is bounded from both sides,

0<X,—Yn<1/2, or X, >y, (X, —1/2). These bounds avoid the local minimum and

n
allow us to replace the last equation by z In (XJ—) =0, which is better scaled than the original.
=

80 e Chapter 1: Linear Systems IMSL MATH LIBRARY

The positive lower bound for X, —Y,, is replaced by the strict bound, EPsILON (1D0), the
arithmetic precision, which restricts the relative accuracy of X,,. The input for routine

PARALLEL BOUNDED LSQ expects each processor to obtain that part of J (X) it owns. Those

columns of the Jacobian matrix correspond to the partition given in the array IPART (:, :). Here
the columns of the matrix are evaluated, in parallel, on the nodes where they are required.

PROGRAM PBLSQ EX2

! Use Parallel bounded LSQ to solve a non-linear system
! of equations. The example is an ACM-TOMS test problem,
! except for the larger size. It is "Brown's Almost Linear
! Function."

USE ERROR OPTION PACKET

USE PBLSQ INT

USE MPI SETUP_ INT

USE SHOW INT

USE Numerical Libraries, ONLY : N1RTY

IMPLICIT NONE

INTEGER, PARAMETER :: N=200, MAXIT=5

REAL (KIND(1DO)), PARAMETER :: ZERO=0D0, ONE=1DO, &
HALF=5D-1, TWO=2DO0
REAL (KIND(1DO)), ALLOCATABLE :: &

A(:,:), B(:), BND(:,:), X(:), Y(:), W(:)
REAL (KIND (1D0)) RNORM
INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:)

INTEGER K, L, DN, J, JSHIFT, IERROR, NSETP, &
NSETZ, ITER

LOGICAL :: PRINT=.false.

TYPE (D_OPTIONS) IOPT(3)

! Setup for MPI:
MP NPROCS=MP SETUP ()

DN=N/max (1, max (1,MP_NPROCS)) -1
ALLOCATE (IPART (2, max (1, MP_NPROCS)))

! Spread Jacobian matrix columns evenly to the processors.
IPART (1,1)=1
DO L=2,MP NPROCS
IPART (2,L-1)=IPART(1,L-1)+DN
IPART (1,L)=IPART (2,L-1)+1
END DO
IPART (2,MP_NPROCS) =N

K=max (0, TPART (2,MP_RANK+1) -TPART (1, MP_RANK+1)+1)
ALLOCATE (A (N,K), BND(2,N), &
X(N), W(N), B(N), Y(N), INDEX(N))

! This is Newton's method on "Brown's almost
! linear function."
X=HALF

IMSL MATH LIBRARY Chapter 1: Linear Systems o 81

ITER=0

Turn off messages and stopping for FATAL class errors.
CALL ERSET (4, 0, 0)

NEWTON METHOD: DO

! Set bounds for the values after the step is taken.
! A1l variables are positive and bounded below by HALF,
! except for variable N, which has an upper bound of HALF.
BND(1,1:N-1)=-HUGE (ONE)
BND(2,1:N-1)=X(1:N-1)-HALF
BND (1, N) =X (N) ~HALF
BND (2,N) =X (N) -EPSILON (ONE)
! Compute the residual function.
B(1:N-1)=SUM(X)+X(1:N-1)-(N+1)
B (N) =LOG (PRODUCT (X))
if (mp rank ==

.and. PRINT) THEN
CALL SHOW (B, &

"Developing non-linear function residual")

END IF
IF (MAXVAL (ABS(B(1:N-1))) <= SORT (EPSILON (ONE))) &
EXIT NEWTON METHOD

! Compute the derivatives local to each processor.
A(1:N-1, :)=0NE
DO J=1,N-1
IF(J < IPART(1,MP RANK+1)) CYCLE
IF(J > IPART(2,MP RANK+1)) CYCLE
JSHIFT=J-IPART (1,MP RANK+1)+1
A(J,JSHIFT)=TWO
END DO

A(N,:)=ONE/X(IPART(I,MP_RANK+1):IPART(Z,MP_RANK+1))
! Reset the linear independence tolerance.

IOPT (1)=D OPTIONS (PBLSQ SET TOLERANCE, &
sgrt (EPSILON (ONE)))

IOPT (2)=PBLSQ SET MAX ITERATIONS

' If N iterations was

not enough on a previous iteration, reset to 2*N.
IF (N1IRTY (1) == 0) THEN

IOPT (3)=N

ELSE

IOPT (3)=2*N
CALL E1POP('MP SETUP')

CALL E1PSH('MP SETUP')
END IF

CALL parallel bounded LSQ &

(A, B, BND, Y, RNORM, W,

INDEX, IPART, NSETP,
NSETZ, IOPT=I0PT)

&

The array Y(:) contains the constrained Newton step.
|

Update the variables.
X=X-Y

82 e Chapter 1: Linear Systems

IMSL MATH LIBRARY

IF (mp_rank == .and. PRINT) THEN
CALL show (BND, "Bounds for the moves")
CALL SHOW (X, "Developing Solution")
CALL SHOW ((/RNORM/), &
"Linear problem residual norm")
END IF

! This is a safety measure for not taking too many steps.
ITER=ITER+1
IF(ITER > MAXIT) EXIT NEWTON METHOD
END DO NEWTON METHOD

IF(MP_RANK == 0) THEN

IF (ITER <= MAXIT) WRITE (*,*)&

" Example 2 for PARALLEL BOUNDED LSQ is correct."
END IF

! See to any errors and shut down MPI.
MP NPROCS=MP_ SETUP ('Final')

END

LSARG

HIGH
PE%%CE Emepr

CAPABLE

Solves a real general system of linear equations with iterative refinement.

Required Arguments

A — N by N matrix containing the coefficients of the linear system. (Input)
B — Vector of length n containing the right-hand side of the linear system. (Input)

X — Vector of length § containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)
Default: N = size (a,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: DA = size (a,1).

IPATH — Path indicator. (Input)

IMSL MATH LIBRARY Chapter 1: Linear Systems o 83

1PATH = 1 means the system Ax = B is solved.
IPATH = 2 means the system a’x = B is solved.

Default: 1PATH = 1.

FORTRAN 90 Interface

Generic: CALL LSARG (A, B, X [,..])

Specific: ~ The specific interface names are S LsarG and D_LSARG.

FORTRAN 77 Interface

Single: CALL LSARG (N, A, LDA, B, IPATH, X)

Double: The double precision name is DLSARG

ScaLAPACK Interface

Generic: CALL LSARG (A0, BO, X0 [,..])
Specific: ~ The specific interface names are S LSARG and D_LSARG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine LSARG solves a system of linear algebraic equations having a real general coefficient
matrix. It first uses routine LFCRG to compute an LU factorization of the coefficient matrix and to
estimate the condition number of the matrix. The solution of the linear system is then found using
the iterative refinement routine LFIRG. The underlying code is based on either LINPACK ,
LAPACK, or ScaLAPACK code depending upon which supporting libraries are used during
linking. For a detailed explanation see “Using ScaLAPACK, LAPACK, LINPACK, and
EISPACK?” in the Introduction section of this manual.

LSARG fails if U, the upper triangular part of the factorization, has a zero diagonal element or if the
iterative refinement algorithm fails to converge. These errors occur only if A is singular or very
close to a singular matrix.

If the estimated condition number is greater than 1/€ (where € is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system. LSARG solves the
problem that is represented in the computer; however, this problem may differ from the problem
whose solution is desired.

84 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Comments

1. Workspace may be explicitly provided, if desired, by use of L2ARG/DL2ARG. The
reference is:

CALL L2ARG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK)
The additional arguments are as follows:

FACT — Work vector of length N containing the LU factorization of a on
output.

IPVT — Integer work vector of length n containing the pivoting information
for the LU factorization of A on output.

WK — Work vector of length .

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.
4 2 The input matrix is singular.

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

A0 — mxLpa by mxcoL local matrix containing the local portions of the distributed matrix
A. A contains the coefficients of the linear system. (Input)

B0 — Local vector of length Mx1.pa containing the local portions of the distributed vector B. B
contains the right-hand side of the linear system. (Input)

X0 — Local vector of length mx1.Da containing the local portions of the distributed vector x.
x contains the solution to the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, MxLDA and MxCOL can be obtained through a call to
SCALAPACK_GETDIM (see Utilities) after a call to scarapack seTup (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

A system of three linear equations is solved. The coefficient matrix has real general form and the
right-hand-side vector b has three elements.

USE LSARG_INT
USE WRRRN_ INT
IMPLICIT NONE
Declare variables

IMSL MATH LIBRARY Chapter 1: Linear Systems e 85

INTEGER LDA, N
PARAMETER (LDA=3, N=3)

REAL A (LDA,N), B(N), X (N)
! Set values for A and B
A(l,:) = (/ 33.0, 16.0, 72.0/)

A(2,:) = (/-24.0, -10.0, =-57.0/)

A(3,:) = (/ 18.0, -11.0, 7.0/)
!

B = (/129.0, -96.0, 8.5/)

! Solve the system of equations
CALL LSARG (A, B, X)

! Print results
CALL WRRRN ('X’, X, 1, N, 1)
END

Output

X
1 2 3
1.000 1.500 1.000

ScaLAPACK Example

The same system of three linear equations is solved as a distributed computing example. The
coefficient matrix has real general form and the right-hand-side vector b has three elements.
SCALAPACK_MAP and SCALAPACK UNMAP are IMSL utility routines (see Utilities) used to map
and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a
ScaLAPACK tools routine which initializes the descriptors for the local arrays.

USE MPI SETUP_INT
USE LSARG_INT
USE WRRRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER N, DESCA(9), DESCX(9)

INTEGER INFO, MXLDA, MXCOL

REAL, ALLOCATABLE :: A(:,:), B(:), X(:)
REAL, ALLOCATABLE :: AO0(:,:), BO(:), XO(:)
PARAMETER (N=3)

! Set up for MPI
MP_NPROCS = MP_SETUP()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(N,N), B(N), X(N))
! Set values for A and B
A(l,:) = (/ 33.0, 16.0, 72.0/)
: (/-24.0, -10.0, -57.0/)
(/ 18.0, -11.0, 7.0/)

w N
~ S
(]

B = (/129.0, -96.0, 8.5/)

86 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Set up a 1D processor grid and define
its context id, MP_ICTXT
CALL SCALAPACK SETUP(N, N, .TRUE., .TRUE.)
Get the array descriptor entities MXLDA,
AND MXCOL
CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCX, N, 1, MP MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
Allocate space for the local arrays
ALLOCATE (AO (MXLDA,MXCOL), BO (MXLDA), X0 (MXLDA))
Map input arrays to the processor grid
CALL SCALAPACK MAP (A, DESCA, AO0)
CALL SCALAPACK MAP (B, DESCX, BO)
Solve the system of equations
CALL LSARG (A0, BO, XO0)
Unmap the results from the distributed
arrays back to a non-distributed array.
After the unmap, only Rank=0 has the full
array.
CALL SCALAPACK UNMAP (X0, DESCX, X)
Print results.
Only Rank=0 has the solution, X.
IF (MP_RANK .EQ. 0) CALL WRRRN (X', X, 1, N, 1)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, B, X)
DEALLOCATE (A0, BO, XO0)
Exit ScalAPACK usage
CALL SCALAPACK EXIT (MP_ ICTXT)
Shut down MPI
MP NPROCS = MP SETUP (‘FINAL')

END
Output
X
1 2 3
1.000 1.500 1.000

LSLRG

H

PE

MPI

H
NCE CAPABLE

Solves a real general system of linear equations without iterative refinement.

Required Arguments

A — n by n matrix containing the coefficients of the linear system. (Input)

B — Vector of length n containing the right-hand side of the linear system. (Input)

IMSL MATH LIBRARY Chapter 1: Linear Systems o 87

X — Vector of length ~ containing the solution to the linear system. (Output)
If B is not needed, B and x can share the same storage locations

Optional Arguments
N — Number of equations. (Input)
Default: § = size (3,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: LD = size (a,1).

IPATH — Path indicator. (Input)
1PATH = 1 means the system ax = Bis solved.

IPATH = 2 means the system a'x = B is solved.
Default: 1pATH = 1.

FORTRAN 90 Interface

Generic: CALL LSLRG (A, B, X [,..])

Specific: The specific interface names are S_LSLRG and D_LSLRG.

FORTRAN 77 Interface

Single: CALL LSLRG (N, A, LDA, B, IPATH, X)

Double: The double precision hame is DLSLRG.

ScaLAPACK Interface

Generic: CALL LSLRG (A0, B0, X0 [,..])
Specific: The specific interface names are S_LSLRG and D_LSLRG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine LSLRG solves a system of linear algebraic equations having a real general coefficient
matrix. The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code
depending upon which supporting libraries are used during linking. For a detailed explanation see
“Using ScaLAPACK, LAPACK, LINPACK, and EISPACK” in the Introduction section of this
manual. LSLRG first uses the routine LFCRG to compute an LU factorization of the coefficient
matrix based on Gauss elimination with partial pivoting. Experiments were analyzed to determine
efficient implementations on several different computers. For some supercomputers, particularly

88 e Chapter 1: Linear Systems IMSL MATH LIBRARY

those with efficient vendor-supplied BLAS, versions that call Level 1, 2 and 3 BLAS are used.
The remaining computers use a factorization method provided to us by Dr. Leonard J. Harding of
the University of Michigan. Harding’s work involves “loop unrolling and jamming” techniques
that achieve excellent performance on many computers. Using an option, LSLRG will estimate the
condition number of the matrix. The solution of the linear system is then found using LFSRG.

The routine LsLRG fails if U, the upper triangular part of the factorization, has a zero diagonal
element. This occurs only if A is close to a singular matrix.

If the estimated condition number is greater than 1/€ (where € is machine precision), a warning
error is issued. This indicates that small changes in A can cause large changes in the solution x. If
the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that either

LIN SOL_SVD Or LSARG be used.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LRG/DL2LRG. The
reference is:

CALL L2LRG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK)
The additional arguments are as follows:
FACT — ~ x n work array containing the LU factorization of A on output. If
A is not needed, 2 and FACT can share the same storage locations. See

Item 3 below to avoid memory bank conflicts.

IPVT — Integer work vector of length N containing the pivoting information
for the LU factorization of A on output.

WK — Work vector of length .

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.
4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2LRG the leading dimension of FACT is increased by
1vaL(3) when v is a multiple of Tvar(4). The values 1var(3) and 1vaL(4) are
temporarily replaced by 1var(1) and Tvar(2); respectively, in LSLRG.
Additional memory allocation for racT and option value restoration are done
automatically in LsLRrG. Users directly calling L2LRrG can allocate additional
space for rFacT and set 1vaL(3) and 1vaL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing

IMSL MATH LIBRARY Chapter 1: Linear Systems o 89

applications that use LSLRG or L2LRG. Default values for the option are
vaLn(*) =1, 16,0, 1.

17 This option has two values that determine if the L; condition number is to be
computed. Routine LsLRG temporarily replaces 1varn(2) by 1var(1). The
routine 1.2CRG computes the condition number if 1vaL(2) = 2. Otherwise L2CRG
skips this computation. LSLRG restores the option. Default values for the option
are
TVaL(*) =1, 2.

ScalLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

A0 — wMxLDA by mMxcoL local matrix containing the local portions of the distributed matrix
A. A contains the coefficients of the linear system. (Input)

B0 — Local vector of length MxL.DA containing the local portions of the distributed vector B.
B contains the right-hand side of the linear system. (Input)

X0 — Local vector of length mx1.DA containing the local portions of the distributed vector x.
x contains the solution to the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, mMxzLpaA and MxCOL can be obtained through a call
to SCALAPACK_GETDIM (see Utilities) after a call to scarapack SETUP (See Utilities) has been
made. See the ScaLAPACK Example below.

Example 1

A system of three linear equations is solved. The coefficient matrix has real general form and the
right-hand-side vector b has three elements.

USE LSLRG_INT
USE WRRRN_INT
IMPLICIT NONE
! Declare variables
INTEGER LDA, N
PARAMETER (LDA=3, N=3)

REAL A(LDA,N), B(N), X (N)
! Set values for A and B

A(l,:) = (/ 33.0, 16.0, 72.0/)
A(2,:) = (/-24.0, -10.0, -57.0/)
A(3,:) = (/ 18.0, -11.0, 7.0/)

B = (/129.0 -96.0 8.5/)

! Solve the system of equations
CALL LSLRG (A, B, X)
! Print results

90 e Chapter 1: Linear Systems IMSL MATH LIBRARY

CALL WRRRN

END
Output
X
1 2 3
1.000 1.500 1.000

Additional Example

Example 2

A system of N = 16 linear equations is solved using the routine L.2L.rG. The option manager is used
to eliminate memory bank conflict inefficiencies that may occur when the matrix dimension is a
multiple of 16. The leading dimension of FacT=a is increased from n to N+IVAL (3) =17, since
N=16=IVAL (4). The data used for the test is a nonsymmetric Hadamard matrix and a right-hand

side generated by a known solution, x;=j, j=1, ..., N.

USE LZLRG_INT
USE IUMAG_INT
USE WRRRN_ INT
USE SGEMV_INT
IMPLICIT NONE
! Declare variables

INTEGER LDA, N
PARAMETER (LDA=17, N=16)

! SPECIFICATIONS FOR PARAMETERS
INTEGER ICHP, IPATH, IPUT, KBANK
REAL ONE, ZERO
PARAMETER (ICHP=1, IPATH=1, IPUT=2, KBANK=16, ONE=1.0E0, &

ZERO=0.0EO0)

! SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER I, IPVT(N), J, K, NN
REAL A(LDA,N), B(N), WK(N), X(N)

! SPECIFICATIONS FOR SAVE VARIABLES
INTEGER IOPT (1), IVAL(4)
SAVE IVAL

Data for option wvalues.

DATA IVAL/1, 16, 1, 16/

Set values for A and B:

A(l,1) = ONE
NN =1
! Generate Hadamard matrix.
DO 20 K=1, 4
DO 10 J=1, NN
DO 10 I=1, NN
A(NN+I,J) = -A(I,J)
A(I,NN+J) = A(I,J)
A(NN+I,NN+J) = A(I,J)
10 CONTINUE

NN = NN + NN

20 CONTINUE

DO 30 J=

Generate right-hand-side.

1, N

IMSL MATH LIBRARY

Chapter 1: Linear Systems e 91

X(J) =4d
30 CONTINUE

! Set B = A*X.
CALL SGEMV ('N’, N, N, ONE, A, LDA, X, 1, ZERO, B, 1)
! Clear solution array.
X = ZERO
! Set option to avoid memory
! bank conflicts.
IOPT (1) = KBANK
CALL IUMAG (’MATH’, ICHP, IPUT, 1, IOPT, IVAL)
! Solve A*X = B.
CALL L2LRG (N, A, LDA, B, IPATH, X, A, IPVT, WK)
! Print results
CALL WRRRN ('X’, X, 1, N, 1)
END
Output
X
1 2 3 4 5 6 7 8
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00
11 12 13 14 15 16
11.00 12.00 13.00 14.00 15.00 16.00

ScalLAPACK Example

9.00 10.00

The same system of three linear equations is solved as a distributed computing example. The
coefficient matrix has real general form and the right-hand-side vector b has three elements.
SCALAPACK MAP and SCALAPACK UNMAP (See Chapter 11, “Utilities”) are IMSL utility routines
(see Chapter 11, “Utilities”) used to map and unmap arrays to and from the processor grid. They
are used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the

descriptors for the local arrays.

USE MPI_SETUP INT
USE LSLRG_INT

USE WRRRN INT

USE SCALAPACK_SUPPORT
IMPLICIT NONE

INCLUDE ‘mpif.h’
! Declare variables
INTEGER N, DESCA(9), DESCX(9)
INTEGER INFO, MXCOL, MXLDA
REAL, ALLOCATABLE A(:,:), B(:), X(:)
REAL, ALLOCATABLE AO(:,:), BO(:), XO0(:)
PARAMETER (N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(N,N), B(N), X(N))
! Set values for A and B
A(l,:) = (/ 33.0, 16.0, 72.0/)
A(2,:) (/-24.0, -10.0, -=-57.0/)

92 e Chapter 1: Linear Systems

IMSL MATH LIBRARY

A(3,:) = (/ 18.0, -11.0, 7.0/)

B = (/129.0, -96.0, 8.5/)

ENDIF
! Set up a 1D processor grid and define
! its context id, MP_ICTXT
CALL SCALAPACK SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL

CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCX, N, 1, MP MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (A0 (MXLDA,MXCOL), BO (MXLDA), X0 (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK MAP (A, DESCA, AO)
CALL SCALAPACK MAP (B, DESCX, BO)
! Solve the system of equations
CALL LSLRG (AO, BO, XO0)
Unmap the results from the distributed
arrays back to a non-distributed array.
After the unmap, only Rank=0 has the full
array.
CALL SCALAPACK UNMAP (X0, DESCX, X)
! Print results
! Only Rank=0 has the solution, X.
IF(MP_RANK .EQ. 0)CALL WRRRN ('X’, X, 1, N, 1)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, B, X)
DEALLOCATE (A0, BO, XO)
! Exit ScalAPACK usage
CALL SCALAPACK EXIT (MP ICTXT)
! Shut down MPI
MP NPROCS = MP SETUP (‘FINAL’)
END

Output

X
1 2 3
1.000 1.500 1.000

LFCRG
H

H
e ZMPpI

CAPABLE

PE

Computes the LU factorization of a real general matrix and estimates its L; condition number.

Required Arguments

A — N by N matrix to be factored. (Input)

IMSL MATH LIBRARY Chapter 1: Linear Systems e 93

FACT — n by N matrix containing the LU factorization of the matrix A. (Output)
If A'is not needed, A and FACT can share the same storage locations.

IPVT — Vector of length n containing the pivoting information for the LU factorization.
(Output)

RCOND — Scalar containing an estimate of the reciprocal of the L, condition number of a.
(Output)

Optional Arguments

N — Order of the matrix. (Input)
Default: § = size (2,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling

program. (Input)
Default: Lpa = size (a,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFCRG (A, FACT, IPVT, RCOND, [,..])

Specific: The specific interface names are S_LFCRG and D_LFCRG.

FORTRAN 77 Interface
Single: CALL LFCRG (N, A, LDA, FACT, LDFACT, IPVT, RCOND)

Double: The double precision hame is DLFCRG.

ScaLAPACK Interface
Generic: CALL LFCRG (AQ, FACTO, IPVTO, RCOND [,..])

Specific: The specific interface names are S_LFCRG and D_LFCRG.
See the ScaLAPACK Usage Notes below for a description of the arguments for distributed

computing.

Description

Routine LFCRG performs an LU factorization of a real general coefficient matrix. It also estimates
the condition number of the matrix. The underlying code is based on either LINPACK , LAPACK,

94 e Chapter 1: Linear Systems IMSL MATH LIBRARY

or ScaLAPACK code depending upon which supporting libraries are used during linking. For a
detailed explanation see “Using ScaLAPACK, LAPACK, LINPACK, and EISPACK” in the
Introduction section of this manual. The LU factorization is done using scaled partial pivoting.
Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the same as if

each row were scaled to have the same co-norm. Otherwise, partial pivoting is used.

The L, condition number of the matrix A is defined to be k(A) = ||A|ls||A”|J.. Since it is expensive to
compute |JA”||;, the condition number is only estimated. The estimation algorithm is the same as
used by LINPACK and is described in a paper by Cline et al. (1979).

If the estimated condition number is greater than 1/€ (where € is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system.

LFCRG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This
can occur only if A either is singular or is very close to a singular matrix.

The LU factors are returned in a form that is compatible with routines LFIRG, LFSRG and LFDRG.
To solve systems of equations with multiple right-hand-side vectors, use LFCRG followed by either
LFIRG Or LFSRG called once for each right-hand side. The routine LEDRG can be called to compute
the determinant of the coefficient matrix after LFCRG has performed the factorization.

Let F be the matrix FacT and let p be the vector tpvT. The triangular matrix U is stored in the
upper triangle of F. The strict lower triangle of F contains the information needed to reconstruct L
using

L-'= LyaPnet ... LiPy

where Py is the identity matrix with rows k and py interchanged and Ly is the identity with Fy for

i=k+1, ..., Ninserted below the diagonal. The strict lower half of F can also be thought of as
containing the negative of the multipliers. LECRG is based on the LINPACK routine sGECO; see
Dongarra et al. (1979). sGeco uses unscaled partial pivoting.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2CRG/DL2CRG. The
reference is:

CALL L2CRG (N, A, LDA, FACT, LDFACT, IPVT, RCOND, WK)
The additional argument is

WK — Work vector of length .

2. Informational errors
Type Code
3 1 The input matrix is algorithmically singular.
4 2 The input matrix is singular.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 95

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

A0 — mxLDA by MxcoL local matrix containing the local portions of the distributed matrix
A. A contains the matrix to be factored. (Input)

FACTO — wMx1pa by mxcoL local matrix containing the local portions of the distributed
matrix FACT. FACT contains the LU factorization of the matrix a. (Output)

IPVTO — Local vector of length MmxL.DA containing the local portions of the distributed
vector IPVT. IPVT contains the pivoting information for the LU factorization.
(Output)

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, MxLDA and MxcoOL can be obtained through a call
to SCALAPACK_GETDIM (see Utilities) after a call to scarapack SETUP (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

The inverse of a 3 X 3 matrix is computed. LFCRG is called to factor the matrix and to check for
singularity or ill-conditioning. LFIRG is called to determine the columns of the inverse.

USE LFCRG_INT
USE UMACH_ INT
USE LFIRG_INT
USE WRRRN_ INT
Declare variables
PARAMETER (LDA=3, LDFACT=3, N=3)
INTEGER IPVT (N), J, NOUT
REAL A(LDA,N), AINV(LDA,N), FACT(LDFACT,N), RCOND, &
RES (N), RJ(N)
Set values for A

A(l,:) = (/ 1.0, 3.0, 3.0/)
A(2,:) = (/ 1.0, 3.0, 4.0/)
A(3,:) = (/ 1.0, 4.0, 3.0/)!
CALL LFCRG (A, FACT, IPVT, RCOND)

Print the reciprocal condition number
and the L1 condition number
CALL UMACH (2, NOUT)
WRITE (NOUT,99998) RCOND, 1.0EO0/RCOND
Set up the columns of the identity
matrix one at a time in RJ
RJ = 0.0EQ
DO 10 J=1, N
RJ(J) = 1.0
RJ is the J-th column of the identity
matrix so the following LFIRG
reference places the J-th column of
the inverse of A in the J-th column
of AINV
CALL LFIRG (A, FACT, IPVT, RJ, AINV(:,dJ), RES)

96 e Chapter 1: Linear Systems IMSL MATH LIBRARY

10

!
99998

RJ(J) = 0.0
CONTINUE
Print results
CALL WRRRN (’AINV’, AINV)

FORMAT (’ RCOND = ’,F5.3,/,’” L1l Condition number = ’,F6.3)
END

Output

RCOND < .02
L1l Condition number < 100.0

1 7
-1
3 -1

N

AINV
1 2 3

.000 -3.000 =-3.000
.000 0.000 1.000
.000 1.000 0.000

ScaLAPACK Example

The inverse of the same 3 X 3 matrix is computed as a distributed example. LFCRG is called to
factor the matrix and to check for singularity or ill-conditioning. LFIRG is called to determine the
columns of the inverse. SCALAPACK MAP and SCALAPACK UNMAP are IMSL utility routines (see
Chapter 11, “Utilities”) used to map and unmap arrays to and from the processor grid. They are
used here for brevity. DEsCINIT isa ScaLAPACK tools routine which initializes the descriptors
for the local arrays.

USE MPI SETUP INT
USE LFCRG_INT
USE UMACH INT
USE LFIRG_ INT
USE WRRRN_INT
USE SCALAPACK SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
Declare variables

INTEGER J, LDA, N, DESCA(9), DESCL(9)

INTEGER INFO, MXCOL, MXLDA, NOUT

INTEGER, ALLOCATABLE :: IPVTO (:)

REAL, ALLOCATABLE :: A(:,:), AINV(:,:), XO0(:), RJ(:)
REAL, ALLOCATABLE :: AO(:,:), FACTO(:,:), RESO(:), RJO(:)
REAL RCOND

PARAMETER (LDA=3, N=3)
Set up for MPI
MP NPROCS = MP SETUP ()
IF(MP_RANK .EQ. 0) THEN
ALLOCATE (A (LDA,N), AINV(LDA,N))

Set values for A

A(l,:) = (/ 1.0, 3.0, 3.0/)

A(2,:) = (/ 1.0, 3.0, 4.0/)

A(3,:) = (/ 1.0, 4.0, 3.0/)
ENDIF

Set up a 1D processor grid and define
its context id, MP_ICTXT

IMSL MATH LIBRARY Chapter 1: Linear Systems e 97

CALL SCALAPACK SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP ICTXT, MXLDA, INFO)
CALL DESCINIT (DESCL, N, 1, MP MB, 1, 0, 0, MP ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (AO (MXLDA,MXCOL), X0 (MXLDA),FACTO (MXLDA,MXCOL), RJ(N), &
RJO (MXLDA), RESO (MXLDA), IPVTO (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK MAP (A, DESCA, AO)
! Call the factorization routine
CALL LFCRG (AO, FACTO, IPVTO, RCOND)
! Print the reciprocal condition number
! and the L1 condition number
IF(MP_RANK .EQ. 0) THEN
CALL UMACH (2, NOUT)
WRITE (NOUT, 99998) RCOND,
ENDIF
! Set up the columns of the identity
! matrix one at a time in RJ
RJ 0.0EO0
DO 10 J=1, N
RJ (J) 1.0
CALL SCALAPACK_MAP(RJ, DESCL, RJO)

1.0E0/RCOND

RJ is the
matrix so
reference

J-th column of the identity
the following LFIRG
computes the J-th column of

the inverse of A
CALL LFIRG IPVTO, RJO, X0, RESO)
RJ (J) 0.0
CALL SCALAPACK_UNMAP(XO,
10 CONTINUE
! Print results
! Only Rank=0 has the solution,
IF(MP_RANK.EQ.O) CALL WRRRN (’"AINV’, AINV)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, AINV)
DEALLOCATE (AO, IPVTO, FACTO, RESO, RJ, RJO, XO0)
! Exit ScalLAPACK usage
CALL SCALAPACK EXIT (MP_ ICTXT)
! Shut down MPI
MP_NPROCS MP_ SETUP (‘FINAL’)
FORMAT (’ RCOND ",F5.3,/,'
END

(A0, FACTO,

DESCL, AINV(:,J))

X.

99998 L1l Condition number = ’,F6.3)

Output

RCOND < .02
L1l Condition number < 100.0

AINV
1 2 3
1 7.000 -3.000 -3.000
2 -1.000 0.000 1.000

98 e Chapter 1: Linear Systems IMSL MATH LIBRARY

3 -1.000 1.000 0.000

LFTRG

p;% EmPI

CAPABLE

FORNCE

Computes the LU factorization of a real general matrix.

Required Arguments

A — N by n matrix to be factored. (Input)

FACT — n by N matrix containing the LU factorization of the matrix 2. (Output)
If A'is not needed, a and FACT can share the same storage locations.

IPVT — Vector of length § containing the pivoting information for the LU factorization.
(Output)

Optional Arguments

N — Order of the matrix. (Input)
Default: n = size (a,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: DA = size (a,1).

LDFACT — Leading dimension of FacT exactly as specified in the dimension statement of

the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFTRG (A, FACT, IPVT [,..])

Specific: The specific interface names are s LFTRG and D_LFTRG.
FORTRAN 77 Interface

Single: CALL LFTRG (N, A, LDA, FACT, LDFACT, IPVT)

Double: The double precision name is DLFTRG.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 99

ScaLAPACK Interface

Generic: CALL LFTRG (A0, FACTO, IPVTO [,..])
Specific: The specific interface names are S LFTRG and D_LFTRG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine LFTRG performs an LU factorization of a real general coefficient matrix. The underlying
code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon which
supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK,
LAPACK, LINPACK, and EISPACK?” in the Introduction section of this manual. The LU
factorization is done using scaled partial pivoting. Scaled partial pivoting differs from partial
pivoting in that the pivoting strategy is the same as if each row were scaled to have the same norm.
Otherwise, partial pivoting is used.

The routine LFTRG fails if U, the upper triangular part of the factorization, has a zero diagonal
element. This can occur only if A is singular or very close to a singular matrix.

The LU factors are returned in a form that is compatible with routines LFIRG, LFSRG and LEDRG.
To solve systems of equations with multiple right-hand-side vectors, use LFTRG followed by either
LFIRG Or LFSRG called once for each right-hand side. The routine LEDRG can be called to compute
the determinant of the coefficient matrix after LETRG has performed the factorization. Let F be the
matrix FACT and let p be the vector 1pvT. The triangular matrix U is stored in the upper triangle of
F. The strict lower triangle of F contains the information needed to reconstruct L using

L =LnaPynt - - Li Py

where Py is the identity matrix with rows k and py interchanged and Ly is the identity with Fj, for
i=k+1, .., Ninserted below the diagonal. The strict lower half of F can also be thought of as
containing the negative of the multipliers.

Routine LFTRG is based on the LINPACK routine sGEFa. See Dongarra et al. (1979). The routine
SGEFA uses partial pivoting.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2TRG/ DL2TRG. The
reference is:

CALL L2TRG (N, A, LDA, FACT, LDFACT, IPVT, WK)
The additional argument is:
WK — Work vector of length v used for scaling.

2. Informational error

100 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Type Code

4 2 The input matrix is singular.

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

A0 — wmx1DA by mxcoL local matrix containing the local portions of the distributed matrix
A. A contains the matrix to be factored. (Input)

FACTO0 — wmxLpa by mxcolL local matrix containing the local portions of the distributed
matrix FACT. FACT contains the LU factorization of the matrix a. (Output)

IPVTO — Local vector of length MmxL.DA containing the local portions of the distributed
vector IpPVT. IPVT contains the pivoting information for the LU factorization.
(Output)

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, MxLDA and MxXCcOL can be obtained through a call
to SCALAPACK_GETDIM (see Utilities) after a call to scaLapACK SETUP (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

A linear system with multiple right-hand sides is solved. Routine LFTRG is called to factor the
coefficient matrix. The routine LFSRG is called to compute the two solutions for the two right-
hand sides. In this case, the coefficient matrix is assumed to be well-conditioned and correctly
scaled. Otherwise, it would be better to call LFCRG to perform the factorization, and LFIRG to
compute the solutions.

USE LFTRG_INT
USE LFSRG_INT
USE WRRRN_INT
Declare variables
PARAMETER (LDA=3, LDFACT=3, N=3)
INTEGER IPVT(N), J
REAL A(LDA,LDA), B(N,2), FACT(LDFACT,LDFACT), X(N,?2)

Set values for A and B
A= (1.0 3.0 3.0)

(1. 3.0 4.0)
(1.0 4.0 3.0)

o

B=(1.0 10.0)
(4.0 14.0)
(-1.0 9.0)

pata A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/
DATA B/1.0, 4.0, -1.0, 10.0, 14.0, 9.0/

CALL LFTRG (A, FACT, IPVT)
Solve for the two right-hand sides

IMSL MATH LIBRARY Chapter 1: Linear Systems e 101

DO 10 J=1, 2
CALL LFSRG (FACT, IPVT, B(:,J), X(:,J))
10 CONTINUE
! Print results
CALL WRRRN (’X’, X)
END

Output

X

1 2
1 -2.000 1.000
-2.000 -1.000
3 3.000 4.000

N

ScaLAPACK Example

A linear system with multiple right-hand sides is solved. Routine LFTRG is called to factor the
coefficient matrix. The routine LFSRG is called to compute the two solutions for the two right-
hand sides. In this case, the coefficient matrix is assumed to be well-conditioned and correctly
scaled. Otherwise, it would be better to call LFCRG to perform the factorization, and LFIRG to
compute the solutions. SCALAPACK MAP and SCALAPACK_UNMAP are IMSL utility routines (see
Chapter 11, “Utilities”) used to map and unmap arrays to and from the processor grid. They are
used here for brevity. DEsSCINIT is a ScaLAPACK tools routine which initializes the descriptors
for the local arrays.

USE MPI SETUP INT
USE LFTRG_INT
USE LFSRG_INT
USE WRRRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER J, LDA, N, DESCA(9), DESCL(9)

INTEGER INFO, MXCOL, MXLDA

INTEGER, ALLOCATABLE :: IPVTO (:)

REAL, ALLOCATABLE :: A(:,:), B(:,:), X(:,:), X0(:)
REAL, ALLOCATABLE :: AO(:,:), FACTO(:,:), BO(:)

PARAMETER (LDA=3, N=3)
! Set up for MPI
MP NPROCS = MP_ SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), B(N,2), X(N,2))

! Set values for A and B

A(l,:) = (/ 1.0, 3.0, 3.0/)
A(2,:) = (/ 1.0, 3.0, 4.0/)
A(3,:) = (/ 1.0, 4.0, 3.0/)
|
B(l,:) = (/ 1.0, 10.0/)
B(2,:) = (/ 4.0, 14.0/)
B(3,:) = (/-1.0, 9.0/)
ENDIF

Set up a 1D processor grid and define

102 e Chapter 1: Linear Systems IMSL MATH LIBRARY

! its context id, MP_ICTXT
CALL SCALAPACK SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT(DESCA, N, N, MP MB, MP NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT (DESCL, N, 1, MP MB, 1, O, 0, MP ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (AO (MXLDA,MXCOL), X0 (MXLDA),FACTO (MXLDA,MXCOL), BO(MXLDA), &
IPVTO (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK MAP (A, DESCA, AO0)
! Call the factorization routine
CALL LFTRG (A0, FACTO, IPVTO)
! Set up the columns of the B
! matrix one at a time in X0
DO 10 J=1, 2
CALL SCALAPACK MAP(B(:,3j), DESCL, BO)
! Solve for the J-th column of X
CALL LFSRG (FACTO, IPVTO, BO, XO0)
CALL SCALAPACK UNMAP (X0, DESCL, X(:,J))
10 CONTINUE
! Print results.
! Only Rank=0 has the solution, X.
IF (MP_RANK.EQ.0) CALL WRRRN (’X’, X)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, B, X)
DEALLOCATE (A0, BO, IPVTO, FACTO, XO)
! Exit ScalAPACK usage
CALL SCALAPACK_EXIT(MP_ICTXT)
! Shut down MPI
MP NPROCS = MP_SETUP(‘FINAL’)
END

Output

X

1 2
1 -2.000 1.000
2 =-2.000 -1.000
3 3.000 4.000

LFSRG

MPI

CAPABLE

Solves a real general system of linear equations given the LU factorization of the coefficient
matrix.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 103

Required Arguments

FACT — ~ by N matrix containing the LU factorization of the coefficient matrix A as output
from routine LFCRG or LETRG. (Input)

IPVT — Vector of length n containing the pivoting information for the LU factorization of A
as output from subroutine LFCRG or LFTRG. (Input).

B — Vector of length ~ containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and x can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)
Default: n = size (FACT, 2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT, 1).

IPATH — Path indicator. (Input)

IPATH = 1 means the system AX = B is solved.
IPATH = 2 means the system A'X = B is solved.

Default: 1pATH = 1.

FORTRAN 90 Interface

Generic: CALL LFSRG (FACT, IPVT, B, X [,..])
Specific: The specific interface names are S_LFSRG and D_LFSRG.
FORTRAN 77 Interface
Single: CALL LFSRG (N, FACT, LDFACT, IPVT, B, IPATH, X)
Double: The double precision hame is DLFSRG.
ScalLAPACK Interface
Generic: CALL LFSRG (FACTO, IPVTO, BO, X0 [,..])

Specific: The specific interface names are S_LFSRG and D_LFSRG.

104 e Chapter 1: Linear Systems IMSL MATH LIBRARY

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine LFSRG computes the solution of a system of linear algebraic equations having a real
general coefficient matrix. To compute the solution, the coefficient matrix must first undergo an
LU factorization. This may be done by calling either LFCRG or LFTRG. The solution to Ax=b is
found by solving the triangular systems Ly = b and Ux =y. The forward elimination step consists
of solving the system Ly = b by applying the same permutations and elimination operations to b
that were applied to the columns of A in the factorization routine. The backward substitution step
consists of solving the triangular system Ux =y for x.

LFSRG and LFIRG both solve a linear system given its LU factorization. LFIRG generally takes
more time and produces a more accurate answer than LrESRG. Each iteration of the iterative
refinement algorithm used by LFIRG calls LFsRG. The underlying code is based on either
LINPACK , LAPACK, or ScaLAPACK code depending upon which supporting libraries are used
during linking. For a detailed explanation see “Using ScaLAPACK, LAPACK, LINPACK, and
EISPACK?” in the Introduction section of this manual.

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

FACTO0 — wmxLpa by mxcorn local matrix containing the local portions of the distributed
matrix FACT as output from routine LFCRG. FACT contains the LU factorization of the
matrix A. (Input)

IPVTO — Local vector of length MxL.DA containing the local portions of the distributed
vector IpPVT. IPVT contains the pivoting information for the LU factorization as output
from subroutine LFCRG Or LFTRG/DLFTRG. (Input)

B0 — Local vector of length mxT.DA containing the local portions of the distributed vector B.
B contains the right-hand side of the linear system. (Input)

X0 — Local vector of length MmxL.Da containing the local portions of the distributed vector x.
x contains the solution to the linear system. (Output)
If B is not needed, B and x can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, MxLDA and MxcOL can be obtained through a call
to SCALAPACK_GETDIM (see Utilities) after a call to scaLapACK SETUP (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

The inverse is computed for a real general 3 X 3 matrix. The input matrix is assumed to be well-
conditioned, hence, LFTRG is used rather than LFCRG.

USE LFSRG_INT
USE LFTRG_INT

IMSL MATH LIBRARY Chapter 1: Linear Systems e 105

USE WRRRN INT
! Declare variables

PARAMETER (LDA=3, LDFACT=3, N=3)
INTEGER I, IPVT(N), J
REAL A(LDA,LDA), AINV(LDA,LDA), FACT (LDFACT,LDFACT), RJ(N)
!
! Set values for A
A(l,:) = (/ 1.0, 3.0, 3.0/)
A(2,:) = (/ 1.0, 3.0, 4.0/)
A(3,:) = (/ 1.0, 4.0, 3.0/)

CALL LFTRG (A, FACT, IPVT)
! Set up the columns of the identity
! matrix one at a time in RJ

RJ = 0.0EO
DO 10 J=1, N
RJ(J) = 1.0
! RJ is the J-th column of the identity
! matrix so the following LFSRG
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
CALL LFSRG (FACT, IPVT, RJ, AINV(:,J))
RJ(J) = 0.0

10 CONTINUE
! Print results
CALL WRRRN (’AINV’, AINV)
END

Output

AINV
1 2 3
1 7.000 -3.000 -3.000
-1.000 0.000 1.000
3 -1.000 1.000 0.000

N

ScalLAPACK Example

The inverse of the same 3 X 3 matrix is computed as a distributed example. The input matrix is
assumed to be well-conditioned, hence, LFTRG is used rather than LFCRG. LFSRG is called to
determine the columns of the inverse. SCALAPACK MAP and SCALAPACK UNMAP are IMSL utility
routines (see Chapter 11, “Utilities”) used to map and unmap arrays to and from the processor
grid. They are used here for brevity. pEscINIT is a ScaLAPACK tools routine which initializes
the descriptors for the local arrays.

USE MPI_SETUP_INT

USE LFTRG_INT

USE UMACH_INT

USE LFSRG_INT

USE WRRRN_ INT

USE SCALAPACK SUPPORT
IMPLICIT NONE

INCLUDE ‘mpif.h’

106 e Chapter 1: Linear Systems IMSL MATH LIBRARY

! Declare variables

INTEGER J, LDA, N, DESCA(9), DESCL(9)

INTEGER INFO, MXCOL, MXLDA

INTEGER, ALLOCATABLE :: IPVTO (:)

REAL, ALLOCATABLE :: A(:,:), AINV(:,:), X0(:), RJI(:)
REAL, ALLOCATABLE :: AO(:,:), FACTO(:,:), RJO(:)

PARAMETER (LDA=3, N=3)
! Set up for MPI
MP NPROCS = MPisETUP()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A (LDA,N), AINV(LDA,N))
! Set values for A

A(l,:) = (/ 1.0, 3.0, 3.0/)
A(2,:) = (/ 1.0, 3.0, 4.0/)
A(3,:) = (/ 1.0, 4.0, 3.0/)
ENDIF
! Set up a 1D processor grid and define
! its context id, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL

CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP ICTXT, MXLDA, INFO)
CALL DESCINIT (DESCL, N, 1, MP MB, 1, 0, 0, MP ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (A0 (MXLDA,MXCOL) , XO (MXLDA),FACTO (MXLDA,MXCOL), RJ(N), &
RJO (MXLDA), IPVTO (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK_MAP(A, DESCA, A0)
! Call the factorization routine
CALL LFTRG (AO, FACTO, IPVTO)
! Set up the columns of the identity
! matrix one at a time in RJ
RJ = 0.0EO
DO 10 J=1, N
RJ(J) = 1.0
CALL SCALAPACK_MAP(RJ, DESCL, RJO)
RJ is the J-th column of the identity
matrix so the following LFIRG
reference computes the J-th column of
the inverse of A
CALL LFSRG (FACTO, IPVTO, RJO, XO)
RJ(J) = 0.0
CALL SCALAPACK UNMAP (X0, DESCL, AINV(:,J))
10 CONTINUE
! Print results
! Only Rank=0 has the solution, AINV.
IF(MP_RANK.EQ.0) CALL WRRRN (’AINV’, AINV)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, AINV)
DEALLOCATE (A0, IPVTO, FACTO, RJ, RJO0, XO0)
! Exit ScalAPACK usage
CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI
MP_ NPROCS = MPisETUP(‘FINAL')
END

IMSL MATH LIBRARY Chapter 1: Linear Systems e 107

Output

AINV
1 2 3
1 7.000 -3.000 -3.000
2 -1.000 0.000 1.000
3 -1.000 1.000 0.000

LFIRG

HIGH
PE?MCE @MPI

CAPABLE

Uses iterative refinement to improve the solution of a real general system of linear equations.

Required Arguments

A — N by N matrix containing the coefficient matrix of the linear system. (Input)

FACT — ~ by N matrix containing the LU factorization of the coefficient matrix a as output
from routine LFCRG/DLFCRG Of LETRG/DLFTRG. (Input).

IPVT — Vector of length n containing the pivoting information for the LU factorization of A
as output from routine LFCRG/DLFCRG Of LETRG/DLFTRG. (Input)

B — Vector of length ~ containing the right-hand side of the linear system. (Input).
X — Vector of length n containing the solution to the linear system. (Output)

RES — Vector of length n containing the final correction at the improved solution. (Output)

Optional Arguments

N — Number of equations. (Input)
Default: N = size (a,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: Lpa = size (a,1).

LDFACT — Leading dimension of FacT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

IPATH — Path indicator. (Input)

108 e Chapter 1: Linear Systems IMSL MATH LIBRARY

1PATH = 1 means the system A » x = B s solved.
IPATH = 2 means the system ' x = B is solved.

Default: 1pATH = 1.

FORTRAN 90 Interface

Generic: CALL LFIRG (A, FACT, IPVT, B, X, RES [,..])

Specific: ~ The specific interface names are S LFIRG and D_LFIRG.

FORTRAN 77 Interface

Single: CALL LFIRG (N, A, LDA, FACT, LDFACT, IPVT, B, IPATH, X, RES)

Double: The double precision name is DLFIRG.

ScaLAPACK Interface

Generic: CALL LFIRG (AOQ, FACTO, IPVTO, BO, X0, RESO [,..])
Specific: ~ The specific interface names are S LFIRG and D_LFIRG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine LFIRG computes the solution of a system of linear algebraic equations having a real
general coefficient matrix. Iterative refinement is performed on the solution vector to improve the
accuracy. Usually almost all of the digits in the solution are accurate, even if the matrix is
somewhat ill-conditioned. The underlying code is based on either LINPACK , LAPACK, or
ScaLAPACK code depending upon which supporting libraries are used during linking. For a
detailed explanation see “Using ScaLAPACK, LAPACK, LINPACK, and EISPACK” in the
Introduction section of this manual.

To compute the solution, the coefficient matrix must first undergo an LU factorization. This may
be done by calling either LFCRG Or LFTRG.

Iterative refinement fails only if the matrix is very ill-conditioned.

Routines LFIRG and LESRG both solve a linear system given its LU factorization. LFIRG generally
takes more time and produces a more accurate answer than LESRG. Each iteration of the iterative
refinement algorithm used by LFIRG calls LFSRG.

Comments
Informational error

Type Code

IMSL MATH LIBRARY Chapter 1: Linear Systems e 109

3 2 The input matrix is too ill-conditioned for iterative refinement to be
effective.

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

A0 — wmx1Da by mxcoL local matrix containing the local portions of the distributed matrix
A. A contains the coefficient matrix of the linear system. (Input)

FACTO0 — wmxLpa by mxcoL local matrix containing the local portions of the distributed
matrix FACT as output from routine LFCRG Or LFTRG. FACT contains the LU
factorization of the matrix 2. (Input)

IPVTO — Local vector of length MxL.DA containing the local portions of the distributed
vector IpPVT. IPVT contains the pivoting information for the LU factorization as output
from subroutine LFCRG or LFTRG. (Input)

B0 — Local vector of length Mmx1z.DA containing the local portions of the distributed vector B.
B contains the right-hand side of the linear system. (Input)

X0 — Local vector of length MmxL.DaA containing the local portions of the distributed vector x.
x contains the solution to the linear system. (Output)
If B is not needed, B and x can share the same storage locations.

RESO — Local vector of length mx1.DA containing the local portions of the distributed
vector RES. RES contains the final correction at the improved solution to the linear
system. (Output)

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, mMxz.paA and MxCOL can be obtained through a call
to scALAPACK_GETDIM (see Utilities) after a call to scaLapack setup (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving
the system each of the first two times by adding 0.5 to the second element.

USE LFIRG_INT
USE LFCRG_INT
USE UMACH_INT
USE WRRRN_INT
! Declare variables
PARAMETER (LDA=3, LDFACT=3, N=3)
INTEGER IPVT (N), NOUT
REAL A (LDA,LDA), B(N), FACT(LDFACT,LDFACT), RCOND, RES(N), X(N)

Set values for A and B

A= (1.0 3.0 3.0)

110 e Chapter 1: Linear Systems IMSL MATH LIBRARY

! (1.0 3.0 4.0)
! (1.0 4.0 3.0)
!
! B=(-0.5 -1.0 1.5)
!

DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/
DATA B/-0.5, -1.0, 1.5/

CALL LFCRG (A, FACT, IPVT, RCOND)
! Print the reciprocal condition number
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0EO/RCOND
! Solve the three systems
Do 10 J=1, 3
CALL LFIRG (A, FACT, IPVT, B, X, RES)
! Print results
CALL WRRRN (’X’, X, 1, N, 1)
! Perturb B by adding 0.5 to B(2)
B(2) = B(2) + 0.5

10 CONTINUE
|
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
END

Output

RCOND < 0.02
L1l Condition number < 100.0
X
1 2 3
-5.000 2.000 -0.500

X
1 2 3
-6.500 2.000 0.000

X
1 2 3
-8.000 2.000 0.500

ScalLAPACK Example

The same set of linear systems is solved successively as a distributed example. The right-hand side
vector is perturbed after solving the system each of the first two times by adding 0.5 to the second
element. SCALAPACK MAP and SCALAPACK_ UNMAP are IMSL utility routines (see Chapter 11,
“Utilities”) used to map and unmap arrays to and from the processor grid. They are used here for
brevity. pEsCINIT isa ScaLAPACK tools routine which initializes the descriptors for the local
arrays.

USE MPI_SETUP_ INT
USE LFIRG_INT
USE UMACH_INT
USE LFCRG_INT
USE WRRRN INT
USE SCALAPACK SUPPORT

IMSL MATH LIBRARY Chapter 1: Linear Systems o 111

IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER J, LDA, N, DESCA(9), DESCL(9)

INTEGER INFO, MXCOL, MXLDA, NOUT

INTEGER, ALLOCATABLE :: IPVTO (:)

REAL, ALLOCATABLE :: A(:,:), B(:), X(:), X0(:), AINV(:,:)
REAL, ALLOCATABLE :: AO(:,:), FACTO(:,:), RESO(:), BO(:)
REAL RCOND

PARAMETER (LDA=3, N=3)
! Set up for MPI
MP NPROCS = MP SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), AINV(LDA,N), B(N), X(N))
! Set values for A and B

A(l,:) = (/ 1.0, 3.0, 3.0/)
A(2,:) = (/ 1.0, 3.0, 4.0/)
A(3,:) = (/ 1.0, 4.0, 3.0/)
|
B(:) = (/-0.5, -1.0, 1.5/)
ENDIF

! Set up a 1D processor grid and define
! its context id, MP_ICTXT
CALL SCALAPACK SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCL, N, 1, MP MB, 1, 0, 0, MP ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (AQO (MXLDA, MXCOL), X0 (MXLDA),FACTO (MXLDA,MXCOL), &
BO (MXLDA), RESO (MXLDA), IPVTO (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK MAP (A, DESCA, AO)
! Call the factorization routine
CALL LFCRG (AO, FACTO, IPVTO, RCOND)
! Print the reciprocal condition number
! and the L1 condition number
IF (MP_RANK .EQ. 0) THEN
CALL UMACH (2, NOUT)
WRITE (NOUT,99998) RCOND, 1.0E0/RCOND
ENDIF
! Solve the three systems
! one at a time in X
DO 10 J=1, 3
CALL SCALAPACK MAP (B, DESCL, BO)
CALL LFIRG (A0, FACTO, IPVTO, BO, X0, RESO)
CALL SCALAPACK UNMAP (X0, DESCL, X)
! Print results
! Only Rank=0 has the solution, X.
IF(MP_RANK.EQ.O0) CALL WRRRN ('X’, X, 1, N, 1)
IF (MP_RANK.EQ.0) B(2) = B(2) + 0.5
10 CONTINUE
IF (MP_RANK .EQ. 0) DEALLOCATE (A, AINV, B)
DEALLOCATE (AO, BO, IPVTO, FACTO, RESO, XO)

112 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Exit ScalLAPACK usage
CALL SCALAPACK EXIT (MP_ ICTXT)

Shut down MPI
MP NPROCS = MP_ SETUP (‘FINAL’)

99998 FORMAT (" RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)

END

Output

RCOND < 0.02
L1l Condition number < 100.0

X
1 2 3

-5.000 2.000 -0.500

-6.500 2.000 0.000

1 2 3

-8.000 2.000 0.500

LFDRG

Computes the determinant of a real general matrix given the LU factorization of the matrix.

Required Arguments
FACT — n~ by N matrix containing the LU factorization of the matrix a as output from routine
LFTRG/DLFTRG OF LFCRG/DLFCRG. (Input)

IPVT — Vector of length n containing the pivoting information for the LU factorization as
output from routine LFTRG/DLFTRG Of LECRG/DLFCRG. (Input).

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value pET1 is hormalized so that 1.0 < |pET1| < 10.0 or pET1 =0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = pET1 * 10PET2,

Optional Arguments

N — Order of the matrix. (Input)
Default: N = size (FACT,2).

LDFACT — Leading dimension of FacT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

IMSL MATH LIBRARY Chapter 1: Linear Systems e 113

FORTRAN 90 Interface

Generic: CALL LFDRG (FACT, IPVT, DETI1, DET2 [,..])

Specific: The specific interface names are S LFDRG and D_LFDRG.

FORTRAN 77 Interface

Single: CALL LFDRG (N, FACT, LDFACT, IPVT, DET1, DET2)
Double: The double precision name is DLFDRG.
Description

Routine LFDRG computes the determinant of a real general coefficient matrix. To compute the
determinant, the coefficient matrix must first undergo an LU factorization. This may be done by
calling either LFCRG or LETRG. The formula det A = det L det U is used to compute the
determinant. Since the determinant of a triangular matrix is the product of the diagonal elements

detLJ ::I_IQ;}J“

(The matrix U is stored in the upper triangle of FacT.) Since L is the product of triangular matrices
with unit diagonals and of permutation matrices, det L = (—1)k where k is the number of pivoting
interchanges.

Routine LFDRG is based on the LINPACK routine sGEDT; see Dongarra et al. (1979)

Example

The determinant is computed for a real general 3 X 3 matrix.

USE LFDRG_INT
USE LFTRG_INT
USE UMACH_INT
! Declare variables
PARAMETER (LDA=3, LDFACT=3, N=3)

INTEGER IPVT (N), NOUT
REAL A(LDA,LDA), DET1, DET2, FACT (LDFACT,LDFACT)
!
! Set values for A
! A = (33.0 16.0 72.0)
! (-24.0 -10.0 -57.0)
! (18.0 -11.0 7.0)
!

DATA A/33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/

CALL LFTRG (A, FACT, IPVT)

! Compute the determinant
CALL LFDRG (FACT, IPVT, DET1, DET2)

! Print the results
CALL UMACH (2, NOUT)

114 e Chapter 1: Linear Systems IMSL MATH LIBRARY

WRITE (NOUT,99999) DET1, DET2
|
99999 FORMAT ('’ The determinant of A is ’, F6.3, 7 * 10**’, F2.0)

END

Output

The determinant of A is -4.761 * 10**3.

LINRG

PE:%CE @M Pl

CAPABLE

Computes the inverse of a real general matrix.

Required Arguments

A — N by N matrix containing the matrix to be inverted. (Input)

AINV — N by N matrix containing the inverse of 2. (Output)
If & is not needed, A and A1NV can share the same storage locations.

Optional Arguments

N — Order of the matrix a. (Input)
Default: n = size (3,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: DA = size (a,1).

LDAINV — Leading dimension of a1nv exactly as specified in the dimension statement of

the calling program. (Input)
Default: LDAINV = size (AINV,1).

FORTRAN 90 Interface
Generic: CALL LINRG (A, AINV [,..])

Specific: ~ The specific interface names are S_LINRG and D_LINRG.

FORTRAN 77 Interface

Single: CALL LINRG (N, A, LDA, AINV, LDAINV)

Double: The double precision name is DLINRG.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 115

ScaLAPACK Interface

Generic: CALL LINRG (A0, AINVO [,..])
Specific: ~ The specific interface names are S LINRG and D_LINRG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine LINRG computes the inverse of a real general matrix. The underlying code is based on
either LINPACK , LAPACK, or ScaLAPACK code depending upon which supporting libraries
are used during linking. For a detailed explanation see “Using ScaLAPACK, LAPACK,
LINPACK, and EISPACK?” in the Introduction section of this manual. LINRG first uses the routine
LFCRG to compute an LU factorization of the coefficient matrix and to estimate the condition
number of the matrix. Routine LFCRG computes U and the information needed to compute L™.
LINRT is then used to compute U™, Finally, A" is computed using A™* = U™L™.

The routine LINRG fails if U, the upper triangular part of the factorization, has a zero diagonal
element or if the iterative refinement algorithm fails to converge. This error occurs only if A is
singular or very close to a singular matrix.

If the estimated condition number is greater than 1/ (where € is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in A™.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2NRG/DL2NRG. The
reference is:

CALL L2NRG (N, A, LDA, AINV, LDAINV, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length n+ n(v — 1)/2.

IWK — Integer work vector of length .

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The inverse might not be
accurate.
4 2 The input matrix is singular.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

116 e Chapter 1: Linear Systems IMSL MATH LIBRARY

N

A0 — wmx1Da by mxcoL local matrix containing the local portions of the distributed matrix
A. A contains the matrix to be inverted. (Input)

AINVO — wmxLpa by mxcoL local matrix containing the local portions of the distributed
matrix AINV. AINV contains the inverse of the matrix a. (Output)
If & is not needed, A and A1nVv can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, MxzpaA and MxCOL can be obtained through a call
to SCALAPACK GETDIM (see Utilities) after a call to scaLapack SETUP (See Utilities) has been
made. See the ScaLAPACK Example below.

Example

The inverse is computed for a real general 3 X 3 matrix.

USE LINRG_INT
USE WRRRN_ INT
Declare variables

PARAMETER (LDA=3, LDAINV=3)
INTEGER I, J, NOUT
REAL A (LDA,LDA), AINV(LDAINV,LDAINV)
Set values for A
A= (1.0 3.0 3.0)
(1.0 3.0 4.0)
(1.0 4.0 3.0)

DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/

CALL LINRG (A, AINV)

Print results
CALL WRRRN (’"AINV’, AINV)
END

Output

AINV
1 2 3
7.000 -3.000 -3.000
-1.000 0.000 1.000
-1.000 1.000 0.000

ScaLAPACK Example

The inverse of the same 3 X 3 matrix is computed as a distributed example. SCALAPACK_MAP and
SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Utilities”) used to map and unmap
arrays to and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK
tools routine which initializes the descriptors for the local arrays.

USE MPI_SETUP_INT
USE LINRG_INT
USE WRRRN INT

IMSL MATH LIBRARY Chapter 1: Linear Systems o 117

1
2
3

USE SCALAPACK SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
Declare variables

INTEGER LDA, LDAINV, N, DESCA(9)

INTEGER INFO, MXCOL, MXLDA

REAL, ALLOCATABLE :: A(:,:), AINV(:,:)
REAL, ALLOCATABLE :: AO(:,:), AINVO(:,:)

PARAMETER (LDA=3, LDAINV=3, N=3)
Set up for MPI
MP NPROCS = MPisETUP()
IF(MP_RANK .EQ. 0) THEN
ALLOCATE (A (LDA,N), AINV(LDAINV,N))
Set values for A

A(l,:) = (/ 1.0, 3.0, 3.0/)
A(2,:) = (/ 1.0, 3.0, 4.0/)
A(3,:) = (/ 1.0, 4.0, 3.0/)
ENDIF
Set up a 1D processor grid and define
its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
Get the array descriptor entities MXLDA,
and MXCOL

CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP_ICTXT, MXLDA, INFO)
Allocate space for the local arrays
ALLOCATE (A0 (MXLDA, MXCOL), AINVO (MXLDA,MXCOL))
Map input arrays to the processor grid
CALL SCALAPACK MAP (A, DESCA, AO)
Get the inverse
CALL LINRG (A0, AINVO)
Unmap the results from the distributed
arrays back to a non-distributed array.
After the unmap, only Rank=0 has the full
array.
CALL SCALAPACK UNMAP (AINVO, DESCA, AINV)
Print results
Only Rank=0 has the solution, AINV.
IF (MP_RANK.EQ.0) CALL WRRRN (’/AINV’, AINV)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, AINV)
DEALLOCATE (A0, AINVO)
Exit ScalAPACK usage
CALL SCALAPACK EXIT (MP_ ICTXT)
Shut down MPI
MP NPROCS = MP SETUP (‘FINAL’)
END

Output

AINV
1 2 3

7.000 -3.000 -3.000
-1.000 0.000 1.000
-1.000 1.000 0.000

118 e Chapter 1: Linear Systems IMSL MATH LIBRARY

LSACG

HIGH
PE;%%CE ll__%MPI

CAPABLE

Solves a complex general system of linear equations with iterative refinement.

Required Arguments

A — Complex n by N matrix containing the coefficients of the linear system. (Input)
B — Complex vector of length N containing the right-hand side of the linear system. (Input)
X — Complex vector of length ~ containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)
Default: § = size (2,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: DA = size (a,1).

IPATH — Path indicator. (Input)
1PATH = 1 means the system ax = Bis solved.
IPATH = 2 means the system "% = Bis solved
Default: 1pATH = 1.

FORTRAN 90 Interface

Generic: CALL LSACG (A, B, X [,..])

Specific: ~ The specific interface names are S LSACG and D_LSACG.
FORTRAN 77 Interface

Single: CALL LSACG (N, A, LDA, B, IPATH, X)

Double: The double precision name is DLSACG.
ScalLAPACK Interface

Generic: CALL LSACG (A0, BO, X0 [,..1)

Specific: ~ The specific interface names are S_LSACG and D_LSACG.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 119

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine LsAcG solves a system of linear algebraic equations with a complex general coefficient
matrix. The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code
depending upon which supporting libraries are used during linking. For a detailed explanation see
“Using ScaLAPACK, LAPACK, LINPACK, and EISPACK” in the Introduction section of this
manual. LsAcG first uses the routine LFccG to compute an LU factorization of the coefficient
matrix and to estimate the condition number of the matrix. The solution of the linear system is
then found using the iterative refinement routine LF1cCG.

LsacG fails if U, the upper triangular part of the factorization, has a zero diagonal element or if the
iterative refinement algorithm fails to converge. These errors occur only if A is singular or very
close to a singular matrix.

If the estimated condition number is greater than 1/€ (where € is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system. LSACG solves the
problem that is represented in the computer; however, this problem may differ from the problem
whose solution is desired.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2acG/DL2ACG. The
reference is:

CALL L2ACG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK)
The additional arguments are as follows:

FACT — Complex work vector of length N*containing the LU factorization
of a on output.

IPVT — Integer work vector of length N containing the pivoting information
for the LU factorization of a on output.

WK — Complex work vector of length .

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.
4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

120 e Chapter 1: Linear Systems IMSL MATH LIBRARY

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2AcG the leading dimension of FACT is increased by
1vAL(3) when N is a multiple of 1vaLn(4). The values 1varL(3) and 1vaL(4) are
temporarily replaced by 1varn(1) and 1vaL(2); respectively, in LSACG.
Additional memory allocation for FacT and option value restoration are done
automatically in Lsaca. Users directly calling L2acG can allocate additional
space for rFacT and set 1vaL(3) and 1vaL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use L.sacG or L.2acG. Default values for the option are
1vaLn(*)=1,16,0, 1.

17 This option has two values that determine if the Lycondition number is to be
computed. Routine LsacG temporarily replaces 1vaL(2) by tvar(l). The
routine .2ccG computes the condition number if 1vaL(2) = 2. Otherwise L.2ccG
skips this computation. LSACG restores the option. Default values for the option
are
IVAL(*) =1, 2.

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

A0 — wmx1DA by mMxcoL complex local matrix containing the local portions of the
distributed matrix A. a contains the coefficients of the linear system. (Input)

B0 — Complex local vector of length MxL.DA containing the local portions of the distributed
vector B. B contains the right-hand side of the linear system. (Input)

X0 — Complex local vector of length Mmxz.DA containing the local portions of the distributed
vector x. X contains the solution to the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, mMxz.paA and MxCOL can be obtained through a call
to sSCALAPACK_GETDIM (see Utilities) after a call to scarapack seTup (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

A system of three linear equations is solved. The coefficient matrix has complex general form and
the right-hand-side vector b has three elements.

USE LSACG_INT
USE WRCRN_INT
! Declare variables
PARAMETER (LDA=3, N=3)
COMPLEX A(LDA,LDA), B(N), X(N)
Set values for A and B

A= (3.0-2.01i 2.0+4.01 0.0-3.01)
(1.0+1.01i 2.0-6.01 1.0+2.01)
(4.0+0.01i -5.0+1.01 3.0-2.01)

IMSL MATH LIBRARY Chapter 1: Linear Systems o 121

! B = (10.0+5.01
|
DATA A/(3.0,-2.0), (1.0,1.0), (4.0,0.0), (2.0,4.0),
(-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/
DATA B/(10.0,5.0), (6.0,-7.0), (-1.0,2.0)/
! Solve AX = B (IPATH =
CALL LSACG (A, B, X)
! Print results
CALL WRCRN ('X’', X, 1, N, 1)
END
Output
X
1 2 3
(1.000,-1.000) (2.000, 1.000) (0.000, 3.000)

ScaLAPACK Example

1)

6.0-7.01 -1.0+2.01)

(2.0,-6.0), &

The same system of three linear equations is solved as a distributed computing example. The
coefficient matrix has complex general form and the right-hand-side vector b has three elements.
SCALAPACK MAP and SCALAPACK UNMAP are IMSL utility routines (see Chapter 11, “Utilities™)
used to map and unmap arrays to and from the processor grid. They are used here for brevity.
DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local arrays.

USE MPI_SETUP INT
USE LSACG_INT
USE WRCRN_INT
USE SCALAPACK SUPPORT
IMPLICIT NONE

INCLUDE ‘mpif.h’
! Declare variables
INTEGER LDA, N, DESCA(9), DESCX(9)
INTEGER INFO, MXCOL, MXLDA
COMPLEX, ALLOCATABLE A(:,:), B(:), X(:)
COMPLEX, ALLOCATABLE AO(:,:), BO(:), XO0(:)
PARAMETER (LDA=3, N=3)
! Set up for MPI
MP NPROCS = MP_SETUP()
IF(MP_RANK .EQ. 0) THEN
ALLOCATE (A (LDA,N), B(N), X(N))
! Set values for A and B
A(l,:) = (/ (3.0, =-2.0), (2.0, 4.0), (0.0, =3.0)/)
A(2,:) = (/ (1.0, 1.0), (2.0, -6.0), (1.0, 2.0)/)
A(3,:) = (/ (4.0, 0.0), (=5.0, 1.0), (3.0, =-2.0)/)
|
B = (/(10.0, 5.0), (6.0, =-7.0), (-1.0, 2.0)/)
ENDIF
! Set up a 1D processor grid and define
! its context ID, MP_ ICTXT
CALL SCALAPACK SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,

CALL SCALAPACK GETDIM(N, N,

and MXCOL
MP MB, MP NB, MXLDA, MXCOL)

122 e Chapter 1: Linear Systems

IMSL MATH LIBRARY

! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCX, N, 1, MP MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (A0 (MXLDA,MXCOL), BO (MXLDA), X0 (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK MAP (A, DESCA, AO0)
CALL SCALAPACK MAP (B, DESCX, BO)
! Solve the system of equations
CALL LSACG (A0, BO, XO0)
Unmap the results from the distributed
arrays back to a non-distributed array.
After the unmap, only Rank=0 has the full
array.
CALL SCALAPACK UNMAP (X0, DESCX, X)
! Print results
! Only Rank=0 has the solution, X.
IF(MP_RANK .EQ. 0)CALL WRCRN (X', X, 1, N, 1)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, B, X)
DEALLOCATE (A0, BO, XO0)
! Exit ScalAPACK usage
CALL SCALAPACK EXIT (MP_ ICTXT)
! Shut down MPI
MP NPROCS = MP_ SETUP (‘FINAL’)

END
Output
X
1 2 3
(1.000,-1.000) (2.000, 1.000) (0.000, 3.000)

LSLCG

HEIGH
PE%FMCE gﬁ‘M Pl

CAPABLE

Solves a complex general system of linear equations without iterative refinement.

Required Arguments

A — Complex n by N matrix containing the coefficients of the linear system. (Input)
B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length n containing the solution to the linear system. (Output)
If B is not needed, B and x can share the same storage locations)

IMSL MATH LIBRARY Chapter 1: Linear Systems e 123

Optional Arguments
N — Number of equations. (Input)
Default; n = size (a,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: LD = size (a,1).

IPATH — Path indicator. (Input)
1PATH = 1 means the system ax = Bis solved.
IPATH = 2 means the system 2A"x = Bis solved
Default: TpaTH = 1.

FORTRAN 90 Interface

Generic: CALL LSLCG (A,B,X [,..])

Specific: ~ The specific interface names are S LSLcG and D_LSLCG.

FORTRAN 77 Interface

Single: CALL LSLCG (N, A, LDA, B, IPATH, X)

Double: The double precision name is DLSLCG.

ScaLAPACK Interface

Generic: CALL LSLCG (A0, B0, X0 [,..])
Specific: The specific interface names are S_LsLcG and D_LSLCG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine LsLcG solves a system of linear algebraic equations with a complex general coefficient
matrix. The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code
depending upon which supporting libraries are used during linking. For a detailed explanation see
“Using ScaLAPACK, LAPACK, LINPACK, and EISPACK” in the Introduction section of this
manual. L.sL.cG first uses the routine LFccG to compute an LU factorization of the coefficient
matrix and to estimate the condition number of the matrix. The solution of the linear system is
then found using LFscG.

LsLcG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This
occurs only if A either is a singular matrix or is very close to a singular matrix.

124 e Chapter 1: Linear Systems IMSL MATH LIBRARY

If the estimated condition number is greater than 1/ (where € is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. If the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that

LSACG be used.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LcG/DL2LCG. The
reference is:

CALL L2LCG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK)

The additional arguments are as follows:

FACT — ~ X N work array containing the LU factorization of A on output. If
A is not needed, A and FACT can share the same storage locations.

IPVT — Integer work vector of length N containing the pivoting information
for the LU factorization of A on output.

WK — Complex work vector of length .

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.
4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

16

17

This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L.21.cG the leading dimension of FACT is increased by
1vaL(3) when N is a multiple of T1vaL(4). The values 1vaL(3) and 1vaL(4) are
temporarily replaced by 1var(1) and Tvar(2); respectively, in LSL.CG.
Additional memory allocation for FacT and option value restoration are done
automatically in nst.cG. Users directly calling 1.21.cG can allocate additional
space for FacT and set 1varL(3) and 1varL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LsL.cG or L2LcG. Default values for the option are TvaL(*)
=1,16,0, 1.

This option has two values that determine if the L; condition number is to be
computed. Routine LsL.cG temporarily replaces 1vaL(2) by 1var(l). The
routine L2ccG computes the condition number if TvaL(2) = 2. Otherwise L2cCG
skips this computation. LSLCG restores the option. Default values for the option
are Tvar(*) =1, 2.

IMSL MATH LIBRARY

Chapter 1: Linear Systems e 125

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — mxLDA by mMxcoL complex local matrix containing the local portions of the
distributed matrix a. A contains the coefficients of the linear system. (Input)

B0 — Complex local vector of length MxLDA containing the local portions of the distributed
vector B. B contains the right-hand side of the linear system. (Input)

X0 — Complex local vector of length mxL.DA containing the local portions of the distributed
vector X. X contains the solution to the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the

routine. In the argument descriptions above, MxLDA and MxcoOL can be obtained through a call
to SCALAPACK_GETDIM (see Utilities) after a call to scarapack SETUP (See Utilities) has been

made. See the ScaLAPACK Example below.

Example

A system of three linear equations is solved. The coefficient matrix has complex general form and

the right-hand-side vector b has three elements.

USE LSLCG_INT
USE WRCRN_INT
! Declare variables
PARAMETER (LDA=3, N=3)
COMPLEX A (LDA, LDA),

B(N), X(N)

Set values for A and B

A= (3.0-2.01 2.0+4.01

(1.0+1.01 2.
4.0+0.0i -5.0+1.01

B = (10.0+5.01 6.0-7.01

DATA A/(3.0,-2.0), (1.0,1.0), (4.0,0.0), (2.0,4.0),
(-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/

DATA B/(10.0,5.0), (6.0,-7.0), (-1.0,2.0)/

! Solve AX = B (IPATH
CALL LSLCG (A, B, X)

! Print results
CALL WRCRN (’X’, X, 1, N, 1)
END

126 e Chapter 1: Linear Systems

IMSL MATH LIBRARY

Output

X
1
1.000,-1.000)

2
1.000)

3

(3.000)

(2.000,

(0.000,

ScaLAPACK Example

The same system of three linear equations is solved as a distributed computing example. The
coefficient matrix has complex general form and the right-hand-side vector b has three elements.
SCALAPACK MAP and SCALAPACK UNMAP are IMSL utility routines (see Chapter 11, “Utilities™)
used to map and unmap arrays to and from the processor grid. They are used here for brevity.
DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local arrays.

USE MPI_ SETUP INT
USE LSLCG_INT

USE WRCRN_INT

USE SCALAPACK SUPPORT
IMPLICIT NONE

INCLUDE ‘mpif.h’

! Declare variables
INTEGER LDA, N, DESCA(9), DESCX(9)
INTEGER INFO, MXCOL, MXLDA

COMPLEX, ALLOCATABLE A(:,:), B(:), X(:)
COMPLEX, ALLOCATABLE AO(:,:), BO(:), XO(:)
PARAMETER (LDA=3, N=3)
! Set up for MPI
MP NPROCS = MP_SETUP()
IF(MP_RANK .EQ. 0) THEN
ALLOCATE (A (LDA,N), B(N), X(N))
! Set values for A and B
A(l,:) = (/ (3.0, -2.0), (2.0, 4.0), (0.0, =3.0)/)
A(2,:) = (/ (1.0, 1.0), (2.0, -6.0), (1.0, 2.0)/)
A(3,:) = (/ (4.0, 0.0), (=5.0, 1.0), (3.0, =-2.0)/)
|
B = (/(10.0, 5.0), (6.0, =-7.0), (-1.0, 2.0)/)
ENDIF
! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,

! and MXCOL
CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)

! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCX, N, 1, MP MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays
ALLOCATE (AO (MXLDA,MXCOL), BO (MXLDA), X0 (MXLDA))

! Map input arrays to the processor grid
CALL SCALAPACK MAP (A, DESCA, AO)
CALL SCALAPACK_MAP(B, DESCX, BO)

! Solve the system of equations
CALL LSLCG (A0, BO, XO0)

! Unmap the results from the distributed

! arrays back to a non-distributed array.

! After the unmap, only Rank=0 has the full

IMSL MATH LIBRARY Chapter 1: Linear Systems e 127

! array.
CALL SCALAPACK UNMAP (X0, DESCX, X)

! Print results.

! Only Rank=0 has the solution, X.
IF(MP_RANK .EQ. 0)CALL WRCRN ('X’, X, 1, N, 1)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, B, X)
DEALLOCATE (A0, BO, XO)

! Exit ScalAPACK usage
CALL SCALAPACK EXIT (MP_ ICTXT)

! Shut down MPI
MP NPROCS = MP_ SETUP (‘FINAL’)

END
Output
X
1 2 3
(1.000,-1.000) (2.000, 1.000) (0.000, 3.000)

LFCCG

HIGH
PE‘;%&MCE @MPI

CAPABLE

Computes the LU factorization of a complex general matrix and estimate its L; condition number.

Required Arguments

A — Complex N by N matrix to be factored. (Input)

FACT — Complex N X N matrix containing the LU factorization of the matrix 2 (Output)
If & is not needed, A and FACT can share the same storage locations

IPVT — Vector of length § containing the pivoting information for the LU factorization.
(Output)

RCOND — Scalar containing an estimate of the reciprocal of the L, condition number of a.
(Output)

Optional Arguments

N — Order of the matrix. (Input)
Default: n = size (a,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: Lpa = size (3,1).

128 e Chapter 1: Linear Systems IMSL MATH LIBRARY

LDFACT — Leading dimension of FacT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LpFaCT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFCCG (A, FACT, IPVT, RCOND [,..])

Specific: ~ The specific interface names are s_LFccG and D_LFCCG.

FORTRAN 77 Interface

Single: CALL LFCCG (N, A, LDA, FACT, LDFACT, IPVT, RCOND)

Double: The double precision name is DLFCCG.

ScaLAPACK Interface

Generic: CALL LFCCG (AQ, FACTO, IPVTO, RCOND [,..])
Specific: ~ The specific interface names are S LFccG and D_LFCCG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine Lrcce performs an LU factorization of a complex general coefficient matrix. It also
estimates the condition number of the matrix. The underlying code is based on either LINPACK,
LAPACK, or ScaLAPACK code depending upon which supporting libraries are used during
linking. For a detailed explanation see “Using ScaLAPACK, LAPACK, LINPACK, and
EISPACK?” in the Introduction section of this manual. The LU factorization is done using scaled
partial pivoting. Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is
the same as if each row were scaled to have the same co-norm.

The L, condition number of the matrix A is defined to be k(A) = ||A|l1||A™Y|1. Since it is expensive to
compute ||A™||;, the condition number is only estimated. The estimation algorithm is the same as
used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/& (where € is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system.

Lrcca fails if U, the upper triangular part of the factorization, has a zero diagonal element. This
can occur only if A either is singular or is very close to a singular matrix.

The LU factors are returned in a form that is compatible with routines LF1cG, LFSCG and LEDCG.
To solve systems of equations with multiple right-hand-side vectors, use L.rccc followed by either
LFICG or LFSCG called once for each right-hand side. The routine LEDCG can be called to compute
the determinant of the coefficient matrix after Lrccc has performed the factorization.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 129

Let F be the matrix FacT and let p be the vector 1pvT. The triangular matrix U is stored in the
upper triangle of F. The strict lower triangle of F contains the information needed to reconstruct L
using

L11: LN_]_PN_J_ . I—l Pl

where Py is the identity matrix with rows k and py interchanged and Ly is the identity with Fjy for i
=k+1, .., ~inserted below the diagonal. The strict lower half of F can also be thought of as
containing the negative of the multipliers.

Comments

1. Workspace may be explicitly provided, if desired, by use of r.2ccG/pL2cca. The
reference is:

CALL L2CCG (N, A, LDA, FACT, LDFACT, IPVT, RCOND, WK)
The additional argument is:

WK — Complex work vector of length .

2. Informational errors
Type Code
3 1 The input matrix is algorithmically singular.
4 2 The input matrix is singular.

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

A0 — wmx1DA by mxcor complex local matrix containing the local portions of the
distributed matrix a. A contains the matrix to be factored. (Input)

FACTO — mxzpa by mxcor complex local matrix containing the local portions of the
distributed matrix FacT. FACT contains the LU factorization of the matrix 2. (Output)

IPVTO — Local vector of length MxL.DA containing the local portions of the distributed
vector IpPVT. IPVT contains the pivoting information for the LU factorization.
(Output)

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, MxLDA and MXCOL can be obtained through a call
to SCALAPACK_GETDIM (see Utilities) after a call to scaLapack SETUP (see Utilities) has been
made. See the ScaLAPACK Example below.

130 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Example

The inverse of a 3 X 3 matrix is computed. LFcca is called to factor the matrix and to check for
singularity or ill-conditioning. Lr1cG is called to determine the columns of the inverse.

USE IMSL LIBRARIES

! Declare variables
PARAMETER (LDA=3, LDFACT=3, N=3)

INTEGER IPVT (N), NOUT

REAL RCOND, THIRD

COMPLEX A (LDA,N), AINV(LDA,N), RJ(N), FACT(LDFACT,N), RES(N)
! Declare functions

COMPLEX CMPLX

Set values for A

A= (1.0+1.01i 2.0+3.01 3.0+3.01)
(2.0+1.0i 5.0+3.0i 7.0+4.01)
(-2.0+1.01 -4.0+4.01 -5.0+3.01)

DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),¢&
(-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/

! Scale A by dividing by three
THIRD = 1.0/3.0
DO 10 1I=1, N
CALL CSSCAL (N, THIRD, A(:,I), 1)
10 CONTINUE
! Factor A
CALL LFCCG (A, FACT, IPVT, RCOND)
! Print the L1 condition number
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
! Set up the columns of the identity
! matrix one at a time in RJ
CALL CSET (N, (0.0,0.0), RJ, 1)
DO 20 J=1, N

RJ(J) = CMPLX(1.0,0.0)
! RJ is the J-th column of the identity
! matrix so the following LFIRG
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
CALL LFICG (A, FACT, IPVT, RJ, AINV(:,dJ), RES)
RJ(J) = CMPLX(0.0,0.0)

20 CONTINUE
! Print results
CALL WRCRN (’AINV’, AINV)

99999 FORMAT (’ RCOND = ',F5.3,/,’ Ll Condition number = ’,F6.3)
END

Output

RCOND < .02
L1 Condition number < 100.0

IMSL MATH LIBRARY Chapter 1: Linear Systems e 131

AINV

1 2
1 (6.400,-2.800) (-3.800, 2.600)
2 (-1.600,-1.800) (0.200, 0.600) (
3 (-0.600, 2.200) (1.200,-1.400) (

ScalLAPACK Example

(_

3
2.600, 1.200)
0.400,-0.800)
0.400, 0.200)

The inverse of the same 3 X 3 matrix is computed as a distributed example. Lrcca is called to
factor the matrix and to check for singularity or ill-conditioning. L.F1cG is called to determine the
columns of the inverse. scALAPACK MAP and SCALAPACK UNMAP are IMSL utility routines (see
Chapter 11, “Utilities”) used to map and unmap arrays to and from the processor grid. They are
used here for brevity. pEscINIT isa ScaLAPACK tools routine which initializes the descriptors

for the local arrays.

USE MPI SETUP_ INT
USE LFCCG_INT
USE UMACH_ INT
USE LFICG_INT
USE WRCRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables
INTEGER J, LDA, N, DESCA(9), DESCL(9)
INTEGER INFO, MXCOL, MXLDA, NOUT
INTEGER, ALLOCATABLE IPVTO(:)
COMPLEX, ALLOCATABLE A(:,:), AINV(:,:), XO0(:), RJ(:)
COMPLEX, ALLOCATABLE AO(:,:), FACTO(:,:), RESO(:), RJO(:)
REAL RCOND, THIRD
PARAMETER (LDA=3, N=3)
! Set up for MPI
MP NPROCS = MP_ SETUP ()
IF(MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), AINV(LDA,N))
! Set values for A
A(l,:) = (/ (1.0, 1.0), (2.0, 3.0), (3.0, 3.0)/)
A(2,:) (/ (2.0, 1.0), (5.0, 3.0), (7.0, 4.0)/)
A(3,:) = (/ (-2.0, 1.0), (-4.0, 4.0), (=5.0, 3.0)/)
! Scale A by dividing by three
THIRD = 1.0/3.0
A = A * THIRD
ENDIF
! Set up a 1D processor grid and define
! its context id, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,

! and
CALL
! Set
CALL

CALL DESCINIT (DESCL, N,

DESCINIT (DESCA, N, N, MP MB,
1, MP_MB,

MXCOL

SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)

up the array descriptors
MP NB, 0, 0, MP_ICTXT, MXLDA, INFO)
1, 0, 0, MP_ICTXT, MXLDA, INFO)

132 e Chapter 1: Linear Systems

IMSL MATH LIBRARY

ALLOCATE (A0 (MXLDA, MXCOL) ,
RJO (MXLDA),

Allocate space for the local arrays
X0 (MXLDA) , FACTO (MXLDA,MXCOL), RJ(N), &
RESO (MXLDA), IPVTO (MXLDA))
Map input array to the processor grid

CALL SCALAPACK MAP (A, DESCA, AO0)

CALL LFCCG

IF (MP RANK .EQ.

Factor A
(A0, FACTO0, IPVTO, RCOND)
Print the reciprocal condition number
and the L1 condition number
0) THEN

CALL UMACH (2, NOUT)

WRITE
ENDIF

RJ = (0.0
DO 10 J=
RJ (J)

I4
1,

(NOUT, 99998) RCOND, 1.0E0/RCOND
Set up the columns of the identity
matrix one at a time in RJ
0.0)
N
(1.0, 0.0)

CALL SCALAPACK MAP(RJ, DESCL, RJO)

RJ is the J-th column of the identity

!
! matrix so the following LFICG
! reference computes the J-th column of
! the inverse of A
CALL LFICG (AO, FACTO, IPVTO, RJO, X0, RESO)
RJ(J) = (0.0, 0.0)
CALL SCALAPACK_UNMAP(XO, DESCL, AINV(:,d))
10 CONTINUE
! Print results
! Only Rank=0 has the solution, AINV.
IF (MP_RANK.EQ.0) CALL WRCRN (’AINV’, AINV)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, AINV)
DEALLOCATE (A0, FACTO, IPVTO, RJ, RJO, RESO, X0)
! Exit ScalAPACK usage
CALL SCALAPACK_EXIT(MP_ICTXT)
! Shut down MPI
MP NPROCS = MP_SETUP(‘FINAL’)
99998 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
END
Output
RCOND < .02

L1l Condition number < 100.0

AINV
1 2 3
1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)
2 (-1.600,-1.800) (0.200, 0.600) (0.400,-0.800)
3 (-0.600, 2.200) (1.200,-1.400) (0.400, 0.200)

IMSL MATH LIBRARY

Chapter 1: Linear Systems o 133

LFTCG

HIGH
PE;%%CE ll__%MPI

CAPABLE

Computes the LU factorization of a complex general matrix.

Required Arguments

A — Complex n by N matrix to be factored. (Input)

FACT — Complex N X N matrix containing the LU factorization of the matrix a. (Output)
If & is not needed, A and FACT can share the same storage locations.

IPVT — Vector of length ~ containing the pivoting information for the LU factorization.
(Output)

Optional Arguments

N — Order of the matrix. (Input)
Default: v = size (2,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: DA = size (a,1).

LDFACT — Leading dimension of FacT exactly as specified in the dimension statement of

the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFTCG (A, FACT, IPVT [,..])

Specific: ~ The specific interface names are S LFTCG and D_LFTCG.
FORTRAN 77 Interface

Single: CALL LFTCG (N, A, LDA, FACT, LDFACT, IPVT)

Double: The double precision name is DLFTCG.

134 e Chapter 1: Linear Systems IMSL MATH LIBRARY

ScaLAPACK Interface

Generic: CALL LFTCG (AO, FACTO, IPVTO [,..])
Specific: ~ The specific interface names are s LFTCG and D_LFTCG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine LrTCG performs an LU factorization of a complex general coefficient matrix. The LU
factorization is done using scaled partial pivoting. Scaled partial pivoting differs from partial
pivoting in that the pivoting strategy is the same as if each row were scaled to have the same
o0 —norm,

LrTCG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This
can occur only if A either is singular or is very close to a singular matrix.

The LU factors are returned in a form that is compatible with routines LF1CG, LFSCG and LEDCG.
To solve systems of equations with multiple right-hand-side vectors, use LrTcG followed by either
LFICG or LFSCG called once for each right-hand side. The routine LEDCG can be called to compute
the determinant of the coefficient matrix after Lrccc has performed the factorization.

Let F be the matrix FacT and let p be the vector 1pvT. The triangular matrix U is stored in the
upper triangle of F. The strict lower triangle of F contains the information needed to reconstruct L.
using

L= LN-lPN-l L1 Pl

where Py is the identity matrix with rows k and Py interchanged and Ly is the identity with F, for i
=k +1, ..., Ninserted below the diagonal. The strict lower half of F can also be thought of as
containing the negative of the multipliers.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending
upon which supporting libraries are used during linking. For a detailed explanation see “Using
ScaLAPACK, LAPACK, LINPACK, and EISPACK” in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2TcG/DL2TCG. The
reference is:

CALL L2TCG (N, A, LDA, FACT, LDFACT, IPVT, WK)
The additional argument is:
WK — Complex work vector of length n.

2. Informational error

Type Code

IMSL MATH LIBRARY Chapter 1: Linear Systems e 135

4 2 The input matrix is singular.

ScaL APACK Usage Notes
The arguments which differ from the standard version of this routine are:

A0 — MxXLDA by MxCOL complex local matrix containing the local portions of the
distributed matrix A. A contains the matrix to be factored. (Input)

FACTO0 — MxLDA by MxXCOL complex local matrix containing the local portions of the
distributed matrix FACT. FACT contains the LU factorization of the matrix 2. (Output)
If & is not needed, A and FACT can share the same storage locations.

IPVTO — Local vector of length mxz.DA containing the local portions of the distributed
vector IpPVT. IPVT contains the pivoting information for the LU factorization.
(Output)

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, mMxzLpaA and MxCOL can be obtained through a call
to SCALAPACK_GETDIM (see Utilities) after a call to scaLapack setup (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

A linear system with multiple right-hand sides is solved. LrTcG is called to factor the coefficient
matriX. LFSCG is called to compute the two solutions for the two right-hand sides. In this case the
coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be
better to call LrccG to perform the factorization, and LFICG to compute the solutions.

USE LFTCG_INT
USE LFSCG_INT
USE WRCRN_INT
! Declare variables
PARAMETER (LDA=3, LDFACT=3, N=3)

INTEGER IPVT (N)

COMPLEX A(LDA,LDA), B(N,2), X(N,2), FACT (LDFACT,LDFACT)
! Set values for A
! A= (1.0+1.01 2.0+3.01i 3.0-3.01)
! (2.0+41.01 5.0+3.01i 7.0-5.01)
! (-2.0+41.01 -4.0+4.01i 5.0+3.01)
i

DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),¢&
(-4.0,4.0), (3.0,-3.0), (7.0,-5.0), (5.0,3.0)/

Set the right-hand sides, B
B=(3.0+ 5.01 9.0+ 0.01)
(22.0+10.01 13.0+ 9.01)
(-10.0+ 4.01 6.0+10.01)

DATA B/ (3.0,5.0), (22.0,10.0), (-10.0,4.0), (9.0,0.0),¢&
(13.0,9.0), (6.0,10.0)/

136 e Chapter 1: Linear Systems IMSL MATH LIBRARY

CALL LFTCG (A, FACT, IPVT)

DO 10 J=1, 2

CALL LFSCG (FACT, IPVT,

10 CONTINUE

CALL WRCRN (X", X)

Factor A

Solve for the two right-hand sides

B(:,J), X(:,J))

Print results

END
Output
X
1 2
1 (1.000,-1.000) (0.000, 2.000)
2 (2.000, 4.000) (-2.000,-1.000)
3 (3.000, 0.000) (1.000, 3.000)

ScalLAPACK Example

The same linear system with multiple right-hand sides is solved as a distributed example. LFTCG is
called to factor the matrix. LFscG is called to compute the two solutions for the two right-hand
sides. SCALAPACK_MAP and SCALAPACK UNMAP are IMSL utility routines (see Chapter 11,
“Utilities™) used to map and unmap arrays to and from the processor grid. They are used here for
brevity. bEscINIT isa ScaLAPACK tools routine which initializes the descriptors for the local

arrays.

USE MPI_SETUP_INT

USE LFTCG_INT

USE LFSCG_INT

USE WRCRN_INT

USE SCALAPACK_SUPPORT
IMPLICIT NONE

INCLUDE ‘mpif.h’

INTEGER J, LDA, N,

DES

Declare variables

CA(9), DESCL(9)

INTEGER INFO, MXCOL, MXLDA

INTEGER, ALLOCATABLE
COMPLEX, ALLOCATABLE
COMPLEX, ALLOCATABLE
PARAMETER (LDA=3, N=3)

MP_NPROCS = MP_ SETUP ()
IF(MP RANK .EQ. 0) THEN

ALLOCATE (A (LDA,N),
|

A(l,:) = (/ (1-01

A(2,:) = (/ (2.0,

A(3,:) = (/ (-2.0,
|

B(ll) = (/ 3 Or

B(2,:) = (/ 22.0,

B(3,:) = (/ (-10.0,

ENDIF

Set

IPVTO(:)
A(:,:), B(:,:

)
AO(:,:), FACTO(:

up for MPI

),

)l - ’ 4'0)1
0), 9.0, 0.0)
0), (13.0, 9.0)
0), (6.0, 10.0)

.0,-3.0)/
.0,-5.0)/)
.0, 3.0)/

and B

Set up a 1D processor grid and define
its context ID, MP_ ICTXT

IMSL MATH LIBRARY

Chapter 1: Linear Systems e 137

10

CALL SCALAPACK SETUP(N, N, .TRUE., .TRUE.)
Get the array descriptor entities MXLDA,
and MXCOL
CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCL, N, 1, MP MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
Allocate space for the local arrays
ALLOCATE (AQO (MXLDA,MXCOL), X0 (MXLDA),FACTO (MXLDA,MXCOL), &
BO (MXLDA), IPVTO (MXLDA))
Map input array to the processor grid
CALL SCALAPACK MAP (A, DESCA, AO)
Factor A
CALL LFTCG (AO, FACTO, IPVTO)
Solve for the two right-hand sides
Do 10 J=1, 2
CALL SCALAPACK MAP (B(:,J), DESCL, BO)
CALL LFSCG (FACTO, IPVTO, BO, XO0)
CALL SCALAPACK UNMAP (X0, DESCL, X(:,J))
CONTINUE
Print results.
Only Rank=0 has the solution, X.
IF (MP_RANK.EQ.0) CALL WRCRN (’'X’, X)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, B, X)
DEALLOCATE (A0, BO, FACTO, IPVTO, XO)
Exit ScalLAPACK usage
CALL SCALAPACK EXIT (MP_ ICTXT)
Shut down MPI
MP NPROCS = MP_ SETUP (‘FINAL’)

END
Output
X
1 2
(1.000,-1.000) (0.000, 2.000)
(2.000, 4.000) (-2.000,-1.000)
(3.000, 0.000) (1.000, 3.000)

PERF

LFSCG
H:

M1

CAPABLE

H
ficE

Solves a complex general system of linear equations given the LU factorization of the coefficient
matrix.

138 e Chapter 1: Linear Systems

IMSL MATH LIBRARY

Required Arguments

FACT — Complex n by N matrix containing the LU factorization of the coefficient matrix a
as output from routine LFCCG/DLFCCG OF LFTCG/DLFTCG. (Input)

IPVT — Vector of length n containing the pivoting information for the LU factorization of A
as output from routine LFCCG/DLFCCG Of LFTCG/DLFTCG. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length n containing the solution to the linear system. (Output)
If B is not needed, B and x can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)
Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system ax = B is solved.
IPATH = 2 means the system a™'x = B is solved.
Default: 1pATH = 1.

FORTRAN 90 Interface

Generic: CALL LFSCG (FACT, IPVT,B,X [,..])

Specific: The specific interface names are S_LFsScG and D_LFSCG.

FORTRAN 77 Interface

Single: CALL LFSCG (N, FACT, LDFACT, IPVT, B, IPATH, X)

Double: The double precision hame is DLFSCG.

ScaLAPACK Interface

Generic: CALL LFSCG (FACTO, IPVTO, BO, X0 [,..])
Specific: The specific interface names are S_LFScG and D_LFSCG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 139

Description

Routine LFscG computes the solution of a system of linear algebraic equations having a complex
general coefficient matrix. To compute the solution, the coefficient matrix must first undergo an
LU factorization. This may be done by calling either LrccG or LETCG. The solution to Ax = b is
found by solving the triangular systems Ly = b and Ux =y. The forward elimination step consists
of solving the system Ly = b by applying the same permutations and elimination operations to b
that were applied to the columns of A in the factorization routine. The backward substitution step
consists of solving the triangular system Ux =y for x.

Routines LFscG and LFICG both solve a linear system given its LU factorization. LrIcG generally
takes more time and produces a more accurate answer than LEscG. Each iteration of the iterative
refinement algorithm used by Lr1cG calls LFscG.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending
upon which supporting libraries are used during linking. For a detailed explanation see “Using
ScaLAPACK, LAPACK, LINPACK, and EISPACK” in the Introduction section of this manual.

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

FACTO — wmxLpa by mMxcorn complex local matrix containing the local portions of the
distributed matrix FacT as output from routine LFCCG/DLFCCG Of LETCG/DLFTCG.
FACT contains the LU factorization of the matrix A. (Input)

IPVTO — Local vector of length MxL.DAa containing the local portions of the distributed
vector IpPVT. IPVT contains the pivoting information for the LU factorization as output
from subroutine LFCCG/DLFCCG OF LETCG/DLFTCG. (Input)

B0 — Complex local vector of length Mx1.DA containing the local portions of the distributed
vector B. B contains the right-hand side of the linear system. (Input)

X0 — Complex local vector of length MxL.DA containing the local portions of the distributed
vector x. X contains the solution to the linear system. (Output)
If B is not needed, B and x can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, mMxz.paA and MxCOL can be obtained through a call
to scaLAPACK_GETDIM (see Utilities) after a call to scaLapack setup (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

The inverse is computed for a complex general 3 X 3 matrix. The input matrix is assumed to be
well-conditioned, hence LFTCG is used rather than LFccCG.

USE IMSL LIBRARIES

! Declare variables
PARAMETER (LDA=3, LDFACT=3, N=3)
INTEGER IPVT (N)

140 e Chapter 1: Linear Systems IMSL MATH LIBRARY

REAL THIRD

COMPLEX A (LDA,LDA), AINV(LDA,LDA), RJ(N), FACT(LDFACT,LDFACT)
Declare functions

COMPLEX CMPLX

Set values for A

i
!
! A= (1.0+1.01 2.0+3.0i 3.0+3.01)
! (2.041.01 5.0+3.0i 7.0+4.01)
! (-2.0+1.01 -4.0+4.01i -5.0+3.01)
|
DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),%&
(-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/
i
! Scale A by dividing by three
THIRD = 1.0/3.0
DO 10 I=1, N
CALL CSSCAL (N, THIRD, A(:,I), 1)
10 CONTINUE
! Factor A
CALL LFTCG (A, FACT, IPVT)
! Set up the columns of the identity
! matrix one at a time in RJ
CALL CSET (N, (0.0,0.0), RJ, 1)
DO 20 J=1, N
RJ(J) = CMPLX(1.0,0.0)
! RJ is the J-th column of the identity
! matrix so the following LFSCG
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
CALL LFSCG (FACT, IPVT, RJ, AINV(:,J))
RJ(J) = CMPLX(0.0,0.0)

20 CONTINUE
! Print results

CALL WRCRN ("AINV’, AINV)
END
Output
AINV
1 2 3
1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)
2 (-1.600,-1.800) (0.200, 0.600) (0.400,-0.800)
3 (-0.600, 2.200) (1.200,-1.400) (0.400, 0.200)

ScaLAPACK Example

The inverse of the same 3 X 3 matrix is computed as a distributed example. The input matrix is
assumed to be well-conditioned, hence LFTCG is used rather than LFccG. LFSCG is called to
determine the columns of the inverse. SCALAPACK MAP and SCALAPACK UNMAP are IMSL utility
routines (see Chapter 11, “Utilities”) used to map and unmap arrays to and from the processor
grid. They are used here for brevity. pEscINTT is a ScaLAPACK tools routine which initializes

the descriptors for the local arrays.

IMSL MATH LIBRARY

Chapter 1: Linear Systems o 141

USE MPI_ SETUP_ INT
USE LFTCG_INT
USE LFSCG_INT
USE WRCRN_INT
USE SCALAPACK SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER J, LDA, N, DESCA(9), DESCL(9)

INTEGER INFO, MXCOL, MXLDA

INTEGER, ALLOCATABLE :: IPVTO(:)

COMPLEX, ALLOCATABLE :: A(:,:), AINV(:,:), XO0(:)

COMPLEX, ALLOCATABLE :: AO(:,:), FACTO(:,:), RJI(:), RJIO(:)
REAL THIRD

PARAMETER (LDA=3, N=3)
! Set up for MPI
MP NPROCS = MP SETUP ()
IF(MP_RANK .EQ. 0) THEN
ALLOCATE (A (LDA,N), AINV(LDA,N))

! Set values for A
A(l,:) = (/ (1.0, 1.0), (2.0, 3.0), (3.0, 3.0)/)
A(2,:) = (/ (2.0, 1.0), (5.0, 3.0), (7.0, 4.0)/)
A(3,:) = (/ (-2.0, 1.0), (-4.0, 4.0), (-5.0, 3.0)/)

! Scale A by dividing by three

THIRD = 1.0/3.0
A = A * THIRD

ENDIF
! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL

CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCL, N, 1, MP MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (AQO (MXLDA,MXCOL), X0 (MXLDA),FACTO (MXLDA,MXCOL), RJ(N), &
RJO (MXLDA), IPVTO (MXLDA))
! Map input array to the processor grid
CALL SCALAPACK MAP (A, DESCA, AO)
! Factor A
CALL LFTCG (AO, FACTO, IPVTO)
! Set up the columns of the identity
! matrix one at a time in RJ
RJ = (0.0, 0.0)
DO 10 J=1, N
RJ(J) = (1.0, 0.0)
CALL SCALAPACK MAP (RJ, DESCL, RJO0)
RJ is the J-th column of the identity
matrix so the following LFICG
reference computes the J-th column of
the inverse of A
CALL LFSCG (FACTO, IPVTO, RJO, XO)
RJ(J) = (0.0, 0.0)
CALL SCALAPACK UNMAP (X0, DESCL, AINV(:,J))

142 e Chapter 1: Linear Systems IMSL MATH LIBRARY

10 CONTINUE

! Print results.

! Only Rank=0 has the solution, AINV.
IF(MP_RANK.EQ.0) CALL WRCRN (’AINV’, AINV)
IF (MP RANK .EQ. 0) DEALLOCATE (A, AINV)
DEALLOCATE (A0, FACTO, IPVTO, RJ, RJO, XO0)

! Exit ScalLAPACK usage
CALL SCALAPACK EXIT (MP_ ICTXT)

! Shut down MPI
MP NPROCS = MP_ SETUP (‘FINAL’)

END
Output
AINV
1 2 3
1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)
2 (-1.600,-1.800) (0.200, 0.600) (0.400,-0.800)
3 (-0.600, 2.200) (1.200,-1.400) (0.400, 0.200)

LFICG

HEIGH
Psij!gm« %}M Pl

CAPABLE

Uses iterative refinement to improve the solution of a complex general system of linear equations.

Required Arguments

A — Complex nv by N matrix containing the coefficient matrix of the linear system. (Input)

FACT — Complex n by N matrix containing the LU factorization of the coefficient matrix a
as output from routine LFCCG/DLFCCG Of LEFTCG/DLFTCG. (Input)

IPVT — Vector of length ~ containing the pivoting information for the LU factorization of A
as output from routine LFCCG/DLFCCG Of LEFTCG/DLFTCG. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)
X — Complex vector of length n containing the solution to the linear system. (Output)

RES — Complex vector of length ¥ containing the residual vector at the improved solution.
(Output)

Optional Arguments

N — Number of equations. (Input)
Default: n = size (2,2).

IMSL MATH LIBRARY Chapter 1: Linear Systems e 143

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: zpa =size (a,1).

LDFACT — Leading dimension of FacT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LpFACT = size (FACT,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system ax = B is solved.
IPATH = 2 means the system a"x = B is solved.
Default: TpAaTH = 1.

FORTRAN 90 Interface

Generic: CALL LFICG (A, FACT, IPVT, B, X, RES [,..])

Specific: The specific interface names are S LFICG and D_LFICG.

FORTRAN 77 Interface

Single: CALL LFICG (N, A, LDA, FACT, LDFACT, IPVT, B, IPATH, X, RES)

Double: The double precision hame is DLFICG.

ScaLAPACK Interface

Generic: CALL LFICG (AQ, FACTO, IPVTO, BO, X0, RESO [,..])
Specific: The specific interface names are S LFICcGand D LFICG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine Lr1CG computes the solution of a system of linear algebraic equations having a complex
general coefficient matrix. Iterative refinement is performed on the solution vector to improve the
accuracy. Usually almost all of the digits in the solution are accurate, even if the matrix is
somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an LU factorization. This may
be done by calling either L.Fcca, or LFTCG.

Iterative refinement fails only if the matrix is very ill-conditioned. Routines L.FICG and LFSCG
both solve a linear system given its LU factorization. LF1CG generally takes more time and
produces a more accurate answer than LFscG. Each iteration of the iterative refinement algorithm
used by L.F1CG calls LFsCG.

144 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Comments
Informational error

Type Code

3 2 The input matrix is too ill-conditioned for iterative refinement to be
effective

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MxCOL complex local matrix containing the local portions of the
distributed matrix A. A contains the coefficient matrix of the linear system. (Input)

FACTO0 — wMxLDA by MxCOL complex local matrix containing the local portions of the
distributed matrix FACT as output from routine LFCCG or LFTCG. FACT contains the
LU factorization of the matrix A. (Input)

IPVTO — Local vector of length MxL.DA containing the local portions of the distributed
vector IpPVT. IPVT contains the pivoting information for the LU factorization as output
from subroutine LFccG or LFTCG. (Input)

B0 — Complex local vector of length MxL.Da containing the local portions of the distributed
vector B. B contains the right-hand side of the linear system. (Input)

X0 — Complex local vector of length MxL.DA containing the local portions of the distributed
vector x. X contains the solution to the linear system. (Output)

RESO — Complex local vector of length MxLDA containing the local portions of the
distributed vector rREs. RES contains the final correction at the improved solution to
the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, MxLDA and MxcOL can be obtained through a call
to sSCALAPACK_GETDIM (see Utilities) after a call to scarapack seTup (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving
the system each of the first two times by adding 0.5 + 0.5i to the second element.

USE LFICG_INT
USE LFCCG_INT
USE WRCRN_INT
USE UMACH_ INT
! Declare variables
PARAMETER (LDA=3, LDFACT=3, N=3)
INTEGER IPVT (N), NOUT
REAL RCOND
COMPLEX A(LDA,LDA), B(N), X(N), FACT(LDFACT,LDFACT), RES(N)

IMSL MATH LIBRARY Chapter 1: Linear Systems e 145

! Declare functions
COMPLEX CMPLX
Set values for A

A= (1.0+41.01 2.0+3.01 3.0
(2.0+1.01 5.0+3.01 7.0-5.01)
(-2.0+1.01 -4.0+4.01 5.0

DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0), &
(-4.0,4.0), (3.0,-3.0), (7.0,-5.0), (5.0,3.0)/

Set values for B
B = (3.0+5.01 22.0+10.01 -10.0+4.01)

DATA B/(3.0,5.0), (22.0,10.0), (-10.0,4.0)/
! Factor A
CALL LFCCG (A, FACT, IPVT, RCOND)
! Print the L1 condition number
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
! Solve the three systems
po 10 J=1, 3
CALL LFICG (A, FACT, IPVT, B, X, RES)
! Print results
CALL WRCRN (’X’", X, 1, N, 1)
! Perturb B by adding 0.5+0.51 to B(2)
B(2) = B(2) + CMPLX(0.5,0.5)
10 CONTINUE
|
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
END

Output

RCOND < 0.025
L1l Condition number < 75.0

X

1 2 3

(1.000,-1.000) (2.000, 4.000) (3.000, 0.000)
X

1 2 3

(0.910,-1.061) (1.986, 4.175) (3.123, 0.071)
X

1 2 3

(0.821,-1.123) (1.972, 4.349) (3.245, 0.142)

ScaLAPACK Example

The same set of linear systems is solved successively as a distributed example. The right-hand-
side vector is perturbed after solving the system each of the first two times by adding 0.5 + 0.5i to
the second element. SCALAPACK MAP and SCALAPACK UNMAP are IMSL utility routines (see
Chapter 11, “Utilities™) used to map and unmap arrays to and from the processor grid. They are

146 e Chapter 1: Linear Systems IMSL MATH LIBRARY

used here for brevity. bEscINIT isa ScaLAPACK tools routine which initializes the descriptors
for the local arrays.

USE MPI_ SETUP_ INT
USE LFICG_INT
USE LFCCG_INT
USE WRCRN_ INT
USE UMACH_ INT
USE SCALAPACK SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables
INTEGER J, LDA, N, DESCA(9), DESCL(9)
INTEGER INFO, MXCOL, MXLDA, NOUT
INTEGER, ALLOCATABLE IPVTO (:)
COMPLEX, ALLOCATABLE A(:,:), B(:), X(:), X0(:), RES(:)
COMPLEX, ALLOCATABLE AO(:,:), FACTO(:,:), BO(:), RESO(:)
REAL RCOND
PARAMETER (LDA=3, N=3)
! Set up for MPI
MP NPROCS = MP_SETUP()
IF(MP_RANK .EQ. 0) THEN
ALLOCATE (A (LDA,N), B(N), X(N), RES(N))
! Set values for A and B
A(l,:) = (/ (1.0, 1.0), (2.0, 3.0), (3.0, 3.0)/)
A(2,:) = (/ (2.0, 1.0), (5.0, 3.0), (7.0, 4.0)/)
A(3,:) = (/ (-2.0, 1.0), (-4.0, 4.0), (-5.0, 3.0)/)
|
B = (/ (3.0, 5.0), (22.0, 10.0), (-10.0, 4.0)/)
ENDIF
! Set up a 1D processor grid and define
! its context ID, MP_ ICTXT
CALL SCALAPACK SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK_GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT (DESCL, N, 1, MP MB, 1, 0, 0, MP_ ICTXT, MXLDA, INFO)

! Allocate space for the local arrays
ALLOCATE (AO (MXLDA,MXCOL) , XO (MXLDA),FACTO (MXLDA,MXCOL), &
BO (MXLDA), IPVTO (MXLDA), RESO (MXLDA))
! Map input array to the processor grid
CALL SCALAPACK_MAP(A, DESCA, A0)

! Factor A
CALL LFCCG (A0, FACTO, IPVTO, RCOND)
! Print the L1 condition number
IF (MP_RANK .EQ. 0) THEN
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
ENDIF
! Solve the three systems
DO 10 J=1, 3
CALL SCALAPACK MAP (B, DESCL, BO)
CALL LFICG (A0, FACTO, IPVTO, BO, X0, RESO)
CALL SCALAPACK UNMAP (X0, DESCL, X)

! Print results

IMSL MATH LIBRARY Chapter 1: Linear Systems e 147

! Only Rank=0 has the solution, X.
IF (MP_RANK .EQ. 0) CALL WRCRN ('X’, X, 1, N, 1)
! Perturb B by adding 0.5+0.51i to B(2)
IF(MP_RANK .EQ. 0) B(2) = B(2) + (0.5,0.5)
10 CONTINUE
IF (MP_RANK .EQ. 0) DEALLOCATE (A, B, X, RES)
DEALLOCATE (AO, BO, FACTO, IPVTO, X0, RESO)
! Exit Scalapack usage
CALL SCALAPACKiEXIT(MP71CTXT)

! Shut down MPI
MP NPROCS = MP_ SETUP (‘FINAL’)

99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
END

Output

RCOND < 0.025
L1l Condition number < 75.0

X

1 2 3

(1.000,-1.000) (2.000, 4.000) (3.000, 0.000)
X

1 2 3

(0.910,-1.061) (1.986, 4.175) (3.123, 0.071)
X

1 2 3

(0.821,-1.123) (1.972, 4.349) (3.245, 0.142)

LFDCG

Computes the determinant of a complex general matrix given the LU factorization of the matrix.

Required Arguments
FACT — Complex N by N matrix containing the LU factorization of the coefficient matrix a
as output from routine LFCCG/DLFCCG Of LFTCG/DLFTCG. (Input)

IPVT — Vector of length n containing the pivoting information for the LU factorization of A
as output from routine LFCCG/DLFCCG Of LETCG/DLFTCG. (Input)

DET1 — Complex scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 < [DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = peT1 * 10PET,

148 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Optional Arguments

N — Number of equations. (Input)
Default; n = size (FACT,2).

LDFACT — Leading dimension of FacT exactly as specified in the dimension statement of

the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFDCG (FACT, IPVT, DET1, DET2 [,..])

Specific: ~ The specific interface names are S LFDCG and D_LFDCG.

FORTRAN 77 Interface

Single: CALL LFDCG (N, FACT, LDFACT, IPVT, DET1, DET2)
Double: The double precision nhame is DLFDCG.
Description

Routine LFDCG computes the determinant of a complex general coefficient matrix. To compute the
determinant the coefficient matrix must first undergo an LU factorization. This may be done by
calling either LrccG or LETCG. The formula det A = det L det U is used to compute the
determinant. Since the determinant of a triangular matrix is the product of the diagonal elements,

detLJ ::IiIEQLJ“

(The matrix U is stored in the upper triangle of FacT.) Since L is the product of triangular matrices
with unit diagonals and of permutation matrices, det L = (—1)k where k is the number of pivoting
interchanges.

LFDCG is based on the LINPACK routine cGEDT; see Dongarra et al. (1979).

Example

The determinant is computed for a complex general 3 X 3 matrix.

USE LFDCG_INT
USE LFTCG_INT
USE UMACH_ INT
Declare variables
PARAMETER (LDA=3, LDFACT=3, N=3)

INTEGER IPVT (N), NOUT
REAL DET2
COMPLEX A(LDA,LDA), FACT(LDFACT,LDFACT), DET1

Set values for A

A= (3.0-2.01i 2.0+4.01i 0.0-3.01)

IMSL MATH LIBRARY Chapter 1: Linear Systems e 149

! (1.0+1.01i 2.0-6.0i 1.04+2.01)
! (4.0+0.0i -5.0+1.0i 3.0-2.01)

DATA A/ (3.0,-2.0), (1.0,1.0), (4.
1

0,0.0), (2.0,4.0), (2.0,-6.0),¢&
(-5.0,1.0), (0.0,-3.0), (1.0,2 , .0,-2.0

)/

! Factor A
CALL LFTCG (A, FACT, IPVT)
! Compute the determinant for the
! factored matrix
CALL LFDCG (FACT, IPVT, DET1, DETZ2)
! Print results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) DET1, DET2

99999 FORMAT (' The determinant of A is’,3X,’ (',F6.3,’,’,F6.3,&

)y * 10**",F2.0)
END

Output

The determinant of A is (0.700, 1.100) * 10**1.

LINCG

HIGH
PE%& @MPI

CAPABLE

Computes the inverse of a complex general matrix.

Required Arguments
A — Complex N by N matrix containing the matrix to be inverted. (Input)

AINV — Complex N by N matrix containing the inverse of o. (Output)
If A'is not needed, 2 and aTNV can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)
Default: N = size (a,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: Lpa = size (a,1).

150 e Chapter 1: Linear Systems IMSL MATH LIBRARY

LDAINV — Leading dimension of a1nv exactly as specified in the dimension statement of
the calling program. (Input)
Default; LpaINv = size (AINV,1).

FORTRAN 90 Interface

Generic: CALL LINCG (A, AINV [,..])

Specific: ~ The specific interface names are S_LINCG and D_LINCG.

FORTRAN 77 Interface

Single: CALL LINCG (N, A, LDA, AINV, LDAINV)

Double: The double precision name is DLINCG.

ScaLAPACK Interface

Generic: CALL LINCG (A0, AINVO [,..])
Specific: ~ The specific interface names are S LINCG and D_LINCG.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine LINCG computes the inverse of a complex general matrix. The underlying code is based
on either LINPACK , LAPACK, or ScaLAPACK code depending upon which supporting libraries
are used during linking. For a detailed explanation see “Using ScaLAPACK, LAPACK,
LINPACK, and EISPACK?” in the Introduction section of this manual.

LINCG first uses the routine LFccaG to compute an LU factorization of the coefficient matrix and to
estimate the condition number of the matrix. LrccG computes U and the information needed to
compute L. LTNCT is then used to compute U™, i.e. use the inverse of u. Finally o™* is computed
using a™'=u~'n, L

L1NCG fails if U, the upper triangular part of the factorization, has a zero diagonal element or if the
iterative refinement algorithm fails to converge. This errors occurs only if A is singular or very
close to a singular matrix.

If the estimated condition number is greater than 1/ (where € is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in A",

Comments

1. Workspace may be explicitly provided, if desired, by use of 1.2nCG/DL2NCG. The
reference is:

CALL L2NCG (N, A, LDA, AINV, LDAINV, WK, IWK)

IMSL MATH LIBRARY Chapter 1: Linear Systems e 151

The additional arguments are as follows:

WK — Complex work vector of length N + n(v — 1)/2.

IWK — Integer work vector of length .

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The inverse might not be
accurate.
4 2 The input matrix is singular.

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

A0 — mMxLDA by MXCOL complex local matrix containing the local portions of the
distributed matrix A. A contains the matrix to be inverted. (Input)

AINVO — MxLDA by MxCOL complex local matrix containing the local portions of the
distributed matrix ATNV. AINV contains the inverse of the matrix 2. (Output)
If & is not needed, A and A1NV can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, mMxzLpaA and MxCOL can be obtained through a call
to sSCALAPACK_GETDIM (see Utilities) after a call to scaLapack setup (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

The inverse is computed for a complex general 3 X 3 matrix.

USE LINCG_INT

USE WRCRN_INT

USE CSSCAL_ INT
Declare variables

PARAMETER (LDA=3, LDAINV=3, N=3)

REAL THIRD

COMPLEX A (LDA,LDA), AINV(LDAINV,LDAINV)
Set values for A

1.041.01 2.0+3.0i 3.0+3.01)
(2.0+1.01 5.0+3.01 7.0+4.01)
2.0+1.01 -4.0+4.01i -5.0+3.01)

=]
1

DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),&
(-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/

Scale A by dividing by three

152 e Chapter 1: Linear Systems IMSL MATH LIBRARY

N

10

THIRD = 1.0/3.0
DO 10 I=1, N
CALL CSSCAL (N, THIRD, A(:,I), 1)
CONTINUE
Calculate the inverse of A
CALL LINCG (A, AINV)
Print results
CALL WRCRN (’AINV’, AINV)

END
Output
AINV
3
(

(_
(_

1.600,-1.800 (0.200, 0.600 (0.400,-0.800)

1 2
6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)
))
0.600, 2.200) (1.200,-1.400) (0.400, 0.200)

ScalLAPACK Example

The inverse of the same 3 X 3 matrix is computed as a distributed example. scaLAPACK MaP and
SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Utilities”) used to map and unmap
arrays to and from the processor grid. They are used here for brevity. DESCINIT is a
ScaLAPACK tools routine which initializes the descriptors for the local arrays.

USE MPI SETUP_ INT
USE LINCG_ INT
USE WRCRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
Declare variables
INTEGER J, LDA, N, DESCA(9)
INTEGER INFO, MXCOL, MXLDA, NPROW, NPCOL
COMPLEX, ALLOCATABLE :: A(:,:), AINV(:,:)
COMPLEX, ALLOCATABLE :: AO(:,:), AINVO(:,:)
REAL THIRD
PARAMETER (LDA=3, N=3)
Set up for MPI
MP_NPROCS = MP_SETUP()
IF (MP_RANK .EOQ. 0) THEN
ALLOCATE (A (LDA,N), AINV(LDA,N))

Set values for A

3.

A(l,:) = (/ (1.0, 1.0), (2.0, 3.0), (0, 3.0)/)

A(2,:) = (/ (2.0, 1.0), (5.0, 3.0), (7.0, 4.0)/)

A(3,:) = (/ (-2.0, 1.0), (-4.0, 4.0), (=5.0, 3.0)/)
Scale A by dividing by three

THIRD = 1.0/3.0
A = A * THIRD
ENDIF
Set up a 1D processor grid and define
its context ID, MP_ ICTXT
CALL SCALAPACK SETUP(N, N, .TRUE., .TRUE.)
Get the array descriptor entities MXLDA,
and MXCOL
CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)

IMSL MATH LIBRARY Chapter 1: Linear Systems e 153

! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (AQO (MXLDA, MXCOL), AINVO (MXLDA,MXCOL))
! Map input array to the processor grid
CALL SCALAPACK MAP (A, DESCA, AO)
! Factor A
CALL LINCG (A0, AINVO)
Unmap the results from the distributed
arrays back to a non-distributed array.
After the unmap, only Rank=0 has the full
array.
CALL SCALAPACK UNMAP (AINVO, DESCA, AINV)
! Print results.
! Only Rank=0 has the solution, X.
IF(MP_RANK.EQ.0) CALL WRCRN (’AINV’, AINV)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, AINV)
DEALLOCATE (AQ, AINVO)
! Exit ScalLAPACK usage
CALL SCALAPACK EXIT (MP_ ICTXT)
! Shut down MPI
MP NPROCS = MP_ SETUP (‘FINAL’)

END
Output
AINV
1 2 3
1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)
2 (-1.600,-1.800) (0.200, 0.600) (0.400,-0.800)
3 (-0.600, 2.200) (1.200,-1.400) (0.400, 0.200)

LSLRT

HEIGH
PE%FMCE gﬁ‘M Pl

CAPABLE

Solves a real triangular system of linear equations.

Required Arguments

A — N by n matrix containing the coefficient matrix for the triangular linear system. (Input)
For a lower triangular system, only the lower triangular part and diagonal of are
referenced. For an upper triangular system, only the upper triangular part and diagonal
of a are referenced.

B — Vector of length ~ containing the right-hand side of the linear system. (Input)

154 e Chapter 1: Linear Systems IMSL MATH LIBRARY

X — Vector of length n containing the solution to the linear system. (Output)
If B is not needed, B and x can share the same storage locations.

Optional Arguments
N — Number of equations. (Input)
Default: n = size (2,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: LD = size (a,1).

IPATH — Path indicator. (Input)
TPATH = 1 means solve ax = B, a lower triangular.
IPATH = 2 means solve ax = B, A upper triangular.
IPATH = 3 means solve 2'x = B, a lower triangular.
IPATH = 4 means solve a'x = B, A upper triangular.
Default: 1pATH = 1.

FORTRAN 90 Interface

Generic: CALL LSLRT (A, B, X [,..])

Specific: The specific interface names are S LSLRT and D_LSLRT.

FORTRAN 77 Interface

Single: CALL LSLRT (N, A, LDA, B, IPATH, X)

Double: The double precision nhame is DLSLRT.

ScaLAPACK Interface

Generic: CALL LSLRT (A0, B0, X0 [,..])
Specific: The specific interface names are S_LSLRT and D_LSLRT.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine LsLRT solves a system of linear algebraic equations with a real triangular coefficient
matrix. LSLRT fails if the matrix a has a zero diagonal element, in which case a is singular. The
underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon
which supporting libraries are used during linking. For a detailed explanation see “Using
ScaLAPACK, LAPACK, LINPACK, and EISPACK?” in the Introduction section of this manual.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 155

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

A0 — mxLDA by MxcoL local matrix containing the local portions of the distributed matrix
A. A contains the coefficients of the linear system. (Input)
For a lower triangular system, only the lower triangular part and diagonal of a are
referenced. For an upper triangular system, only the upper triangular part and diagonal
of a are referenced.

BO — Local vector of length MxT.DA containing the local portions of the distributed vector B.
B contains the right-hand side of the linear system. (Input)

X0 — Local vector of length MmxL.DaA containing the local portions of the distributed vector x.
x contains the solution to the linear system. (Output)
If B is not needed, B and x can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, mMxzLpaA and MxCOL can be obtained through a call
to SCALAPACK_GETDIM (see Utilities) after a call to scaLapack SeTup (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

A system of three linear equations is solved. The coefficient matrix has lower triangular form and
the right-hand-side vector, b, has three elements.

USE LSLRT_INT
USE WRRRN_INT
! Declare variables
PARAMETER (LDA=3)
REAL A(LDA,LDA), B(LDA), X(LDA)
Set values for A and B

!
!
! A= (2.0)
! (2.0 -1.0)
! (-4.0 2.0 5.0)
!
! B=(2.0 5.0 0.0)
!

DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/
DATA B/2.0, 5.0, 0.0/

! Solve AX = B (IPATH = 1)
CALL LSLRT (A, B, X)

! Print results
CALL WRRRN (’X’', X, 1, 3, 1)
END

156 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Output

X
1 2 3
1.000 =-3.000 2.000

ScaLAPACK Example

The same system of three linear equations is solved as a distributed computing example. The
coefficient matrix has lower triangular form and the right-hand-side vector b has three elements.
SCALAPACK MAP and SCALAPACK UNMAP are IMSL utility routines (see Chapter 11, “Utilities™)
used to map and unmap arrays to and from the processor grid. They are used here for brevity.
DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local arrays.

USE MPI_ SETUP_ INT
USE LSLRT_ INT
USE WRRRN_INT
USE SCALAPACK SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER LDA, N, DESCA(9), DESCX(9)

INTEGER INFO, MXCOL, MXLDA

REAL, ALLOCATABLE :: A(:,:), B(:), X(:)
REAL, ALLOCATABLE :: AO(:,:), BO(:), XO(:)
PARAMETER (LDA=3, N=3)

! Set up for MPI
MP_NPROCS = MP_SETUP()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A (LDA,N), B(N), X(N))
! Set values for A and B

A(l,:) = (/ 2.0, 0.0, 0.0/)
A(2,:) = (/ 2.0, -1.0, 0.0/)
A(3,:) = (/-4.0, 2.0, 5.0/)
!
B = (/ 2.0, 5.0, 0.0/)
ENDIF

! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCX, N, 1, MP MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (AO (MXLDA,MXCOL), BO(MXLDA), X0 (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK MAP (A, DESCA, AO)
CALL SCALAPACK_MAP(B, DESCX, BO)
! Solve AX = B (IPATH = 1)
CALL LSLRT (A0, B0, XO0)
! Unmap the results from the distributed
! arrays back to a non-distributed array.
! After the unmap, only Rank=0 has the full

IMSL MATH LIBRARY Chapter 1: Linear Systems e 157

! array.
CALL SCALAPACK UNMAP (X0, DESCX, X)

! Print results.

! Only Rank=0 has the solution, X.
IF(MP_RANK .EQ. 0)CALL WRRRN ('X’, X, 1, N, 1)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, B, X)
DEALLOCATE (A0, BO, XO)

! Exit Scalapack usage
CALL SCALAPACK EXIT (MP_ ICTXT)

! Shut down MPI
MP NPROCS = MP_ SETUP (‘FINAL’)
END

Output

X
1 2 3
1.000 -3.000 2.000

LFCRT

HIGH
PE‘;%&MCE @MPI

CAPABLE

Estimates the condition number of a real triangular matrix.

Required Arguments

A — N by N matrix containing the coefficient matrix for the triangular linear system. (Input)
For a lower triangular system, only the lower triangular part and diagonal of a are
referenced. For an upper triangular system, only the upper triangular part and diagonal
of a are referenced.

RCOND — Scalar containing an estimate of the reciprocal of the L, condition number of a.
(Output)

Optional Arguments

N — Number of equations. (Input)
Default: N = size (a,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: Lpa = size (3,1).

IPATH — Path indicator. (Input)
IPATH = 1 means A is lower triangular.

158 e Chapter 1: Linear Systems IMSL MATH LIBRARY

IPATH = 2 means A is upper triangular.
Default: TpaTH =1.

FORTRAN 90 Interface

Generic: CALL LFCRT (A, RCOND [,..])

Specific: ~ The specific interface names are S LFCRT and D_LFCRT.

FORTRAN 77 Interface

Single: CALL LFCRT (N, A, LDA, IPATH, RCOND)

Double: The double precision name is DLFCRT.

ScaLAPACK Interface

Generic: CALL LFCRT (AO, RCOND [,..])
Specific: ~ The specific interface names are S LFCRT and D_LFCRT.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine LFCRT estimates the condition number of a real triangular matrix. The L; condition
number of the matrix A is defined to be k(A) = [|A||]JA™|l.. Since it is expensive to compute ||A™|,,
the condition number is only estimated. The estimation algorithm is the same as used by
LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/ (where € is machine precision), a warning
error is issued. This indicates that very small changes in a can cause very large changes in the
solution x.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending
upon which supporting libraries are used during linking. For a detailed explanation see “Using
ScaLAPACK, LAPACK, LINPACK, and EISPACK” in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2CRT/ DL2CRT. The
reference is:

CALL L2CRT (N, A, LDA, IPATH, RCOND, WK)
The additional argument is:

WK — Work vector of length n.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 159

2. Informational error

Type Code
3 1

ScaLAPACK Usage Notes

The input triangular matrix is algorithmically singular.

The arguments which differ from the standard version of this routine are:

A0 — mxLDA by MxcoL local matrix containing the local portions of the distributed matrix
A. A contains the coefficient matrix for the triangular linear system. (Input)
For a lower triangular system, only the lower triangular part and diagonal of 2 are
referenced. For an upper triangular system, only the upper triangular part and diagonal

of a are referenced.

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, mMxzLpaA and MxCOL can be obtained through a call
to SCALAPACK_GETDIM (see Utilities) after a call to scaLapack seTup (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

An estimate of the reciprocal condition number is computed for a 3 X 3 lower triangular

coefficient matrix.

USE LFCRT INT
USE UMACH_ INT

PARAMETER (LDA=3)
REAL A (LDA, LDA),
INTEGER NOUT

DATA A/2.0, 2.0, -4.0, O.

CALL LFCRT (A, RCOND)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND,
FORMAT (’ RCOND =
END

99999

0, -1.0, 2.0, 0.0, 0.0, 5.

",F5.3,/,"

Declare variables

RCOND

Set values for A and B

A= (2.0)
(2.0 -1.0)
(-4.0 2.0 5.0)

0/

Compute the reciprocal condition
number (IPATH=1)

Print results

1.0E0/RCOND

L1l Condition number = ’,F6.3)

160 e Chapter 1: Linear Systems

IMSL MATH LIBRARY

Output

RCOND < 0.1
L1 Condition number < 15.0

ScaLAPACK Example

The same lower triangular matrix as in the example above is used in this distributed computing

example. An estimate of the reciprocal condition number is computed for the 3 X 3 lower
triangular coefficient matrix. scALAPACK MAP is an IMSL utility routine (see Chapter 11,
“Utilities”) used to map an array to the processor grid. It is used here for brevity. DESCINIT is a
ScaLAPACK tools routine which initializes the descriptors for the local arrays.

USE MPI SETUP_ INT
USE LFCRT_INT
USE SCALAPACK SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER LDA, N, NOUT, DESCA(9)
INTEGER INFO, MXCOL, MXLDA
REAL RCOND

REAL, ALLOCATABLE :: A(:,:)
REAL, ALLOCATABLE :: AO(:,:)
PARAMETER (LDA=3, N=3)

! Set up for MPI
MP NPROCS = MP SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A (LDA,N))
! Set values for A

A(l,:) = (/ 2.0, 0.0, 0.0/)

A(2,:) = (/ 2.0, -1.0, 0.0/)

A(3,:) = (/-4.0, 2.0, 5.0/)
ENDIF

! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptor
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (AQ (MXLDA,MXCOL))
! Map input array to the processor grid
CALL SCALAPACK_MAP(A, DESCA, A0)
! Compute the reciprocal condition
! number (IPATH=1)
CALL LFCRT (AO, RCOND)
! Print results.
! Only Rank=0 has the solution, RCOND.
IF(MP_RANK .EQ. 0) THEN
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
ENDIF
IF (MP_RANK .EQ. 0) DEALLOCATE (A)

IMSL MATH LIBRARY Chapter 1: Linear Systems e 161

DEALLOCATE (AQ0)
! Exit Scalapack usage

CALL SCALAPACKiEXIT(MP71CTXT)
! Shut down MPI

MP NPROCS = MPisETUP(‘FINAL’)
99999 FORMAT (' RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)

END

Output

RCOND < 0.1
L1 Condition number < 15.0

LFDRT

Computes the determinant of a real triangular matrix.

Required Arguments

A — N by N matrix containing the triangular matrix. (Input)
The matrix can be either upper or lower triangular.

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value pET1 is normalized so that 1.0 < |pET1| < 10.0 or pET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(a) = pET1 * 10PET2,

Optional Arguments

N — Number of equations. (Input)
Default: v = size (2,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling

program. (Input)
Default: DA = size (a,1).

FORTRAN 90 Interface
Generic: CALL LFDRT (A, DET1,DET2 [,..])

Specific: ~ The specific interface names are S LFDRT and D_LFDRT.

FORTRAN 77 Interface

Single: CALL LFDRT (N, A, LDA, DET1, DET2)

Double: The double precision name is DLFDRT.

162 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Description

Routine LFDRT computes the determinant of a real triangular coefficient matrix. The determinant
of a triangular matrix is the product of the diagonal elements

N
det A=] . A

LFDRT is based on the LINPACK routine sTRDT; see Dongarra et al. (1979).

Comments
Informational error

Type Code
3 1 The input triangular matrix is singular.

Example
The determinant is computed for a 3 X 3 lower triangular matrix.

USE LFDRT_ INT
USE UMACH_INT

! Declare variables
PARAMETER (LDA=3)

REAL A(LDA,LDA), DET1l, DET2

INTEGER NOUT
! Set values for A
! A= (2.0)
! (2.0 -1.0)
! (-4.0 2.0 5.0)
i

DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/

! Compute the determinant of A
CALL LFDRT (A, DET1, DET2)

! Print results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) DET1, DET2

99999 FORMAT ('’ The determinant of A is ', F6.3, 7 * 10**’, F2.0)
END

Output

The determinant of A is -1.000 * 10**1.

LINRT

Computes the inverse of a real triangular matrix.

Required Arguments

A — N by N matrix containing the triangular matrix to be inverted. (Input)
For a lower triangular matrix, only the lower triangular part and diagonal of a are

IMSL MATH LIBRARY Chapter 1: Linear Systems e 163

referenced. For an upper triangular matrix, only the upper triangular part and diagonal
of a are referenced.

AINV — N by N matrix containing the inverse of 2. (Output)
If & is lower triangular, ANV is also lower triangular. If 2 is upper triangular, ATNV is
also upper triangular. If 2 is not needed, 2 and A1Nv can share the same storage
locations.

Optional Arguments
N — Number of equations. (Input)
Default: § = size (3,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: Lpa = size (a,1).

IPATH — Path indicator. (Input)
IPATH =1 means A is lower triangular.
IPATH = 2 means A is upper triangular.
Default: 1paTH = 1.

LDAINV — Leading dimension of a1nv exactly as specified in the dimension statement of

the calling program. (Input)
Default: LDAINV = size (AINV,1).

FORTRAN 90 Interface

Generic: CALL LINRT (A, AINV [,..])

Specific: ~ The specific interface names are S LINRT and D_LINRT.

FORTRAN 77 Interface

Single: CALL LINRT (N, A, LDA, IPATH, AINV, LDAINV)
Double: The double precision hame is DLINRT.
Description
Routine LINRT computes the inverse of a real triangular matrix. It fails if A has a zero diagonal
element.
Example

The inverse is computed for a 3 X 3 lower triangular matrix.

164 e Chapter 1: Linear Systems IMSL MATH LIBRARY

USE LINRT INT
USE WRRRN_ INT

! Declare variables

PARAMETER (LDA=3)

REAL A(LDA,LDA), AINV(LDA,LDA)
! Set values for A
! A= (2.0)
! (2.0 -1.0)
! (-4.0 2.0 5.0)
!

DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/
!
! Compute the inverse of A

CALL LINRT (A, AINV)
! Print results

CALL WRRRN ("AINV’, AINV)

END

Output
AINV
1 2 3

1 0.500 0.000 0.000
2 1.000 -1.000 0.000
3 0.000 0.400 0.200

LSLCT

F)
PE FM(E

MPI

CAPABLE

Solves a complex triangular system of linear equations.

Required Arguments

A — Complex n by n matrix containing the coefficient matrix of the triangular linear system.

(Input)

For a lower triangular system, only the lower triangle of a is referenced. For an upper
triangular system, only the upper triangle of a is referenced.

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length n containing the solution to the linear system. (Output)
If B is not needed, B and x can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)
Default: n = size (2,2).

IMSL MATH LIBRARY

Chapter 1: Linear Systems e 165

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default; Lpa = size (a,1).

IPATH — Path indicator. (Input)
IPATH = 1 means solve ax = B, a lower triangular
IPATH = 2 means solve ax = B, A upper triangular
IPATH = 3 means solve 2" x = B, 2 lower triangular
IPATH = 4 means solve A"x = B, a upper triangular
Default: TpAaTH = 1.

FORTRAN 90 Interface

Generic: CALL LSLCT (A, B, X [,..])

Specific: The specific interface names are S_LSLCT and D_LSLCT.

FORTRAN 77 Interface

Single: CALL LSLCT (N, A, LDA, B, IPATH, X)

Double: The double precision hame is DLSLCT.

ScaLAPACK Interface

Generic: CALL LSLCT (A0, B0, X0 [,..])
Specific: The specific interface names are s_LsLcT and D_LSLCT.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine LsL.cT solves a system of linear algebraic equations with a complex triangular coefficient
matrix. LsLCT fails if the matrix a has a zero diagonal element, in which case a is singular. The
underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon
which supporting libraries are used during linking. For a detailed explanation see “Using
ScaLAPACK, LAPACK, LINPACK, and EISPACK?” in the Introduction section of this manual.

Comments
Informational error

Type Code

4 1 The input triangular matrix is singular. Some of its diagonal
elements are near zero.

166 e Chapter 1: Linear Systems IMSL MATH LIBRARY

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

A0 — mMxLDA by MxcoL complex local matrix containing the local portions of the distributed
matrix A. A contains the coefficient matrix of the triangular linear system. (Input)
For a lower triangular system, only the lower triangular part and diagonal of a are
referenced. For an upper triangular system, only the upper triangular part and diagonal
of a are referenced.

B0 — Local complex vector of length MxLDA containing the local portions of the distributed
vector B. B contains the right-hand side of the linear system. (Input)

X0 — Local complex vector of length MmxL.DA containing the local portions of the distributed
vector x. X contains the solution to the linear system. (Output)
If B is not needed, B and x can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, MxLDA and MXCOL can be obtained through a call to
SCALAPACK_GETDIM (see Utilities) after a call to scarapack seTuPp (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

A system of three linear equations is solved. The coefficient matrix has lower triangular form and
the right-hand-side vector, b, has three elements.

USE LSLCT_INT
USE WRCRN_INT
! Declare variables

INTEGER LDA
PARAMETER (LDA=3)
COMPLEX A(LDA,LDA), B(LDA), X(LDA)

Set values for A and B

|
1
! A = (-3.042.0i)
! (-2.0-1.0i 0.0+6.0i)
! (-1.0+43.0i 1.0-5.0i -4.0+0.0i)
|
! B = (-13.0+0.0i -10.0-1.0i -11.0+3.01)
|

DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),&

(1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/
DATA B/ (-13.0,0.0), (-10.0,-1.0), (-11.0,3.0)/

! Solve AX = B
CALL LSLCT (A, B, X)

! Print results
CALL WRCRN (’X’', X, 1, 3, 1)
END

IMSL MATH LIBRARY Chapter 1: Linear Systems e 167

Output

X
1 2 3
(3.000, 2.000) (1.000, 1.000) (2.000, 0.000)

ScaLAPACK Example

The same lower triangular matrix as in the example above is used in this distributed computing
example. The system of three linear equations is solved. scALAPACK MAP and
SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Utilities”) used to map and unmap
arrays to and from the processor grid. They are used here for brevity. DESCINIT is a ScaLAPACK
tools routine which initializes the descriptors for the local arrays.

USE MPI SETUP INT
USE LSLCT_INT
USE WRCRN_INT
USE SCALAPACK SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER LDA, N, DESCA(9), DESCX(9)

INTEGER INFO, MXCOL, MXLDA

COMPLEX, ALLOCATABLE :: A(:,:), B(:), X(:)
COMPLEX, ALLOCATABLE :: AO(:,:), BO(:), XO(:)
PARAMETER (LDA=3, N=3)

! Set up for MPI
MP NPROCS = MP_ SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), B(N), X(N))

! Set values for A
A(l,:) = (/ (-3.0, 2.0), (0.0, 0.0), (0.0, 0.0)/)
A(2,:) = (/ (-2.0, -1.0), (0.0, 6.0), (0.0, 0.0)/)
A(3,:) = (/ (-1.0, 3.0), (1.0, -5.0), (-4.0, 0.0)/)
|
B = (/ (-13.0, 0.0), (-10.0, -1.0), (-11.0, 3.0)
ENDIF

! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptor
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCX, N, 1, MP MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (A0 (MXLDA,MXCOL), BO (MXLDA), X0 (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK_MAP(A, DESCA, A0)
CALL SCALAPACK MAP (B, DESCX, BO)
! Solve AX = B
CALL LSLCT (AO, BO, XO)
! Unmap the results from the distributed

168 e Chapter 1: Linear Systems IMSL MATH LIBRARY

! arrays back to a non-distributed array.
! After the unmap, only Rank=0 has the full
! array.
CALL SCALAPACK UNMAP (X0, DESCX, X)
! Print results.
! Only Rank=0 has the solution, X.
IF(MP_RANK .EQ. 0) CALL WRCRN ('X’', X, 1, 3, 1)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, B, X)
DEALLOCATE (A0, BO, XO)
! Exit ScalAPACK usage
CALL SCALAPACK EXIT (MP_ ICTXT)
! Shut down MPI
MP NPROCS = MP_ SETUP (‘FINAL’)
END

Output

X
1 2 3
(3.000, 2.000) (1.000, 1.000) (2.000, 0.000)

LFCCT

HIGH
PE‘;%&MCE @MPI

CAPABLE

Estimates the condition number of a complex triangular matrix.

Required Arguments

A — Complex N by N matrix containing the triangular matrix. (Input)
For a lower triangular system, only the lower triangle of a is referenced. For an upper
triangular system, only the upper triangle of a is referenced.

RCOND — Scalar containing an estimate of the reciprocal of the L, condition number of a.
(Output)

Optional Arguments

N — Number of equations. (Input)
Default: N = size (a,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: Lpa = size (3,1).

IPATH — Path indicator. (Input)
IPATH = 1 means A is lower triangular.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 169

IPATH = 2 means A is upper triangular.
Default: 1paTH =1.

FORTRAN 90 Interface

Generic: CALL LFCCT (A, RCOND [,..])

Specific: ~ The specific interface names are s LFcCT and D_LFCCT.

FORTRAN 77 Interface

Single: CALL LFCCT (N, A, LDA, IPATH, RCOND)

Double: The double precision name is DLFCCT.

ScaLAPACK Interface

Generic: CALL LFCCT (A0, RCOND [,..])
Specific: ~ The specific interface names are S LrccT and D_LFCCT.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine LFccT estimates the condition number of a complex triangular matrix. The Lycondition
number of the matrix A is defined to be k(A) = [|A||JJA™|l.. Since it is expensive to compute [|A™;,
the condition number is only estimated. The estimation algorithm is the same as used by
LINPACK and is described by Cline et al. (1979). If the estimated condition number is greater

than 1/e (where € is machine precision), a warning error is issued. This indicates that very small
changes in A can cause very large changes in the solution x. The underlying code is based on
either LINPACK , LAPACK, or ScaLAPACK code depending upon which supporting libraries
are used during linking. For a detailed explanation see “Using ScaLAPACK, LAPACK,
LINPACK, and EISPACK” in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2ccT/pL2ccT. The
reference is:

CALL L2CCT (N, A, LDA, IPATH, RCOND, CWK)
The additional argument is:
CWK — Complex work vector of length n.

2. Informational error

170 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Type Code

3 1 The input triangular matrix is algorithmically singular.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 — MXLDA by MxCOL complex local matrix containing the local portions of the
distributed matrix A. A contains the coefficient matrix of the triangular linear system.
(Input)

For a lower triangular system, only the lower triangular part and diagonal of a are
referenced. For an upper triangular system, only the upper triangular part and diagonal
of a are referenced.

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, MxLDA and MxXcOL can be obtained through a call
to SCALAPACK_GETDIM (see Utilities) after a call to scaLapack SeETUP (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

An estimate of the reciprocal condition number is computed for a 3 X 3 lower triangular
coefficient matrix.

99999

USE LFCCT_INT
USE UMACH_INT
Declare variables

INTEGER 1DA, N
PARAMETER (LDA=3)
INTEGER NOUT

REAL RCOND
COMPLEX A (LDA, LDA)

Set values for A

A = (-3.0+2.01)
(-2.0-1.0i 0.0+6.01)
(-1.0+3.01 1.0-5.01i -4.0+0.01)

DATA A/ (-3.0,2.0),

(- 0), (0.0,6.0),¢&
(1.0,-5.0), (0.0,0.0

, (-1.0, 3.0), (0.0,0.

, (0.0,0.0), (-4.0,0.0)/
Compute the reciprocal condition
number

CALL LFCCT (A, RCOND)
Print results

CALL UMACH (2, NOUT)

WRITE (NOUT,99999) RCOND, 1.0EO0/RCOND

FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)

END

IMSL MATH LIBRARY Chapter 1: Linear Systems o 171

Output

RCOND < 0.2
L1 Condition number < 10.0

ScaLAPACK Example

The same lower triangular matrix as in the example above is used in this distributed computing

example. An estimate of the reciprocal condition number is computed for a 3 X 3 lower triangular
coefficient matrix. SCALAPACK_MAP and SCALAPACK UNMAP are IMSL utility routines (see
Chapter 11, “Utilities”) used to map and unmap arrays to and from the processor grid. They are
used here for brevity. pEscINIT isa ScaLAPACK tools routine which initializes the descriptors
for the local arrays.

USE MPI SETUP_ INT
USE LFCCT_ INT
USE UMACH_ INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER LDA, N, NOUT, DESCA(9)
INTEGER INFO, MXCOL, MXLDA

REAL RCOND

COMPLEX, ALLOCATABLE :: A(:,:)
COMPLEX, ALLOCATABLE :: AO(:,:)
PARAMETER (LDA=3, N=3)

! Set up for MPI
MP_NPROCS = MP SETUP ()

IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A (LDA,N))

! Set values for A
A(l,:) = (/ (-3.0, 2.0), (0.0, 0.0), (0.0, 0.0)/)
A(2,:) = (/ (-2.0, -1.0), (0.0, 6.0), (0.0, 0.0)
A(3,:) = (/ (1.0, 3.0), (1.0, -5.0), (-4.0, 0.0)/)
ENDIF

! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptor
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (A0 (MXLDA,MXCOL))
! Map input arrays to the processor grid
CALL SCALAPACK MAP (A, DESCA, AO)
! Compute the reciprocal condition
! number
CALL LFCCT (AO, RCOND)
! Print results.
! Only Rank=0 has the solution, RCOND.
IF (MP_RANK .EQ. 0) THEN

172 e Chapter 1: Linear Systems IMSL MATH LIBRARY

CALL UMACH (2, NOUT)

WRITE (NOUT,99999) RCOND, 1.0EO0/RCOND
ENDIF
IF (MP_RANK .EQ. 0) DEALLOCATE (A)

DEALLOCATE (AQ0)
! Exit ScalAPACK usage

CALL SCALAPACKiEXIT(MP71CTXT)

! Shut down MPI
MP NPROCS = MPisETUP(‘FINAL’)

99999 FORMAT (' RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
END

Output

RCOND < 0.2
L1 Condition number < 10.0

LFDCT

Computes the determinant of a complex triangular matrix.

Required Arguments

A — Complex n by N matrix containing the triangular matrix.(Input)

DET1 — Complex scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 < | pET1 | <10.0 or DET1= 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(a) = pET1 *10°€™

Optional Arguments

N — Number of equations. (Input)
Default: N = size (3,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling

program. (Input)
Default: LpA = size (a,1).

FORTRAN 90 Interface

Generic: CALL LFDCT (A, DET1, DET2I,..])

Specific: ~ The specific interface names are S LFDCT and D_LEFDCT.

FORTRAN 77 Interface

Single: CALL LFDCT (N, A, LDA, DET1, DET2)

IMSL MATH LIBRARY Chapter 1: Linear Systems e 173

Double: The double precision name is DLFDCT.

Description

Routine LrDCT computes the determinant of a complex triangular coefficient matrix. The
determinant of a triangular matrix is the product of the diagonal elements

N
det A=] . A
LFDCT is based on the LINPACK routine cTRDT; see Dongarra et al. (1979).

Comments
Informational error

Type Code
3 1 The input triangular matrix is singular.

Example
The determinant is computed for a 3 X 3 complex lower triangular matrix.
USE LFDCT_INT

USE UMACH_INT
! Declare variables

INTEGER LDA, N
PARAMETER (LDA=3, N=3)
INTEGER NOUT

REAL DET2

COMPLEX A(LDA,LDA), DET1

Set values for A

A = (-3.0+2.01)
(-2.0-1.01i 0.0+6.01)
(-1.0+3.01 1.0-5.01i -4.0+0.01)

DATA A/ (-3.0,2.0), (-
(1.0,-5.0), (0.0,0.0

! Compute the determinant of A
CALL LFDCT (A, DET1, DET2)
! Print results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) DET1, DET2
99999 FORMAT ('’ The determinant of A is (/,F4.1,’,’,F4.1,") * 10**’,&
F2.0)
END

Output

The determinant of A is (0.5, 0.7) * 10**2.

174 e Chapter 1: Linear Systems IMSL MATH LIBRARY

LINCT

Computes the inverse of a complex triangular matrixs.

Required Arguments

A — Complex N by N matrix containing the triangular matrix to be inverted. (Input)
For a lower triangular matrix, only the lower triangle of a is referenced. For an upper
triangular matrix, only the upper triangle of a is referenced.

AINV — Complex n by N matrix containing the inverse of a. (Output)
If & is lower triangular, ATV is also lower triangular. If & is upper triangular, ATNV is
also upper triangular. If & is not needed, A and A1NV can share the same storage
locations.

Optional Arguments
N — Number of equations. (Input)
Default: n = size (2,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: DA = size (a,1).

IPATH — Path indicator. (Input)
IPATH = 1 means 4 is lower triangular.
IPATH = 2 means A is upper triangular.
Default: 1pATH = 1.

LDAINV — Leading dimension of a1nv exactly as specified in the dimension statement of

the calling program. (Input)
Default: LDAINV = size (AINV,1).

FORTRAN 90 Interface

Generic: CALL LINCT (A, AINV [,..])

Specific: The specific interface names are S LINCT and D_LINCT.
FORTRAN 77 Interface

Single: CALL LINCT (N, A, LDA, IPATH, AINV, LDAINV)

Double: The double precision name is DLINCT.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 175

w N

Description

Routine LINCT computes the inverse of a complex triangular matrix. It fails if A has a zero
diagonal element.

Comments

Informational error
Type Code
4 1

elements are close to zero.

Example

The inverse is computed for a 3 X 3 lower triangular matrix.

USE LINCT INT
USE WRCRN_INT

The input triangular matrix is singular. Some of its diagonal

Declare variables

INTEGER LDA
PARAMETER (LDA=3)
COMPLEX A(LDA,LDA), AINV(LDA,LDA)

Set values for A

.0, 3.
-0), (-4.

.0+2.01
.0-1.01
.0+3.01

0),
-4

)
0.0+6.01)
1.0-5.01 -4.0+0.01)

(0.0,0.0), (0.0,6.0),&
0,0.0)/

the inverse of A

Print results

A= (-3
(-2
(-1
DATA A/ (-3.0,2.0), (-2.0,-1.0), (-1
(rL.0,-5.0), (0.0,0.0), (0.0,0
Compute
CALL LINCT (A, AINV)
CALL WRCRN (’AINV’, AINV)
END
Output
AINV
(- 0.0000, 0.0000

(_

(

0.0897, 0.0513 (0.0000,-0.1667

1
0.2308,-0.1538) (

)
0.2147,-0.0096) (-0.2083,-0.0417

—_—_ - N

(0.0000,
(0.0000,
(-0.2500,

0.0000

3
0.0000)
)
0.0000)

176 e Chapter 1: Linear Systems

IMSL MATH LIBRARY

LSADS

HIGH
PE;%%CE ll__%MPI

CAPABLE

Solves a real symmetric positive definite system of linear equations with iterative refinement.

Required Arguments

A — N by N matrix containing the coefficient matrix of the symmetric positive definite linear
system. (Input)
Only the upper triangle of a is referenced.

B — Vector of length ~ containing the right-hand side of the linear system. (Input)

X — Vector of length x containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)
Default: n = size (2,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling

program. (Input)
Default: DA = size (a,1).

FORTRAN 90 Interface
Generic: CALL LSADS (A,B,X [,..]1)

Specific: ~ The specific interface names are S LSADS and D_LSADS.

FORTRAN 77 Interface

Single: CALL LSADS (N, A, LDA, B, X)

Double: The double precision name is DLSADS.

ScaLAPACK Interface

Generic: CALL LSADS (A0, BO, X0 [,..])
Specific: The specific interface names are S_Lsabs and D_LSADS.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

IMSL MATH LIBRARY Chapter 1: Linear Systems o 177

Description

Routine LsaDs solves a system of linear algebraic equations having a real symmetric positive
definite coefficient matrix. The underlying code is based on either LINPACK , LAPACK, or
ScaLAPACK code depending upon which supporting libraries are used during linking. For a
detailed explanation see “Using ScaLAPACK, LAPACK, LINPACK, and EISPACK” in the
Introduction section of this manual. LsaDs first uses the routine LFCDS to compute an R'R
Cholesky factorization of the coefficient matrix and to estimate the condition number of the
matrix. The matrix R is upper triangular. The solution of the linear system is then found using the
iterative refinement routine LFIDS. LSADS fails if any submatrix of R is not positive definite, if R
has a zero diagonal element or if the iterative refinement algorithm fails to converge. These errors
occur only if A is either very close to a singular matrix or a matrix which is not positive definite. If
the estimated condition number is greater than 1/e (where € is machine precision), a warning error
is issued. This indicates that very small changes in A can cause very large changes in the solution
X. Iterative refinement can sometimes find the solution to such a system. LSADS solves the
problem that is represented in the computer; however, this problem may differ from the problem
whose solution is desired.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2aDs/DL2aDS. The
reference is:

CALL L2ADS (N, A, LDA, B, X, FACT, WK)
The additional arguments are as follows:

FACT— Work vector of length n? containing the R'R factorization of A on
output.

WK — Work vector of length .

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.
4 2 The input matrix is not positive definite.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2aDs the leading dimension of FACT is increased by
1vAaL(3) when is a multiple of Tvarn(4). The values 1var(3) and 1vaL(4) are
temporarily replaced by 1var(1) and Tvar(2), respectively, in LSADS.
Additional memory allocation for FacT and option value restoration are done
automatically in n.saps. Users directly calling 1.2aDs can allocate additional
space for rFacT and set 1vaL(3) and 1vaL(4) so that memory bank conflicts no

178 e Chapter 1: Linear Systems IMSL MATH LIBRARY

longer cause inefficiencies. There is no requirement that users change existing
applications that use LsaDs or L2aDs. Default values for the option are TvAL(*)
=1,16,0,1.

17 This option has two values that determine if the L; condition number is to be
computed. Routine LsaDs temporarily replaces 1vaL(2) by 1var(l). The
routine 1.2cbs computes the condition number if Tvar(2) = 2. Otherwise 1.2cDs
skips this computation. L.sADs restores the option. Default values for the option
are TvaL(*) =1, 2.

ScaL APACK Usage Notes
The arguments which differ from the standard version of this routine are:

A0 — mxLDA by MxcoL local matrix containing the local portions of the distributed matrix a.
A contains the coefficient matrix of the symmetric positive definite linear system.
(Input)

B0 — Local vector of length MxL.DA containing the local portions of the distributed vector B.
B contains the right-hand side of the linear system. (Input)

X0 — Local vector of length MmxL.DaA containing the local portions of the distributed vector x.
x contains the solution to the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, mMxLpa and MxCOL can be obtained through a call
to SCALAPACK_GETDIM (see Utilities) after a call to scarapack seTup (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

A system of three linear equations is solved. The coefficient matrix has real positive definite form
and the right-hand-side vector b has three elements.

USE LSADS INT
USE WRRRN_INT
! Declare variables

INTEGER LDA, N
PARAMETER (LDA=3, N=3)
REAL A(LDA,LDA), B(N), X(N)

Set values for A and B

A = (0 -3.0 2.0)
(0 -5.0 6.0)
B = (27.0 -78.0 64.0)

pata a/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
DATA B/27.0, -78.0, 64.0/

CALL LSADS (A, B, X)

IMSL MATH LIBRARY Chapter 1: Linear Systems e 179

! Print results
CALL WRRRN (’X’, X, 1, N, 1)

END

Output

X
1 2 3
1.000 -4.000 7.000

ScaLAPACK Example

The same system of three linear equations is solved as a distributed computing example. The
coefficient matrix has real positive definite form and the right-hand-side vector b has three
elements. sScALAPACK MAP and SCALAPACK UNMAP are IMSL utility routines (see Chapter 11,
“Utilities™) used to map and unmap arrays to and from the processor grid. They are used here for
brevity. pEscInIT isa ScaLAPACK tools routine which initializes the descriptors for the local
arrays.

USE MPI SETUP_ INT
USE LSADS INT
USE WRRRN_ INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER LDA, N, DESCA(9), DESCX(9)

INTEGER INFO, MXCOL, MXLDA

REAL, ALLOCATABLE :: A(:,:), B(:), X(:)
REAL, ALLOCATABLE :: AO0(:,:), BO(:), XO(:)
PARAMETER (LDA=3, N=3)

! Set up for MPI
MP NPROCS = MP SETUP ()
IF(MP_RANK .EQ. 0) THEN
ALLOCATE (A (LDA,N), B(N), X(N))

! Set values for A and B

A(l,:) = (/ 1.0, =-3.0, 2.0/)
A(2,:) = (/ -3.0, 10.0, -5.0/)
A(3,:) = (/ 2.0, -=5.0, 6.0/)

B = (/27.0, -78.0, 64.0/)

! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT (DESCX, N, 1, MP MB, 1, 0, 0, MP ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (A0 (MXLDA,MXCOL), BO(MXLDA), X0 (MXLDA))

180 e Chapter 1: Linear Systems IMSL MATH LIBRARY

! Map input arrays to the processor grid
CALL SCALAPACK MAP (A, DESCA, AO)
CALL SCALAPACK MAP (B, DESCX, BO)
! Solve the system of equations
CALL LSADS (A0, B0, XO0)
Unmap the results from the distributed
arrays back to a non-distributed array.
After the unmap, only Rank=0 has the full
array.
CALL SCALAPACK UNMAP (X0, DESCX, X)
! Print results.
! Only Rank=0 has the solution, X.
IF(MP_RANK .EQ. 0)CALL WRRRN (X', X, 1, N, 1)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, B, X)
DEALLOCATE (A0, BO, X0)
! Exit ScalAPACK usage
CALL SCALAPACK_EXIT(MP_ICTXT)
! Shut down MPI
MP NPROCS = MP_SETUP(‘FINAL’)

END
Output
X
1 2 3
1.000 -4.000 7.000

LSLDS

HLGH
PE%FMCE %}MPI

CAPABLE

Solves a real symmetric positive definite system of linear equations without iterative refinement .

Required Arguments

A — N by N matrix containing the coefficient matrix of the symmetric positive definite linear
system. (Input)
Only the upper triangle of a is referenced.

B — Vector of length ~ containing the right-hand side of the linear system. (Input)
X — Vector of length n containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)
Default: n = size (a,2).

IMSL MATH LIBRARY Chapter 1: Linear Systems e 181

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default; Lpa = size (a,1).

FORTRAN 90 Interface

Generic: CALL LSLDS (A,B,X [,..])

Specific: ~ The specific interface names are s_LsLDS and D_LSLDSs.

FORTRAN 77 Interface

Single: CALL LSLDS (N, A, LDA, B, X)

Double: The double precision name is DLSLDS.

ScaLAPACK Interface

Generic: CALL LSLDS (A0, BO, X0 [,..])
Specific: ~ The specific interface names are S LSLDs and D_LSLDS.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine LsLDs solves a system of linear algebraic equations having a real symmetric positive
definite coefficient matrix. The underlying code is based on either LINPACK , LAPACK, or
ScaLAPACK code depending upon which supporting libraries are used during linking. For a
detailed explanation see “Using ScaLAPACK, LAPACK, LINPACK, and EISPACK” in the
Introduction section of this manual. 1.sLDs first uses the routine LECDS to compute an R'R
Cholesky factorization of the coefficient matrix and to estimate the condition number of the
matrix. The matrix R is upper triangular. The solution of the linear system is then found using the
routine LFsDs. LSLDS fails if any submatrix of R is not positive definite or if R has a zero
diagonal element. These errors occur only if A either is very close to a singular matrix or to a
matrix which is not positive definite. If the estimated condition number is greater than 1/¢ (where €
is machine precision), a warning error is issued. This indicates that very small changes in A can
cause very large changes in the solution x. If the coefficient matrix is ill-conditioned, it is
recommended that L.saDS be used.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LDs/DL2LDS. The
reference is:

CALL L2LDS (N, A, LDA, B, X, FACT, WK)

182 e Chapter 1: Linear Systems IMSL MATH LIBRARY

The additional arguments are as follows:

FACT — ~ x N work array containing the R'R factorization of 2 on output. If
A is not needed, A can share the same storage locations as FACT.

WK — Work vector of length n.

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.
4 2 The input matrix is not positive definite.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine 1.21.Ds the leading dimension of FACT is increased by
1vaL(3) when n is a multiple of 1vaL(4). The values 1vaL(3) and 1vaL(4) are
temporarily replaced by 1var(1) and 1vaLr(2), respectively, in LSLDS.
Additional memory allocation for rFacT and option value restoration are done
automatically in sL.Ds. Users directly calling L.2L.Ds can allocate additional
space for FacT and set 1vaL(3) and 1VvAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LsL.Ds or L2LDs. Default values for the option are TvaL(*)
=1,16,0, 1.

17 This option has two values that determine if the L; condition number is to be
computed. Routine L.sL.Ds temporarily replaces 1vaL(2) by 1var(l). The
routine L.2cDs computes the condition number if 1vaL(2) = 2. Otherwise L.2CDS
skips this computation. LSLDS restores the option. Default values for the option
are TvaL(*) =1, 2.

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

A0 — MxLDA by MxcoL local matrix containing the local portions of the distributed matrix a.
A contains the coefficient matrix of the symmetric positive definite linear system.

(Input)

B0 — Local vector of length mx1T.DA containing the local portions of the distributed vector B.
B contains the right-hand side of the linear system. (Input)

X0 — Local vector of length Mx1.DA containing the local portions of the distributed vector x.
x contains the solution to the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, mx.paA and MxCOL can be obtained through a call

IMSL MATH LIBRARY Chapter 1: Linear Systems e 183

to SCALAPACK GETDIM (see Utilities) after a call to scarapack seTuUP (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

A system of three linear equations is solved. The coefficient matrix has real positive definite form
and the right-hand-side vector b has three elements.

USE LSLDS_INT
USE WRRRN_ INT
Declare variables

INTEGER LDA, N
PARAMETER (LDA=3, N=3)
REAL A(LDA,LDA), B(N), X(N)

Set values for A and B

DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
DATA B/27.0, -78.0, 64.0/

CALL LSLDS (A, B, X)

Print results
CALL WRRRN ('X’, X, 1, N, 1)

END

Output

X
1 2 3

1.000 -4.000 7.000

ScalLAPACK Example

The same system of three linear equations is solved as a distributed computing example. The
coefficient matrix has real positive definite form and the right-hand-side vector b has three
elements. SCALAPACK MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11,
“Utilities™) used to map and unmap arrays to and from the processor grid. They are used here for
brevity. pEsCINIT isa ScaLAPACK tools routine which initializes the descriptors for the local
arrays.

USE MPI_SETUP_INT

USE LSLDS_INT

USE WRRRN_INT

USE SCALAPACK_SUPPORT
IMPLICIT NONE

INCLUDE ‘mpif.h’

184 e Chapter 1: Linear Systems IMSL MATH LIBRARY

! Declare variables

INTEGER LDA, N, DESCA(9), DESCX(9)

INTEGER INFO, MXCOL, MXLDA

REAL, ALLOCATABLE :: A(:,:), B(:), X(:)
REAL, ALLOCATABLE :: AO(:,:), BO(:), XO(:)
PARAMETER (LDA=3, N=3)

! Set up for MPI
MP NPROCS = MP SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), B(N), X(N))
! Set values for A and B

A(l,:) = (/ 1.0, -3.0, 2.0/)
A(2,:) = (/ -3.0, 10.0, -5.0/)
A(3,:) = (/ 2.0, -5.0, 6.0/)

B = (/27.0, -78.0, 64.0/)

! Set up a 1D processor grid and define
! its context ID, MP_ ICTXT
CALL SCALAPACK SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK_GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP ICTXT, MXLDA, INFO)
CALL DESCINIT (DESCX, N, 1, MP MB, 1, 0, 0, MP ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (A0 (MXLDA,MXCOL), BO (MXLDA), X0 (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK_MAP(A, DESCA, A0)
CALL SCALAPACK MAP (B, DESCX, BO)
! Solve the system of equations
CALL LSLDS (AO, BO, XO)
Unmap the results from the distributed
arrays back to a non-distributed array.
After the unmap, only Rank=0 has the full
array.
CALL SCALAPACK_UNMAP(XO, DESCX, X)
! Print results.
! Only Rank=0 has the solution, X.
IF(MP_RANK .EQ. 0)CALL WRRRN (’'X’, X, 1, N, 1)
! Exit ScaLAPACK usage
CALL SCALAPACK EXIT (MP_ ICTXT)
! Shut down MPI
MP NPROCS = MP_ SETUP (‘FINAL’)
END

IMSL MATH LIBRARY Chapter 1: Linear Systems e 185

Output

X
1 2 3
1.000 -4.000 7.000

LFCDS

HIGH
PE?MCE @MPI

CAPABLE

Computes the R'R Cholesky factorization of a real symmetric positive definite matrix and estimate
its L;condition number.
Required Arguments
A — N by N symmetric positive definite matrix to be factored. (Input)
Only the upper triangle of a is referenced.

FACT — n by N matrix containing the upper triangular matrix R of the factorization of a in
the upper triangular part. (Output)
Only the upper triangle of FacT will be used. If a is not needed, 2 and FacT can share
the same storage locations.

RCOND — Scalar containing an estimate of the reciprocal of the L; condition number of a.
(Output)

Optional Arguments
N — Order of the matrix. (Input)
Default: N = size (a,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: Lpa = size (a,1).

LDFACT — Leading dimension of FacT exactly as specified in the dimension statement of

the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFCDS (A, FACT, RCOND [,..])

Specific: The specific interface names are S_LFcDS and D_LEFCDS.

186 e Chapter 1: Linear Systems IMSL MATH LIBRARY

FORTRAN 77 Interface

Single: CALL LFCDS (N, A, LDA, FACT, LDFACT, RCOND)

Double: The double precision name is DLFCDS.

ScaLAPACK Interface

Generic: CALL LFCDS (A0, FACTO, RCOND [,..])
Specific: ~ The specific interface names are s LFcDs and D_LFCDS.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine LFCDS computes an R'R Cholesky factorization and estimates the condition number of a
real symmetric positive definite coefficient matrix. The matrix R is upper triangular.

The L,condition number of the matrix A is defined to be «(A) = [|JAll: |JA™|r. Since it is expensive

to compute ||A||; the condition number is only estimated. The estimation algorithm is the same
as used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/e (where ¢ is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system.

LrcDs fails if any submatrix of R is not positive definite or if R has a zero diagonal element.
These errors occur only if A is very close to a singular matrix or to a matrix which is not positive
definite.

The R'R factors are returned in a form that is compatible with routines LFIDS, LFSDS and LFDDS.
To solve systems of equations with multiple right-hand-side vectors, use LrcDs followed by either
LFIDS or LFsDS called once for each right-hand side. The routine LEDDs can be called to compute
the determinant of the coefficient matrix after LFcps has performed the factorization.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2cps/pr2cps. The
reference is:

CALL L2CDS (N, A, LDA, FACT, LDFACT, RCOND, WK)
The additional argument is:
WK — Work vector of length n.

2. Informational errors

Type Code

IMSL MATH LIBRARY Chapter 1: Linear Systems e 187

3 1 The input matrix is algorithmically singular.

4 2 The input matrix is not positive definite.

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

A0 — wmx1DA by mxcoL local matrix containing the local portions of the distributed matrix
A. A contains the symmetric positive definite matrix to be factored. (Input)

FACTO0 — wmxLpa by mxcolL local matrix containing the local portions of the distributed
matrix FACT. FACT contains the upper triangular matrix R of the factorization of a in
the upper triangular part. (Output)

Only the upper triangle of FacT will be used. If A is not needed, 2 and FACT can share
the same storage locations.

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, MxLDA and MxcoOL can be obtained through a call
to SCALAPACK_GETDIM (see Utilities) after a call to scaLapack _setup (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

The inverse of a 3 X 3 matrix is computed. LFcDs is called to factor the matrix and to check for
nonpositive definiteness or ill-conditioning. Lr1Ds is called to determine the columns of the
inverse.

USE LFCDS_INT
USE UMACH_ INT
USE WRRRN_INT
USE LFIDS INT
Declare variables

INTEGER LDA, LDFACT, N, NOUT
PARAMETER (LDA=3, LDFACT=3, N=3)
REAL A(LDA,LDA), AINV(LDA,LDA), RCOND, FACT (LDFACT,LDFACT), &

RES (N), RJ(N)

|

! Set values for A

! A= (1.0 -=3.0 2.0)
! (-3.0 10.0 =5.0)
! (2.0 -=5.0 6.0)
i

DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
! Factor the matrix A

CALL LFCDS (A, FACT, RCOND)
! Set up the columns of the identity

matrix one at a time in RJ
RJ = 0.0EO
DO 10 J=1, N
RJ(J) = 1.0EO

! RJ is the J-th column of the identity
! matrix so the following LFIDS

188 e Chapter 1: Linear Systems IMSL MATH LIBRARY

! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
CALL LFIDS (A, FACT, RJ, AINV(:,J), RES)
RJ(J) = 0.0EO
10 CONTINUE
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0EO0/RCOND
CALL WRRRN ("AINV’, AINV)
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F9.3)
END

Output

RCOND < 0.005
L1l Condition number < 875.0

AINV
1 2 3
1 35.00 8.00 -5.00
2 8.00 2.00 -1.00
3 -5.00 -1.00 1.00

ScalLAPACK Example

The inverse of the same 3 X 3 matrix is computed as a distributed example. LEcDs is called to
factor the matrix and to check for singularity or ill-conditioning. Lr1IDs is called to determine the
columns of the inverse. SCALAPACK_MAP and SCALAPACK UNMAP are IMSL utility routines (see
Chapter 11, “Utilities”) used to map and unmap arrays to and from the processor grid. They are
used here for brevity. pEscINIT isa ScaLAPACK tools routine which initializes the descriptors
for the local arrays.

USE MPI SETUP_ INT
USE LFCDS_INT
USE UMACH_ INT
USE LFIDS INT
USE WRRRN INT
USE SCALAPACK SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER J, LDA, N, NOUT, DESCA(9), DESCL(9)

INTEGER INFO, MXCOL, MXLDA

REAL, ALLOCATABLE :: A(:,:), AINV(:,:), XO0(:), RJ(:)
REAL, ALLOCATABLE :: AO(:,:), FACTO(:,:), RESO(:), RJO(:)
REAL RCOND

PARAMETER (LDA=3, N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A (LDA,N), AINV(LDA,N))
! Set values for A
A(l,:) = (/ 1.0, =3.0, 2.0/)
A(2,:) = (/ -3.0, 10.0, -5.0/)

IMSL MATH LIBRARY Chapter 1: Linear Systems e 189

A(3,:) = (/ 2.0, =5.0, 6.0/)
ENDIF
! Set up a 1D processor grid and define
! its context ID, MP_ ICTXT
CALL SCALAPACK SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL

CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT(DESCA, N, N, MP MB, MP NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT (DESCL, N, 1, MP MB, 1, O, 0, MP ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (AO (MXLDA,MXCOL), X0 (MXLDA),FACTO (MXLDA,MXCOL), RJ(N), &
RJO (MXLDA), RESO (MXLDA))
! Map input array to the processor grid
CALL SCALAPACK_MAP(A, DESCA, A0)
! Call the factorization routine
CALL LFCDS (AO, FACTO, RCOND)
! Print the reciprocal condition number
! and the L1 condition number
IF(MP_RANK .EQ. 0) THEN
CALL UMACH (2, NOUT)

WRITE (NOUT,99998) RCOND, 1.0E0/RCOND
ENDIF
! Set up the columns of the identity
! matrix one at a time in RJ
RJ = 0.0EO
DO 10 J=1, N
RJ(J) = 1.0
! Map input array to the processor grid
CALL SCALAPACK_MAP(RJ, DESCL, RJO)
! RJ is the J-th column of the identity
! matrix so the following LFIDS
! reference computes the J-th column of
! the inverse of A
CALL LFIDS (AO, FACTO, RJO, X0, RESO)
RJ(J) = 0.0
CALL SCALAPACK UNMAP (X0, DESCL, AINV(:,J))
10 CONTINUE
! Print results.
! Only Rank=0 has the solution, AINV.
IF(MP_RANK.EQ.0) CALL WRRRN (’AINV’, AINV)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, AINV)
DEALLOCATE (A0, FACTO, RJ, RJO, RESO, XO)
! Exit ScalLAPACK usage
CALL SCALAPACK EXIT (MP_ ICTXT)
! Shut down MPI
MP NPROCS = MP_ SETUP (‘FINAL’)
99998 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F9.3)
END

190 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Output

RCOND < 0.005
L1l Condition number < 875.0

AINV
1 2 3
1 35.00 8.00 -5.00
2 8.00 2.00 -1.00
3 -5.00 -1.00 1.00

LFTDS

HIGH
p&%;a»%cz &merr

CAPABLE

Computes the R'R Cholesky factorization of a real symmetric positive definite matrix.

Required Arguments
A — N by N symmetric positive definite matrix to be factored. (Input)
Only the upper triangle of a is referenced.

FACT — n~ by N matrix containing the upper triangular matrix R of the factorization of & in
the upper triangle, and the lower triangular matrix R in the lower triangle. (Output)
If & is not needed, A and FACT can share the same storage location.

Optional Arguments
N — Order of the matrix. (Input)
Default: n = size (2,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: DA = size (a,1).

LDFACT — Leading dimension of FacT exactly as specified in the dimension statement of

the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFTDS (A, FACT [,..]1)

Specific: ~ The specific interface names are S LFTDS and D_LFTDS.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 191

FORTRAN 77 Interface

Single: CALL LFTDS (N, A, LDA, FACT, LDFACT)

Double: The double precision name is DLFTDS.

ScaLAPACK Interface

Generic: CALL LEFTDS (A0, FACTO [,..])
Specific: ~ The specific interface names are s LFTDS and D_LFTDS.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description
Routine LFTDS computes an R'R Cholesky factorization of a real symmetric positive definite
coefficient matrix. The matrix R is upper triangular.

LrTDs fails if any submatrix of R is not positive definite or if R has a zero diagonal element.
These errors occur only if A is very close to a singular matrix or to a matrix which is not positive
definite.

The R'R factors are returned in a form that is compatible with routines LFIDS, LFSDS and LEDDS.
To solve systems of equations with multiple right-hand-side vectors, use LFTDs followed by either
LFIDS or LFSDS called once for each right-hand side. The routine LEDDS can be called to compute
the determinant of the coefficient matrix after LETDs has performed the factorization.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending
upon which supporting libraries are used during linking. For a detailed explanation see “Using
ScaLAPACK, LAPACK, LINPACK, and EISPACK” in the Introduction section of this manual.

Comments
Informational error

Type Code
4 2 The input matrix is not positive definite.

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:
A0 — wmx1DA by mxcoL local matrix containing the local portions of the distributed matrix
A. A contains the symmetric positive definite matrix to be factored. (Input)

FACTO — wMx1pa by mxcoL local matrix containing the local portions of the distributed
matrix FACT. FACT contains the upper triangular matrix R of the factorization of 2 in
the upper triangular part. (Output)

192 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Only the upper triangle of rFacT will be used. If & is not needed, A and FACT can share
the same storage locations.

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, MxzpA and MxCOL can be obtained through a call
to scaLAPACK_GETDIM (see Utilities) after a call to scaLapack seTup (see Utilities) has been

made. See the ScaLAPACK Example below.

Example

The inverse of a 3 X 3 matrix is computed. LFTDs is called to factor the matrix and to check for

nonpositive definiteness. LrsDs is called to determine the columns of the inverse.

USE LFTDS_INT
USE LFSDS_INT
USE WRRRN_INT

! Declare variables

INTEGER LDA, LDFACT, N
PARAMETER (LDA=3, LDFACT=3, N=3)
REAL A(LDA,LDA), AINV(LDA,LDA), FACT(LDFACT,LDFACT), RJ(N)
|
! Set values for A
! A= (1.0 -=-3.0 2.0)
! (-3.0 10.0 =5.0)
! (2.0 -5.0 6.0)
!
pATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
! Factor the matrix A
CALL LFTDS (A, FACT)
! Set up the columns of the identity
! matrix one at a time in RJ
RJ = 0.0EQ
DO 10 J=1, N
RJ(J) = 1.0EO
! RJ is the J-th column of the identity
! matrix so the following LFSDS
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
CALL LFSDS (FACT, RJ, AINV(:,J))
RJ(J) = 0.0EO
10 CONTINUE
! Print the results
CALL WRRRN (’AINV’, AINV)
!
END
Output
AINV
1 2 3
1 35.00 8.00 -5.00
2 8.00 2.00 -1.00
3 -5.00 -1.00 1.00

IMSL MATH LIBRARY

Chapter 1: Linear Systems e 193

ScalLAPACK Example

The inverse of the same 3 X 3 matrix is computed as a distributed example. LETDs is called to
factor the matrix and to check for nonpositive definiteness. LFsDs is called to determine the
columns of the inverse. sSCALAPACK MAP and SCALAPACK UNMAP are IMSL utility routines (see
Chapter 11, “Utilities”) used to map and unmap arrays to and from the processor grid. They are
used here for brevity. pEscINIT isa ScaLAPACK tools routine which initializes the descriptors
for the local arrays.

USE MPI SETUP_ INT
USE LFTDS INT
USE UMACH_ INT
USE LFSDS_INT
USE WRRRN_ INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER J, LDA, N, DESCA(9), DESCL(9)

INTEGER INFO, MXCOL, MXLDA

REAL, ALLOCATABLE :: A(:,:), BINV(:,:), X0(:)

REAL, ALLOCATABLE :: AO(:,:), FACTO(:,:), RESO(:), RJO(:)

PARAMETER (LDA=3, N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A (LDA,N), AINV(LDA,N))
! Set values for A

A(l,:) = (/ 1.0, =3.0, 2.0/)

A(2,1) (/ =3.0, 10.0, -5.0/)

A(3,:) = (/ 2.0, =-5.0, 6.0/)
ENDIF

! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCL, N, 1, MP MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (AQO (MXLDA,MXCOL), X0 (MXLDA),FACTO (MXLDA,MXCOL), RJ(N), &
RJO (MXLDA), RESO (MXLDA), IPVTO (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK MAP (A, DESCA, AO)
! Call the factorization routine
CALL LFTDS (AQO, FACTO)
! Set up the columns of the identity
! matrix one at a time in RJ
RJ = 0.0EO
DO 10 J=1, N
RJ(J) = 1.0

194 e Chapter 1: Linear Systems IMSL MATH LIBRARY

CALL SCALAPACK MAP(RJ, DESCL, RJO)
RJ is the J-th column of the identity
matrix so the following LFSDS
reference computes the J-th column of
the inverse of A
CALL LFSDS (FACTO, RJO, XO0)
RJ(J) = 0.0
CALL SCALAPACK UNMAP (X0, DESCL, AINV(:,J))
10 CONTINUE
Print results.
Only Rank=0 has the solution, AINV.
IF(MP_RANK.EQ.0) CALL WRRRN (’AINV’, AINV)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, AINV)
DEALLOCATE (A0, FACTO, IPVTO, RJ, RJO, RESO, XO)
Exit ScalAPACK usage
CALL SCALAPACK EXIT (MP_ ICTXT)
Shut down MPI
MP NPROCS = MP SETUP (‘FINAL’)
END

Output

RCOND < 0.005
L1l Condition number < 875.0

1

AINV
1 2 3
35.00 8.00 -5.00
8.00 2.00 -1.00
-5.00 -1.00 1.00

LFSDS

HLGH
PE%FMCE %}MPI

CAPABLE

Solves a real symmetric positive definite system of linear equations given the R" R Cholesky
factorization of the coefficient matrix.

Required Arguments

FACT — n~ by N matrix containing the R R factorization of the coefficient matrix 2 as output

from routine LFCDS/DLFCDS OF LFTDS/DLFTDS. (Input)
B — Vector of length ~ containing the right-hand side of the linear system. (Input)

X — Vector of length n containing the solution to the linear system. (Output)
If B is not needed, B and x can share the same storage locations.

IMSL MATH LIBRARY

Chapter 1: Linear Systems e 195

Optional Arguments
N — Number of equations. (Input)
Default; N = size (FACT,2).

LDFACT — Leading dimension of FacT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFSDS (FACT,B,X [,..])

Specific: ~ The specific interface names are S LFSDs and D_LFSDS.

FORTRAN 77 Interface

Single: CALL LFSDS (N, FACT, LDFACT, B, X)

Double: The double precision hame is DLFSDS.

ScaLAPACK Interface

Generic: CALL LFSDS (FACTO, BO, X0 [,..])
Specific: The specific interface names are S_LFsDS and D_LFSDS.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description
Routine LFsps computes the solution for a system of linear algebraic equations having a real
symmetric positive definite coefficient matrix. To compute the solution, the coefficient matrix

must first undergo an R'R factorization. This may be done by calling either LFcDs or LFTDS. R is
an upper triangular matrix.

The solution to Ax = b is found by solving the triangular systems R'y = b and Rx = y.

LFsDs and LFIDS both solve a linear system given its R'R factorization. LFIDS generally takes
more time and produces a more accurate answer than LrsDs. Each iteration of the iterative
refinement algorithm used by Lr1Ds calls LFsDs.

The underlying code is based on either LINPACK, LAPACK, or ScaLAPACK code depending
upon which supporting libraries are used during linking. For a detailed explanation see “Using
ScaLAPACK, LAPACK, LINPACK, and EISPACK” in the Introduction section of this manual.

Comments
Informational error

196 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Type Code

4 1 The input matrix is singular.

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

FACTO— wmxipa by mxcor local matrix containing the local portions of the distributed
matrix FACT. FACT contains the R' R factorization of the coefficient matrix a as output
from routine LFCDS/DLFCDS Of LFTDS/DLFTDS. (Input)

BO — Local vector of length MxL.DA containing the local portions of the distributed vector B.
B contains the right-hand side of the linear system. (Input)

X0 — Local vector of length MmxL.DaA containing the local portions of the distributed vector x.
x contains the solution to the linear system. (Output)
If B is not needed, B and x can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, mMxLpaA and MxCOL can be obtained through a call
to SCALAPACK_GETDIM (see Utilities) after a call to scarapack seTup (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

A set of linear systems is solved successively. LETDs is called to factor the coefficient matrix.
LFSDS is called to compute the four solutions for the four right-hand sides. In this case the
coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be
better to call LrcDs to perform the factorization, and LF1Ds to compute the solutions.

USE LFSDS INT
USE LFTDS_INT
USE WRRRN_INT
Declare variables

INTEGER LDA, LDFACT, N
PARAMETER (LDA=3, LDFACT=3, N=3)
REAL A(LDA,LDA), B(N,4), FACT(LDFACT,LDFACT), X(N,4)

Set values for A and B

A= (1.0 -3.0 2.0)
(-3.0 10.0 =5.0)
(2.0 -5.0 6.0)

B = (-1.0 3.6 -8.0 -9.4)
(-3.0 -4.2 11.0 17.6)
(-3.0 -5.2 -6.0 -23.4)

DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
DATA B/-1.0, -3.0, -3.0, 3.6, -4.2, -5.2, -8.0, 11.0, -6.0,%&
-9.4, 17.6, -23.4/
Factor the matrix A
CALL LFTDS (A, FACT)

IMSL MATH LIBRARY Chapter 1: Linear Systems e 197

N

Compute the solutions
DO 10 1I=1, 4
CALL LFSDS

10 CONTINUE

(FACT, B(:,I), X(:,1))

Print solutions

CALL WRRRN (’The solution vectors are’, X)

END
Output
The solution vectors are
1 2 3 4
-44.0 118.4 -162.0 -71.2
-11.0 25.6 -36.0 -16.6
5.0 -19.0 23.0 6.0

ScaLAPACK Example

The same set of linear systems is solved successively as a distributed example. Routine LFTDS is
called to factor the coefficient matrix. The routine LFsDs is called to compute the four solutions
for the four right-hand sides. In this case, the coefficient matrix is assumed to be well-conditioned
and correctly scaled. Otherwise, it would be better to call LrcDs to perform the factorization, and
LFIDS to compute the solutions. SCALAPACK MAP and SCALAPACK UNMAP are IMSL utility
routines (see Chapter 11, “Utilities”) used to map and unmap arrays to and from the processor
grid. They are used here for brevity. bEscINIT isa ScaLAPACK tools routine which initializes
the descriptors for the local arrays.

USE MPI SETUP INT
USE LFSDS INT
USE LFTDS_INT
USE WRRRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables
INTEGER J, LDA, N, DESCA(9), DESCL(9)
INTEGER INFO, MXCOL, MXLDA
REAL, ALLOCATABLE :: A(:,:), B(:,:), X(:,:), X0(:)
REAL, ALLOCATABLE AO(:,:), FACTO(:,:), BO(:)
PARAMETER (LDA=3, N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP()
IF (MP_RANK .EOQ. 0) THEN
ALLOCATE (A (LDA,N), B(N,4), X(N,4))
! Set values for A and B
A(l,:) = (/ 1.0, =3.0, 2.0/)
A(2,:) = (/ -3.0, 10.0, -5.0/)
A(3,:) = (/ 2.0, -=5.0, 6.0/)
|
B(1,:) = (/ -1.0, 3.6, -8.0, -=9.4/)
B(2,:) = (/ -3.0, -4.2, 11.0, 17.6/)
B(3,:) = (/ -3.0, -5.2, -6.0, -23.4/)
ENDIF

198 e Chapter 1: Linear Systems

IMSL MATH LIBRARY

! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCL, N, 1, MP MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (AQ (MXLDA,MXCOL), XO (MXLDA),FACTO (MXLDA,MXCOL), BO (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK MAP (A, DESCA, AO0)
! Call the factorization routine
CALL LFTDS (A0, FACTO)
! Set up the columns of the B
! matrix one at a time in XO
DO 10 J=1, 4
CALL SCALAPACK MAP(B(:,3j), DESCL, BO)
! Solve for the J-th column of X
CALL LFSDS (FACTO, B0, XO0)
CALL SCALAPACK UNMAP (X0, DESCL, X(:,J))
10 CONTINUE
! Print results.
! Only Rank=0 has the solution, X.
IF (MP_RANK.EQ.0) CALL WRRRN (’The solution vectors are’, X)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, B, X)
DEALLOCATE (A0, FACTO, BO, XO0)
! Exit Scalapack usage
CALL SCALAPACK_EXIT(MP_ICTXT)
! Shut down MPI
MP NPROCS = MP_SETUP(‘FINAL’)

END
Output
The solution vectors are
1 2 3 4
1 -44.0 118.4 -162.0 -71.2
2 -11.0 25.6 -36.0 -16.6
3 5.0 -19.0 23.0 6.0

LFIDS

MPI

CAPABLE

Uses iterative refinement to improve the solution of a real symmetric positive definite system of
linear equations.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 199

Required Arguments

A — N by N matrix containing the symmetric positive definite coefficient matrix of the linear
system. (Input)
Only the upper triangle of a is referenced.

FACT — n by N matrix containing the R R factorization of the coefficient matrix 2 as output
from routine LFCDS/DLFCDS Of LFTDS/DLFTDS. (Input)

B — Vector of length ~ containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and x can share the same storage locations.

RES — Vector of length § containing the residual vector at the improved solution. (Output)

Optional Arguments

N — Number of equations. (Input)
Default: v = size (2,2).

LDA — Leading dimension of A exactly as specified in the dimesion statement of the calling
program. (Input)
Default: Lpa = size (a,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFIDS (A, FACT, B, X,RES [,..])
Specific: The specific interface names are S LFIDS and D_LFIDS.
FORTRAN 77 Interface
Single: CALL LFIDS (N, A, LDA, FACT, LDFACT, B, X, RES)
Double: The double precision hame is DLFIDS.
ScalLAPACK Interface
Generic: CALL LFIDS (A0, FACTO, BO, X0, RESO [,..])

Specific: ~ The specific interface names are S LFIDs and D_LFIDS.

200 e Chapter 1: Linear Systems IMSL MATH LIBRARY

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine LFIDs computes the solution of a system of linear algebraic equations having a real
symmetric positive definite coefficient matrix. Iterative refinement is performed on the solution
vector to improve the accuracy. Usually almost all of the digits in the solution are accurate, even if
the matrix is somewhat ill-conditioned. The underlying code is based on either LINPACK ,
LAPACK, or ScaLAPACK code depending upon which supporting libraries are used during
linking. For a detailed explanation see “Using ScaLAPACK, LAPACK, LINPACK, and
EISPACK?” in the Introduction section of this manual.

To compute the solution, the coefficient matrix must first undergo an R'R factorization. This may
be done by calling either LFCDS or LETDS.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFIDS and LFSDS both solve a linear system given its R'R factorization. LFIDS generally takes
more time and produces a more accurate answer than LFsDs. Each iteration of the iterative
refinement algorithm used by Lr1Ds calls LFsDs.

Comments
Informational error

Type Code

3 2 The input matrix is too ill-conditioned for iterative refinement to be
effective.

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

A0 — wMxLDA by MxcoL local matrix containing the local portions of the distributed matrix
A. A contains the symmetric positive definite coefficient matrix of the linear system.

(Input)

FACTO0 — wmxtpa by mxcor local matrix containing the local portions of the distributed
matrix FACT. FACT contains the R' R factorization of the coefficient matrix a as output
from routine LFCDS/DLFCDS OF LFTDS/DLFTDS. (Input)

B0 — Local vector of length MxL.DA containing the local portions of the distributed vector B.
B contains the right-hand side of the linear system. (Input)

X0 — Local vector of length MmxL.Da containing the local portions of the distributed vector x.
x contains the solution to the linear system. (Output)
If B is not needed, B and x can share the same storage locations.

RESO — Local vector of length mx1.DA containing the local portions of the distributed
vector RES. RES contains the residual vector at the improved solution to the linear
system. (Output)

IMSL MATH LIBRARY Chapter 1: Linear Systems e 201

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, MxzLpA and MxCOL can be obtained through a call
to scaLAPACK_GETDIM (see Utilities) after a call to scaLapack seTup (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving
the system each of the first two times by adding 0.2 to the second element.

USE LFIDSilNT
USE LFCDS_ INT
USE UMACH_INT
USE WRRRN_ INT
! Declare variables

INTEGER LDA, LDFACT, N

PARAMETER (LDA=3, LDFACT=3, N=3)

REAL A (LDA,LDA), B(N), RCOND, FACT (LDFACT,LDFACT), RES(N,3),&
X (N, 3)

Set values for A and B

A = (0 -3.0 2.0)
.0 10.0 -5.0)

(0 -5.0 6.0)
B=(1.0 -3.0 2.0)

|
N W

DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
DATA B/1.0, -3.0, 2.0/
! Factor the matrix A
CALL LFCDS (A, FACT, RCOND)
! Print the estimated condition number
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0EO0/RCOND
! Compute the solutions
DO 10 I=1, 3
CALL LFIDS (A, FACT, B, X(:,I), RES(:,I))
B(2) = B(2) + .2EQ0
10 CONTINUE
! Print solutions and residuals
CALL WRRRN (’The solution vectors are’, X)
CALL WRRRN (’The residual vectors are’, RES)
i
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F9.3)
END

Output

RCOND = 0.001
L1 Condition number = 674.727

The solution vectors are
1 2 3

202 e Chapter 1: Linear Systems IMSL MATH LIBRARY

1 1.000 2.600 4.200
2 0.000 0.400 0.800
3 0.000 -0.200 -0.400

The residual vectors are

1 2 3
1 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000

ScaLAPACK Example

The same set of linear systems is solved successively as a distributed example. The right-hand-
side vector is perturbed after solving the system each of the first two times by adding 0.2 to the
second element. SCALAPACK MAP and SCALAPACK UNMAP are IMSL utility routines (see Chapter
11, “Utilities™) used to map and unmap arrays to and from the processor grid. They are used here
for brevity. pEscInIT isa ScaLAPACK tools routine which initializes the descriptors for the
local arrays

USE MPI SETUP_ INT
USE LFIDS_INT
USE LFCDS_ INT
USE UMACH_INT
USE WRRRN_ INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER J, LDA, N, NOUT, DESCA(9), DESCL(9)

INTEGER INFO, MXCOL, MXLDA

REAL RCOND

REAL, ALLOCATABLE :: A(:,:), B(:), X(:,:), RES(:,:), XO0(:)

REAL, ALLOCATABLE ::
PARAMETER (LDA=3, N=3)
! Set up for MPI
MP_NPROCS = MP_SETUP()
IF (MP_RANK .EOQ. 0) THEN
ALLOCATE (A(LDA,N), B(N), X(N,3), RES(N,3))
! Set values for A and B

AO(:,:), FACTO(:,:), BO(:), RESO(:)

A(l,:) = (/ 1.0, -3.0, 2.0/)
A(2,:) = (/-3.0, 10.0, -5.0/)
A(3,:) = (/ 2.0, -5.0, 6.0/)
!
B = (/ 1.0, -3.0, 2.0/)
ENDIF

! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCL, N, 1, MP MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (A0 (MXLDA,MXCOL), X0 (MXLDA), FACTO (MXLDA,MXCOL), BO(MXLDA), &

IMSL MATH LIBRARY Chapter 1: Linear Systems e 203

RESO (MXLDA))

! Map input arrays to the processor grid
CALL SCALAPACKiMAP(A, DESCA, A0)

! Call the factorization routine
CALL LFCDS (A0, FACTO, RCOND)

! Print the estimated condition number
CALL UMACH (2, NOUT)

IF (MP_RANK .EQ. 0) WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

! Set up the columns of the B

! matrix one at a time in XO
DO 10 J=1, 3

CALL SCALAPACK MAP (B, DESCL, BO)
! Solve for the J-th column of X
CALL LFIDS (AO, FACTO, BO, X0, RESO)
CALL SCALAPACK UNMAP (X0, DESCL, X(:,J))
CALL SCALAPACK_UNMAP(RESO, DESCL, RES(:,J))
IF (MP_RANK .EQ. 0) B(2) = B(2) + .2EOQ
10 CONTINUE

! Print results.

! Only Rank=0 has the full arrays
IF(MP_RANK.EQ.0) CALL WRRRN (’The solution vectors are’, X)
IF(MP_RANK.EQ.0) CALL WRRRN (’'The residual vectors are’, RES)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, B, X, RES)

DEALLOCATE (A0, BO, FACTO, RESO, XO0)

! Exit ScalAPACK usage
CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI
MP_NPROCS = MP_SETUP(‘FINAL’)

99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F9.3)
END

Output

RCOND = 0.001
L1 Condition number = 674.727

The solution vectors are

1 2 3
1 1.000 2.600 4.200
2 0.000 0.400 0.800
3 0.000 -0.200 -0.400

The residual vectors are

1 2 3
1 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000

LFDDS

Computes the determinant of a real symmetric positive definite matrix given the R'R Cholesky
factorization of the matrix .

204 o Chapter 1: Linear Systems IMSL MATH LIBRARY

Required Arguments

FACT — n by N matrix containing the R R factorization of the coefficient matrix 2 as output
from routine LFCDS/DLFCDS Of LFTDS/DLFTDS. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that, 1.0 <|pET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form, det(a) = peT1 * 10PET2,

Optional Arguments

N — Number of equations. (Input)
Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFDDS (FACT, DET1, DET2 [,..])

Specific: The specific interface names are S_LFDDS and D_LFDDS.

FORTRAN 77 Interface

Single: CALL LFDDS (N, FACT, LDFACT, DET1, DET2)
Double: The double precision hame is DLFDDS.
Description

Routine LFpDS computes the determinant of a real symmetric positive definite coefficient matrix.
To compute the determinant, the coefficient matrix must first undergo an RR factorization. This
may be done by calling either LrcDs or LrTDS. The formula det A = det R' detR = (det R)? is
used to compute the determinant. Since the determinant of a triangular matrix is the product of the

diagonal elements,
N
det R = Hi:1 Rii

(The matrix R is stored in the upper triangle of FacT.)

LFDDS is based on the LINPACK routine spopT; see Dongarra et al. (1979).

Example

The determinant is computed for a real positive definite 3 X 3 matrix.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 205

!
99999

USE LFDDS INT
USE LFTDS INT
USE UMACH_ INT
Declare variables

INTEGER LDA, LDFACT, NOUT
PARAMETER (LDA=3, LDFACT=3)
REAL A(LDA,LDA), DET1, DET2, FACT (LDFACT,LDFACT)
Set values for A
A= (1.0 =3.0 2.0)
(-3.0 20.0 =5.0)
(2.0 -=5.0 6.0)

DATA A/1.0, -3.0, 2.0, -3.0, 20.0, -5.0, 2.0, -5.0, 6.0/
Factor the matrix

CALL LFTDS (A, FACT)
Compute the determinant

CALL LFDDS (FACT, DET1, DETZ2)
Print results

CALL UMACH (2, NOUT)

WRITE (NOUT,99999) DET1, DET2

FORMAT (’ The determinant of A is ’,F6.3,’ * 10**’,F2.0)
END

Output

The determinant of A is 2.100 * 10**1.

LINDS

HLGH
PE%FMCE %}MPI

CAPABLE

Computes the inverse of a real symmetric positive definite matrix.

Required Arguments

A — N by N matrix containing the symmetric positive definite matrix to be inverted. (Input)

Only the upper triangle of a is referenced.

AINV — N by N matrix containing the inverse of A. (Output)
If & is not needed, A and ANV can share the same storage locations.

Optional Arguments

N — Order of the matrix a. (Input)
Default: v = size (2,2).

206 e Chapter 1: Linear Systems

IMSL MATH LIBRARY

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default; Lpa = size (a,1).

LDAINV — Leading dimension of A1nv exactly as specified in the dimension statement of
the calling program. (Input)
Default: LpaINv = size (AINV,1).

FORTRAN 90 Interface

Generic: CALL LINDS (A,AINV [,..])

Specific: ~ The specific interface names are s LINDS and D_LINDS.

FORTRAN 77 Interface

Single: CALL LINDS (N, A, LDA, AINV, LDAINV)

Double: The double precision name is DLINDS.

ScaLAPACK Interface

Generic: CALL LINDS (A0, AINVO [,..])
Specific: ~ The specific interface names are S LINDS and D_LINDS.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine LINDS computes the inverse of a real symmetric positive definite matrix. The underlying
code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon which
supporting libraries are used during linking. For a detailed explanation see

“Using ScaLAPACK, LAPACK, LINPACK, and EISPACK?” in the Introduction section of this

manual. T.TNDs first uses the routine LECDS to compute an R'R factorization of the coefficient
matrix and to estimate the condition number of the matrix. LINRT is then used to compute R™.
Finally a™ is computed using A*=R* R,

LInDs fails if any submatrix of R is not positive definite or if R has a zero diagonal element.
These errors occur only if A is very close to a singular matrix or to a matrix which is not positive
definite.

If the estimated condition number is greater than 1/¢ (where € is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in A.
Comments

1. Workspace may be explicitly provided, if desired, by use of L.2NDs/pL2nDs. The
reference is:

IMSL MATH LIBRARY Chapter 1: Linear Systems e 207

CALL L2NDS (N, A, LDA, AINV, LDAINV, WK)
The additional argument is:

WK — Work vector of length .

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.
4 2 The input matrix is not positive definite.

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

A0 — wMxLDA by MxcoL local matrix containing the local portions of the distributed matrix
A. A contains the symmetric positive definite matrix to be inverted. (Input)

AINVO — wmx1DA by mMxcoL local matrix containing the local portions of the distributed
matrix ATNV. AINV contains the inverse of the matrix a. (Output)
If & is not needed, A and A1NV can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, mMxzLpaA and MxCOL can be obtained through a call
to SCALAPACK_GETDIM (see Utilities) after a call to scarapack sgTuP (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

The inverse is computed for a real positive definite 3 X 3 matrix.

USE LINDS INT
USE WRRRN_INT
! Declare variables

INTEGER LDA, LDAINV

PARAMETER (LDA=3, LDAINV=3)

REAL A (LDA,LDA), AINV(LDAINV,LDAINV)
i
! Set values for A
! A= (1.0 -=-3.0 2.0)
! (-3.0 10.0 -=5.0)
! (2.0 -=5.0 6.0)
|

pata a/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/

CALL LINDS (A, AINV)
! Print results

CALL WRRRN (’AINV’, AINV)
|

208 e Chapter 1: Linear Systems IMSL MATH LIBRARY

END

Output
ATINV
1 2 3
1 35.00 8.00 -5.00
2 8.00 2.00 -1.00
3 -5.00 -1.00 1.00

ScalLAPACK Example

The inverse of the same 3 X 3 matrix is computed as a distributed example. scaLapack MaPp and
SCALAPACK UNMAP are IMSL utility routines (see Chapter 11, “Utilities”) used to map and unmap
arrays to and from the processor grid. They are used here for brevity. DESCINIT isa
ScaLAPACK tools routine which initializes the descriptors for the local arrays.

USE MPI SETUP_ INT
USE LINDS_INT
USE WRRRN_ INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER J, LDA, LDFACT, N, DESCA(9)

INTEGER INFO, MXCOL, MXLDA

REAL, ALLOCATABLE :: A(:,:), AINV(:,:)
REAL, ALLOCATABLE :: AO(:,:), AINVO(:,:)

PARAMETER (LDA=3, N=3)
! Set up for MPI
MP NPROCS = MP SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A (LDA,N), AINV(LDA,N))
! Set values for A

A(l,:) = (/ 1.0, =3.0, 2.0/)

A(2,:) (/ -3.0, 10.0, -5.0/)

A(3,:) = (/ 2.0, -5.0, 6.0/)
ENDIF

! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (A0 (MXLDA, MXCOL), AINVO (MXLDA,MXCOL))
! Map input arrays to the processor grid
CALL SCALAPACK_MAP(A, DESCA, A0)
! Call the routine to get the inverse
CALL LINDS (A0, AINVO)
! Unmap the results from the distributed
! arrays back to a nondistributed array.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 209

! After the unmap, only Rank=0 has the full
! array.
CALL SCALAPACK UNMAP (AINVO, DESCA, AINV)
! Print results.
! Only Rank=0 has the solution, AINV.
IF(MP_RANK.EQ.0) CALL WRRRN (’AINV’, AINV)
IF (MP RANK .EQ. 0) DEALLOCATE (A, AINV)
DEALLOCATE (A0, AINVO)
! Exit ScalAPACK usage
CALL SCALAPACK EXIT (MP_ ICTXT)
! Shut down MPI
MP NPROCS = MP_ SETUP (‘FINAL’)

END
Output
AINV
1 2 3
1 35.00 8.00 -5.00
2 8.00 2.00 -1.00
3 -5.00 -1.00 1.00

LSASF

PE%@MCE

Solves a real symmetric system of linear equations with iterative refinement.

Required Arguments
A — N by n matrix containing the coefficient matrix of the symmetric linear system. (Input)
Only the upper triangle of a is referenced.

B — Vector of length ~ containing the right-hand side of the linear system. (Input)

X — Vector of length n containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)
Default: nv = size (2,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: Lpa = size (a,1).

210 e Chapter 1: Linear Systems IMSL MATH LIBRARY

FORTRAN 90 Interface

Generic: CALL LSASF (A,B,X [,..])

Specific: ~ The specific interface names are S_Lsasr and D_LSASE.

FORTRAN 77 Interface

Single: CALL LSASF (N, A, LDA, B, X)
Double: The double precision name is DLSASF.
Description

Routine LsasF solves systems of linear algebraic equations having a real symmetric indefinite
coefficient matrix. It first uses the routine LFCcsF to compute a U DU’ factorization of the
coefficient matrix and to estimate the condition number of the matrix. D is a block diagonal matrix
with blocks of order 1 or 2, and U is a matrix composed of the product of a permutation matrix
and a unit upper triangular matrix. The solution of the linear system is then found using the
iterative refinement routine LFISF.

Lsask fails if a block in D is singular or if the iterative refinement algorithm fails to converge.
These errors occur only if A is singular or very close to a singular matrix.

If the estimated condition number is greater than 1/e (where € is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system. LSASF solves the
problem that is represented in the computer; however, this problem may differ from the problem
whose solution is desired.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2AsF/DL2ASF. The
reference is

CALL L2ASF (N, A, LDA, B, X, FACT, IPVT, WK)
The additional arguments are as follows:
FACT — ~ x N work array containing information about the U DU’
factorization of a on output. If & is not needed, a and FACT can share

the same storage location.

IPVT — Integer work vector of length N containing the pivoting information
for the factorization of a on output.

WK — Work vector of length n.

2. Informational errors

Type Code

IMSL MATH LIBRARY Chapter 1: Linear Systems o 211

3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.

4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2AsF the leading dimension of FACT is increased by
1vAaL(3) when ~ is a multiple of TvaLn(4). The values 1vaL(3) and 1vaL(4) are
temporarily replaced by 1varn(1) and 1vaL(2), respectively, in LSASF.
Additional memory allocation for FacT and option value restoration are done
automatically in LsasF. Users directly calling L2asF can allocate additional
space for rFacT and set 1vaL(3) and 1vaL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LsasF or L2asF. Default values for the option are TvaL(*)
=1,16,0,1.

17 This option has two values that determine if the L; condition number is to be
computed. Routine LsasF temporarily replaces 1var(2) by 1var(l). The
routine L2csF computes the condition number if TvaL(2) = 2. Otherwise L2CSF
skips this computation. LsasF restores the option. Default values for the option
are TvaL(*) =1, 2.

Example

A system of three linear equations is solved. The coefficient matrix has real symmetric form and
the right-hand-side vector b has three elements.

USE LSASF INT
USE WRRRN_INT
! Declare variables
PARAMETER (LDA=3, N=3)
REAL A (LDA,LDA), B(N), X (N)

Set values for A and B

A= (0 -2.0 1.0)
(0 -2.0 3.0)
B=(4.1 -4.7 6.5)

|
=N

(@]
w
(@]

|
N
(@]

DATA A/1.0, -2.0, 1.

DATA B/4.1, -4.7, 6.5/
CALL LSASF (A, B, X)

! Print results
CALL WRRRN (’X’, X, 1, N, 1)
END

212 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Output

X
1 2 3
-4.100 -3.500 1.200

LSLSF

H&f‘
PE%FMCE
Solves a real symmetric system of linear equations without iterative refinement .

Required Arguments

A — N by n matrix containing the coefficient matrix of the symmetric linear system. (Input)
Only the upper triangle of a is referenced.

B — Vector of length ~ containing the right-hand side of the linear system. (Input)
X — Vector of length n containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)
Default: n = size (3,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling

program. (Input)
Default: DA = size (a,1).

FORTRAN 90 Interface

Generic: CALL LSLSF (A,B,X [,..]1)

Specific: The specific interface names are s_LsLSF and D_LSLSF.
FORTRAN 77 Interface

Single: CALL LSLSF (N, A, LDA, B, X)

Double: The double precision name is DLSLSF.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 213

Description

Routine LsLsF solves systems of linear algebraic equations having a real symmetric indefinite
coefficient matrix. It first uses the routine LFCSF to compute a U DU’ factorization of the
coefficient matrix. D is a block diagonal matrix with blocks of order 1 or 2, and U is a matrix
composed of the product of a permutation matrix and a unit upper triangular matrix.

The solution of the linear system is then found using the routine LFssF.

1sLsF fails if a block in D is singular. This occurs only if A either is singular or is very close to a
singular matrix.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2L.SF/DL2LSF. The
reference is:

CALL L2LSF (N, A, LDA, B, X, FACT, IPVT, WK)
The additional arguments are as follows:
FACT — N x N work array containing information about the U DU
factorization of a on output. If A is not needed, A and FACT can share

the same storage locations.

IPVT — Integer work vector of length N containing the pivoting information
for the factorization of A on output.

WK — Work vector of length .

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.
4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine LsLSF the leading dimension of FACT is increased by
1vaL(3) when N is a multiple of TvaL(4). The values 1vaL(3) and 1vaL(4) are
temporarily replaced by 1var(1) and 1vaL(2), respectively, in LSLSF.
Additional memory allocation for FacT and option value restoration are done
automatically in LsLsF. Users directly calling 1.sT.SF can allocate additional
space for rFacT and set Tvar(3) and TvarL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LsLsF or LsLSF. Default values for the option are TvaL(*)
=1,16,0, 1.

214 e Chapter 1: Linear Systems IMSL MATH LIBRARY

17 This option has two values that determine if the L; condition number is to be
computed. Routine LsLsF temporarily replaces 1vaL(2) by 1var(l). The
routine 1.2csF computes the condition number if 1vaL(2) = 2. Otherwise L2CSF
skips this computation. LsLSF restores the option. Default values for the option
are TvaL(*) =1, 2.

Example

A system of three linear equations is solved. The coefficient matrix has real symmetric form and
the right-hand-side vector b has three elements.

USE LSLSF INT
USE WRRRN INT
! Declare variables
PARAMETER (LDA=3, N=3)
REAL A (LDA,LDA), B(N), X (N)

Set values for A and B

A = (0 -2.0 1.0)
(0 -2.0 3.0)
B=(4.1 -4.7 6.5)

|
=N

(@]
w
(@]

|
N
o

DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
DATA B/4.1, -4.7, 6.5/

CALL LSLSF (A, B, X)

CALL WRRRN ('X’, X, 1, N, 1)
END

Output

X
1 2 3
-4.100 -3.500 1.200

LFCSF

PE%}E%CE

Computes the U DU’ factorization of a real symmetric matrix and estimate its L; condition
number.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 215

Required Arguments
A — N by N symmetric matrix to be factored. (Input)
Only the upper triangle of a is referenced.

FACT — n by N matrix containing information about the factorization of the symmetric
matrix a. (Output)
Only the upper triangle of FacT is used. If A is not needed, 2 and FACT can share the
same storage locations.

IPVT — Vector of length n containing the pivoting information for the factorization.
(Output)

RCOND — Scalar containing an estimate of the reciprocal of the L, condition number of a.

(Output)

Optional Arguments

N — Order of the matrix. (Input)
Default: v = size (2,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: LD = size (a,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFCSF (A, FACT, IPVT, RCOND [,..])

Specific: The specific interface names are S LFCSF and D_LFCSF.

FORTRAN 77 Interface

Single: CALL LFCSF (N, A, LDA, FACT, LDFACT, IPVT, RCOND)
Double: The double precision name is DLFCSF.
Description

Routine LrcsF performs a U DU factorization of a real symmetric indefinite coefficient matrix.
It also estimates the condition number of the matrix. The U DU’ factorization is called the
diagonal pivoting factorization.

216 e Chapter 1: Linear Systems IMSL MATH LIBRARY

The L, condition number of the matrix A is defined to be k(A) = ||Al1]JA™l.. Since it is expensive to
compute |JA™|,, the condition number is only estimated. The estimation algorithm is the same as
used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/e (where € is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system.

Lrcsr fails if A is singular or very close to a singular matrix.

The U DU’ factors are returned in a form that is compatible with routines LFISF, LFSSF and
LFDSF. To solve systems of equations with multiple right-hand-side vectors, use LrcsF followed
by either LF1sF or LFssF called once for each right-hand side. The routine LFDSF can be called
to compute the determinant of the coefficient matrix after LrcsF has performed the factorization.

The underlying code is based on either LINPACK or LAPACK code depending upon which
supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK,
LAPACK, LINPACK, and EISPACK?” in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2csr/pL2csF. The
reference is:

CALL L2CSF (N, A, LDA, FACT, LDFACT, IPVT, RCOND, WK)
The additional argument is:

WK — Work vector of length n.

2. Informational errors
Type Code
3 1 The input matrix is algorithmically singular.
4 2 The input matrix is singular.
Example

The inverse of a 3 X 3 matrix is computed. LFcsF is called to factor the matrix and to check for
singularity or ill-conditioning. LrIsF is called to determine the columns of the inverse.

USE LFCSF_INT
USE UMACH_ INT
USE LFISF_INT
USE WRRRN_INT
Declare variables
PARAMETER (LDA=3, N=3)

INTEGER IPVT(N), NOUT
REAL A(LDA,LDA), AINV(N,N), FACT(LDA,LDA), RJ(N), RES(N), &
RCOND

! Set values for A

IMSL MATH LIBRARY Chapter 1: Linear Systems e 217

>
Il
|
=N
o oo
[[
N w N
o oo
|
w N
o oo

DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
! Factor A and return the reciprocal
! condition number estimate

CALL LFCSF (A, FACT, IPVT, RCOND)
! Print the estimate of the condition
! number

CALL UMACH (2, NOUT)

WRITE (NOUT,99999) RCOND, 1.0EO0/RCOND

! matrix one at a time in RJ

RJ = 0.EO
DO 10 J=1, N
RJ(J) = 1.0EO
! RJ is the J-th column of the identity
! matrix so the following LFISF
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
CALL LFISF (A, FACT, IPVT, RJ, AINV(:,J), RES)
RJ(J) = 0.0EO

10 CONTINUE
! Print the inverse
CALL WRRRN ("AINV’, AINV)
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
END

Output

RCOND < 0.05
L1 Condition number < 40.0

AINV
1 2 3
1 -2.500 -2.000 -0.500
-2.000 -1.000 .000
3 -0.500 0.000 0.500

N
o

LFTSF
H

GH
PERFORIMNCE

Computes the U DU factorization of a real symmetric matrix.

218 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Required Arguments
A — N by N symmetric matrix to be factored. (Input)
Only the upper triangle of a is referenced.

FACT — n by N matrix containing information about the factorization of the symmetric
matrix a. (Output)
Only the upper triangle of FacT is used. If & is not needed, A and FACT can share the
same storage locations.

IPVT — Vector of length n containing the pivoting information for the factorization.
(Output)

Optional Arguments

N — Order of the matrix. (Input)
Default: n = size (2,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (a,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFTSF (A, FACT, IPVT [,..])

Specific: The specific interface names are S LFTSF and D_LFTSF.

FORTRAN 77 Interface

Single: CALL LFTSF (N, A, LDA, FACT, LDFACT, IPVT)
Double: The double precision name is DLFTSF.
Description

Routine LrTsF performs a U DU’ factorization of a real symmetric indefinite coefficient matrix.
The U DU factorization is called the diagonal pivoting factorization.

LrTSF fails if A is singular or very close to a singular matrix.

The U DU factors are returned in a form that is compatible with routines LFISF, LFSSF and
LFDSF. To solve systems of equations with multiple right-hand-side vectors, use LrTsF followed
by either LF1sF or LFssF called once for each right-hand side. The routine LEDSF can be called
to compute the determinant of the coefficient matrix after LETsF has performed the factorization.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 219

The underlying code is based on either LINPACK or LAPACK code depending upon which
supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK,
LAPACK, LINPACK, and EISPACK?” in the Introduction section of this manual.

Comments
Informational error

Type Code

4 2 The input matrix is singular.

Example

The inverse of a 3 X 3 matrix is computed. LFTSF is called to factor the matrix and to check for
singularity. LFssF is called to determine the columns of the inverse.

USE LFTSF INT
USE LFSSF_INT
USE WRRRN_ INT
! Declare variables
PARAMETER (LDA=3, N=3)
INTEGER IPVT (N)
REAL A (LDA,LDA), AINV(N,N), FACT(LDA,LDA), RJ(N)

Set values for A

A= (1.0 =2.0 1.0)
(-2.0 3.0 -2.0)
(1.0 =-2.0 3.0)

DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
! Factor A

CALL LFTSF (A, FACT, IPVT)
! Set up the columns of the identity
! matrix one at a time in RJ

RJ = 0.0EO
DO 10 J=1, N
RJ(J) = 1.0EO
! RJ is the J-th column of the identity
! matrix so the following LFSSF
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
CALL LFSSF (FACT, IPVT, RJ, AINV(:,J))
RJ(J) = 0.0EO

10 CONTINUE
! Print the inverse
CALL WRRRN (’AINV’, AINV)
END

Output

AINV

220 e Chapter 1: Linear Systems IMSL MATH LIBRARY

1 -2.500 -2.000 -0.500
2 =-2.000 -1.000 0.000
3 -0.500 0.000 0.500

LFSSF

PE};aMCE

Solves a real symmetric system of linear equations given the U DU factorization of the
coefficient matrix.

Required Arguments

FACT — n~ by N matrix containing the factorization of the coefficient matrix a as output from
routine LFCSF/DLFCSF Or LETSF/DLFTSFE. (Input)
Only the upper triangle of FACT is used.

IPVT — Vector of length n containing the pivoting information for the factorization of a as
output from routine LFCSF/DLFCSF Of LFTSF/DLFTSF. (Input)

B — Vector of length n containing the right-hand side of the linear system. (Input)

X — Vector of length n containing the solution to the linear system. (Output)
If B is not needed, B and x can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)
Default: § = size (FACT,2).

LDFACT — Leading dimension of a exactly as specified in the dimension statement of the

calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFSSF (FACT, IPVT, B, X [,..])

Specific: The specific interface names are s_LFSSF and D_LFSSF.
FORTRAN 77 Interface

Single: CALL LFSSF (N, FACT, LDFACT, IPVT, B, X)

Double: The double precision name is DLFSSF.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 221

Description

Routine LFssF computes the solution of a system of linear algebraic equations having a real
symmetric indefinite coefficient matrix.

To compute the solution, the coefficient matrix must first undergo a U DU factorization. This
may be done by calling either LFCSF or LFTSF.

LFssF and LFISF both solve a linear system given its U DU’ factorization. LFISF generally takes
more time and produces a more accurate answer than LFssF. Each iteration of the iterative
refinement algorithm used by LF1sF calls LFSSF.

The underlying code is based on either LINPACK or LAPACK code depending upon which
supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK,
LAPACK, LINPACK, and EISPACK?” in the Introduction section of this manual.

Example

A set of linear systems is solved successively. LFTSF is called to factor the coefficient matrix.
LFssSF is called to compute the four solutions for the four right-hand sides. In this case the
coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be
better to call LrcsF to perform the factorization, and LFISF to compute the solutions.

USE LFSSF_INT
USE LFTSF INT
USE WRRRN_INT
! Declare variables
PARAMETER (LDA=3, N=3)
INTEGER IPVT (N)
REAL A(LDA,LDA), B(N,4), X(N,4), FACT (LDA,LDA)

Set values for A and B
A= (1.0 =-2.0 1.0)

(-2.0 3.
1.0 -2.0 3.0)

(@]
|
N
(@]

B=(-1.0 3.6 -8.0 -9.4)
(-3.0 -4.2 11.0 17.6)
(-3.0 -5.2 -6.0 -23.4)

DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
DATA B/-1.0, -3.0, -3.0, 3.6, -4.2, -5.2, -8.0, 11.0, -6.0,&
-9.4, 17.6, -23.4/

! Factor A
CALL LFTSF (A, FACT, IPVT)

! Solve for the four right-hand sides
DO 10 1I=1, 4

CALL LFSSF (FACT, IPVT, B(:,I), X(:,I))
10 CONTINUE

! Print results
CALL WRRRN (’X’, X)
END

222 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Output

X
1 2 3 4
1 10.00 2.00 1.00 0.00
2 5.00 -3.00 5.00 1.20
3 -1.00 -4.40 1.00 -7.00

LFISF

PE%%CE

Uses iterative refinement to improve the solution of a real symmetric system of linear equations.

Required Arguments
A — N by n matrix containing the coefficient matrix of the symmetric linear system. (Input)
Only the upper triangle of a is referenced

FACT — ~ by N matrix containing the factorization of the coefficient matrix a as output from
routine LFCSF/DLFCSF Of LFTSF/DLFTSF. (Input)
Only the upper triangle of FACT is used.

IPVT — Vector of length n containing the pivoting information for the factorization of a as
output from routine LFCSF/DLFCSF Or LFTSF/DLETSF. (Input)

B — Vector of length n containing the right-hand side of the linear system. (Input)

X — Vector of length n containing the solution to the linear system. (Output)
If B is not needed, B and x can share the same storage locations.

RES — Vector of length ~ containing the residual vector at the improved solution. (Output)

Optional Arguments

N — Number of equations. (Input)
Default: N = size (a,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: DA = size (a,1).

LDFACT — Leading dimension of FacT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

IMSL MATH LIBRARY Chapter 1: Linear Systems e 223

FORTRAN 90 Interface

Generic: CALL LFISF (A, FACT, IPVT, B, X, RES [,..])

Specific: ~ The specific interface names are s LFISF and D_LFISE.

FORTRAN 77 Interface

Single: CALL LFISF (N, A, LDA, FACT, LDFACT, IPVT, B, X, RES)
Double: The double precision name is DLFISF.
Description

Routine LFIsF computes the solution of a system of linear algebraic equations having a real
symmetric indefinite coefficient matrix. Iterative refinement is performed on the solution vector to
improve the accuracy. Usually almost all of the digits in the solution are accurate, even if the
matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo a U DU’ factorization. This
may be done by calling either LFCSF or LFTSF.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFISF and LFSSF both solve a linear system given its U DU factorization. LFISF generally takes
more time and produces a more accurate answer than LrssF. Each iteration of the iterative
refinement algorithm used by LF1sF calls LESSF.

Comments
Informational error

Type Code

3 2 The input matrix is too ill-conditioned for iterative refinement to be
effective.

Example

A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving
the system each of the first two times by adding 0.2 to the second element.

USE LFISF INT
USE UMACH_INT
USE LFCSF_INT
USE WRRRN_INT
Declare variables
PARAMETER (LDA=3, N=3)
INTEGER IPVT (N), NOUT
REAL A(LDA,LDA), B(N), X(N), FACT(LDA,LDA), RES(N), RCOND

Set values for A and B
A= (1.0 -2.0 1.0)

224 e Chapter 1: Linear Systems IMSL MATH LIBRARY

DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
DATA B/4.1, -4.7, 6.5/
! Factor A and compute the estimate
! of the reciprocal condition number
CALL LFCSF (A, FACT, IPVT, RCOND)
! Print condition number
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0EO0/RCOND
! Solve, then perturb right-hand side
DO 10 1I=1, 3
CALL LFISF (A, FACT, IPVT, B, X, RES)
! Print results
CALL WRRRN ('X’", X, 1, N, 1)
CALL WRRRN (’RES’, RES, 1, N, 1)
B(2) = B(2) + .20EO
10 CONTINUE
|
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
END

Output

RCOND < 0.035
L1l Condition number < 40.0

X
1 2 3
-4.100 -3.500 1.200

RES
1 2 3
-2.384E-07 -2.384E-07 0.000E+00

1 2 3
-4.500 -3.700 1.200

RES
1 2 3
-2.384E-07 -2.384E-07 0.000E+00

1 2 3
-4.900 -3.900 1.200

RES
1 2 3
-2.384E-07 -2.384E-07 0.000E+00

IMSL MATH LIBRARY Chapter 1: Linear Systems e 225

LFDSF

Computes the determinant of a real symmetric matrix given the U DU’ factorization of the matrix.

Required Arguments

FACT — n by N matrix containing the factored matrix A as output from subroutine
LFTSF/DLFTSF Of LECSF/DLFCSF. (Input)

IPVT — Vector of length n containing the pivoting information for the U DU’ factorization
as output from routine LFTSF/DLFTSF Or LFCSF/DLFCSF. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that, 1.0 <|peT1| < 10.0 or bET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form, det(A) = peT1 * 10PET2,

Optional Arguments

N — Order of the matrix. (Input)
Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFDSF (FACT, IPVT,DETL,DET2 [,..])

Specific: The specific interface names are S_LFDSF and D_LFDSF.

FORTRAN 77 Interface

Single: CALL LFDSF (N, FACT, LDFACT, IPVT, DET1, DET2)
Double: The double precision name is DLFDSF.
Description

Routine LFDsF computes the determinant of a real symmetric indefinite coefficient matrix. To
compute the determinant, the coefficient matrix must first undergo a U DU factorization. This
may be done by calling either LFCcsF or LFTSF. Since det U = +1, the formula

det A = det U det D det U" = det D is used to compute the determinant. Next det D is computed as
the product of the determinants of its blocks.

226 o Chapter 1: Linear Systems IMSL MATH LIBRARY

LFDSF is based on the LINPACK routine ss1DT; see Dongarra et al. (1979).

Example
The determinant is computed for a real symmetric 3 X 3 matrix.

USE LFDSF INT
USE LFTSFilNT
USE UMACH_ INT
! Declare variables
PARAMETER (LDA=3, N=3)
INTEGER IPVT (N), NOUT
REAL A (LDA,LDA), FACT(LDA,LDA), DET1, DET2

Set values for A

A= (1.0 =2.0 1.0)
(-2.0 3.0 -2.0)
(1.0 =-2.0 3.0)

DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
! Factor A
CALL LFTSF (A, FACT, IPVT)
! Compute the determinant
CALL LFDSF (FACT, IPVT, DET1, DETZ2)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) DET1, DET2
99999 FORMAT (' The determinant of A is ', F6.3, ' * 10**’, F2.0)
END

Output

The determinant of A is -2.000 * 10**0.

LSADH

HIGH
PE%EM(E &merl

CAPABLE

Solves a Hermitian positive definite system of linear equations with iterative refinement.

Required Arguments

A — Complex n by n matrix containing the coefficient matrix of the Hermitian positive
definite linear system. (Input)
Only the upper triangle of a is referenced.

B — Complex vector of length n containing the right-hand side of the linear system. (Input)

X — Complex vector of length ~ containing the solution of the linear system. (Output)

IMSL MATH LIBRARY Chapter 1: Linear Systems e 227

Optional Arguments
N — Number of equations. (Input)
Default; n = size (a,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: LD = size (a,1).

FORTRAN 90 Interface

Generic: CALL LSADH (A,B,X [,..])

Specific: ~ The specific interface names are S LSADH and D_LSADH.

FORTRAN 77 Interface

Single: CALL LSADH (N, A, LDA, B, X)

Double: The double precision hame is DLSADH.

ScaLAPACK Interface

Generic: CALL LSADH (A0, B0, X0 [,..])
Specific: The specific interface names are S_LSADH and D_LSADH.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine 1.saDH solves a system of linear algebraic equations having a complex Hermitian positive
definite coefficient matrix. It first uses the routine LFCDH to compute an R"R Cholesky
factorization of the coefficient matrix and to estimate the condition number of the matrix. The
matrix R is upper triangular. The solution of the linear system is then found using the iterative
refinement routine LFIDH.

1saDH fails if any submatrix of R is not positive definite, if R has a zero diagonal element or if the
iterative refinement algorithm fails to converge. These errors occur only if A either is very close to
a singular matrix or is a matrix that is not positive definite.

If the estimated condition number is greater than 1/e (where ¢ is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system. L.saDpH solves the
problem that is represented in the computer; however, this problem may differ from the problem
whose solution is desired.

228 e Chapter 1: Linear Systems IMSL MATH LIBRARY

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending
upon which supporting libraries are used during linking. For a detailed explanation see “Using
ScaLAPACK, LAPACK, LINPACK, and EISPACK” in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of .2apH/DL2ADH. The
reference is:

CALL L2ADH (N, A, LDA, B, X, FACT, WK)
The additional arguments are as follows:
FACT — ~ x N work array containing the RM R factorization of 2 on output.

WK — Complex work vector of length n.

2. Informational errors

Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.

3 4 The input matrix is not Hermitian. It has a diagonal entry with a
small imaginary part.

4 2 The input matrix is not positive definite.

4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.
3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L.2ADH the leading dimension of FACT is increased by
1vaL(3) when v is a multiple of Tvar(4). The values 1var(3) and 1vaL(4) are
temporarily replaced by 1var(1) and 1var(2), respectively, in LSADH.
Additional memory allocation for FacT and option value restoration are done
automatically in LsaDH. Users directly calling L.2aDH can allocate additional
space for FacT and set 1vaL(3) and 1VAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LsaDH or L2aDH. Default values for the option are
1vaL(*) =1, 16,0, 1.

17 This option has two values that determine if the Lycondition number is to be
computed. Routine LsADH temporarily replaces 1vaL(2) by 1var(l). The
routine L.2CcDH computes the condition number if TvarL(2) = 2. Otherwise 1.2CDH
skips this computation. L.saDH restores the option. Default values for the option
are TvaL(*) =1, 2.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 229

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

A0 — Complex mxL.DA by MxcoL local matrix containing the local portions of the
distributed matrix A. A contains the coefficient matrix of the Hermitian positive
definite linear system. (Input)

Only the upper triangle of a is referenced.

B0 — Complex local vector of length MxLDA containing the local portions of the distributed
vector B. B contains the right-hand side of the linear system. (Input)

X0 — Complex local vector of length mx1.DA containing the local portions of the distributed
vector x. X contains the solution to the linear system. (Output)

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, MxLDA and MxcoOL can be obtained through a call
to SCALAPACK_GETDIM (see Utilities) after a call to scarapack SETUP (See Utilities) has been
made. See the ScaLAPACK Example below.

Example

A system of five linear equations is solved. The coefficient matrix has complex positive definite
form and the right-hand-side vector b has five elements.

USE LSADH INT
USE WRCRN_INT
! Declare variables

INTEGER LDA, N
PARAMETER (LDA=5, N=5)
COMPLEX A(LDA,LDA), B(N), X(N)
Set values for A and B
A = 2.0+0.01i -1.0+1.01 0.0+0.01 0.0+0.01 0.0+0.01i)

(

(4.0+0.01 1.0+2.01 0.0+0.01 0.0+0.01)
(10.0+0.01 0.0+4.01 0.0+0.01)
(6.0+0.01 1.0+41.01)
(9.0+0.01i)

B = (1.0+5.01 12.0-6.01i 1.0-16.01i -3.0-3.01 25.0+16.01)

DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),¢&
4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),¢&
(0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/

DATA B /(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),¢&
(25.0,16.0)/

CALL LSADH (A, B, X)
! Print results

CALL WRCRN (’X’, X, 1, N, 1)

230 e Chapter 1: Linear Systems IMSL MATH LIBRARY

END

Output

X
1 2 3 4
(2.000, 1.000) (3.000, 0.000) (-1.000,-1.000) (0.000,-2.000)
5
(3.000, 2.000)

ScalLAPACK Example

The same system of five linear equations is solved as a distributed computing example. The
coefficient matrix has complex positive definite form and the right-hand-side vector b has five
elements. SCALAPACK MAP and SCALAPACK UNMAP are IMSL utility routines (see Utilities) used
to map and unmap arrays to and from the processor grid. They are used here for brevity.
DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local arrays.

USE MPI SETUP_ INT
USE LSADH_INT
USE WRCRN_INT
USE SCALAPACK SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER LDA, N, DESCA(9), DESCX(9)

INTEGER INFO, MXCOL, MXLDA

COMPLEX, ALLOCATABLE :: A(:,:), B(:), X(:)
COMPLEX, ALLOCATABLE :: AO(:,:), BO(:), XO(:)
PARAMETER (LDA=5, N=5)

! Set up for MPI
MP NPROCS = MP_ SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), B(N), X(N))

! Set values for A and B
A(l,:) = (/(2.0, 0.0),(-1.0, 1.0),¢(0.0, 0.0), (0.0, 0.0),(0.0, 0.0)/)
A(2,:) = (/(0.0, 0.0),¢(4.0, 0.0),(1.0, 2.0),(0.0, 0.0), (0.0, 0.0)/)
A(3,:) = (/(0.0, 0.0),(0.0, 0.0),(10.0, 0.0), (0.0, 4.0), (0.0, 0.0)/)
A(4,:) (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(6.0, 0.0), (1.0, 1.0)/)
A(5,:) = (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(9.0, 0.0)/)
i
B= (/(1L.0, 5.0),(12.0, -6.0), (1.0, -16.0), (-3.0, -3.0), (25.0, 16.0)/)
ENDIF

! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP ICTXT, MXLDA, INFO)
CALL DESCINIT (DESCX, N, 1, MP MB, 1, 0, 0, MP ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (A0 (MXLDA,MXCOL), BO (MXLDA), X0 (MXLDA))
! Map input arrays to the processor grid

IMSL MATH LIBRARY Chapter 1: Linear Systems e 231

CALL SCALAPACK MAP (A, DESCA, AO0)
CALL SCALAPACK MAP (B, DESCX, BO)
! Solve the system of equations
CALL LSADH (A0, BO, XO)
Unmap the results from the distributed
arrays back to a non-distributed array.
After the unmap, only Rank=0 has the full
array.
CALL SCALAPACK UNMAP (X0, DESCX, X)
! Print results.
! Only Rank=0 has the solution, X.
IF(MP_RANK .EQ. 0)CALL WRCRN (X', X, 1, N, 1)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, B, X)
DEALLOCATE (A0, BO, XO0)
! Exit ScalAPACK usage
CALL SCALAPACK EXIT (MP_ ICTXT)
! Shut down MPI
MP NPROCS = MP SETUP (‘FINAL’)

END
Output
X
1 2 3 4
(2.000, 1.000) (3.000, 0.000) (-1.000,-1.000) (0.000,-2.000)
5
)

(3.000, 2.000

LSLDH

HEIGH
PE%FMCE gﬁ‘M Pl

CAPABLE

Solves a complex Hermitian positive definite system of linear equations without iterative
refinement.

Required Arguments

A — Complex n by n matrix containing the coefficient matrix of the Hermitian positive
definite linear system. (Input)
Only the upper triangle of a is referenced.

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length n containing the solution to the linear system. (Output)
If B is not needed, B and x can share the same storage locations.

232 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Optional Arguments
N — Number of equations. (Input)
Default; n = size (a,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (a,1).

FORTRAN 90 Interface

Generic: CALL LSLDH (A,B,X [,..])

Specific: ~ The specific interface names are S LsLDH and D_LSLDH.

FORTRAN 77 Interface

Single: CALL LSLDH (N, A, LDA, B, X)

Double: The double precision name is DLSLDH.

ScaLAPACK Interface

Generic: CALL LSLDH (A0, B0, X0 [,..])
Specific: The specific interface names are S_LSLDH and D_LSLDH.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine 1.sL.DH solves a system of linear algebraic equations having a complex Hermitian positive
definite coefficient matrix. The underlying code is based on either LINPACK , LAPACK, or
ScaLAPACK code depending upon which supporting libraries are used during linking. For a
detailed explanation see “Using ScaLAPACK, LAPACK, LINPACK, and EISPACK” in the
Introduction section of this manual. LsLDH first uses the routine LFCDH to compute an R"R
Cholesky factorization of the coefficient matrix and to estimate the condition number of the
matrix. The matrix R is upper triangular. The solution of the linear system is then found using the
routine LFSDH.

1sLDH fails if any submatrix of R is not positive definite or if R has a zero diagonal element.
These errors occur only if A is very close to a singular matrix or to a matrix which is not positive
definite.

If the estimated condition number is greater than 1/e (where ¢ is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. If the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that
LSADH be used.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 233

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LD#/ DL2LDH. The
reference is:

CALL L2LDH (N, A, LDA, B, X, FACT, WK)
The additional arguments are as follows:

FACT — n~ x N work array containing the R" R factorization of 2 on output.
If & is not needed, A can share the same storage locations as FACT.

WK — Complex work vector of length .

2. Informational errors

Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.

3 4 The input matrix is not Hermitian. It has a diagonal entry with a
small imaginary part.

4 2 The input matrix is not positive definite.

4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine 1.21.DH the leading dimension of FACT is increased by
1vaL(3) when v is a multiple of Tvar(4). The values 1var(3) and 1vaL(4) are
temporarily replaced by 1var(1) and 1vaL(2), respectively, in LSLDH.
Additional memory allocation for FacT and option value restoration are done
automatically in s.DH. Users directly calling L.2LDH can allocate additional
space for FacT and set 1varL(3) and 1varL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use L.sL.DH or L2LDH. Default values for the option are
1vaLn(*) =1, 16,0, 1.

17 This option has two values that determine if the L; condition number is to be
computed. Routine LsT.DH temporarily replaces Tvar(2) by tvar(l). The
routine L2CcDH computes the condition number if 1vaL(2) = 2. Otherwise L2CDH
skips this computation. LSLDH restores the option. Default values for the option
are tvan(*) =1, 2.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

234 e Chapter 1: Linear Systems IMSL MATH LIBRARY

A0 — Complex MxLDa by mMxcoL local matrix containing the local portions of the
distributed matrix a. a contains the coefficient matrix of the Hermitian positive
definite linear system. (Input)

Only the upper triangle of 2 is referenced.

B0 — Complex local vector of length MxT.DA containing the local portions of the distributed
vector B. B contains the right-hand side of the linear system. (Input)

X0 — Complex local vector of length MxLDA containing the local portions of the distributed
vector X. X contains the solution to the linear system. (Output)
If B is not needed, B and x can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, MxzpaA and MxCOL can be obtained through a call
to SCALAPACK_GETDIM (see Utilities) after a call to scaLapack SeETUP (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

A system of five linear equations is solved. The coefficient matrix has complex Hermitian positive
definite form and the right-hand-side vector b has five elements.

USE LSLDH INT
USE WRCRN_INT
! Declare variables

INTEGER LDA, N

PARAMETER (LDA=5, N=5)

COMPLEX A(LDA,LDA), B(N), X(N)
|
! Set values for A and B
|
! A = (2.0+0.01i ~-1.0+1.01 0.0+0.01 0.0+0.01 0.0+0.01)
! (4.0+0.01 1.0+2.01 0.0+0.01 0.0+40.01)
! (10.0+0.01 0.0+4.01 0.0+0.01)
! (6.0+0.01 1.0+1.01)
! (9.0+40.01)
|
! B = (1.0+45.01i 12.0-6.01 1.0-16.01 -3.0-3.01 25.0+16.01)
|

DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),&
4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),¢&
(0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/

DATA B /(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),¢&
(25.0,16.0)/

CALL LSLDH (A, B, X)
! Print results

CALL WRCRN (’'X’, X, 1, N, 1)

END

IMSL MATH LIBRARY Chapter 1: Linear Systems e 235

Output

X
1 2 3 4
(2.000, 1.000) (3.000, 0.000) (-1.000,-1.000) (0.000,-2.000)
5
(3.000, 2.000)

ScaLAPACK Example

The same system of five linear equations is solved as a distributed computing example. The
coefficient matrix has complex positive definite form and the right-hand-side vector b has five
elements. SCALAPACK MAP and SCALAPACK UNMAP are IMSL utility routines (see Utilities) used
to map and unmap arrays to and from the processor grid. They are used here for brevity.
DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local arrays.

USE MPI SETUP INT
USE LSLDH INT
USE WRCRN_INT
USE SCALAPACK SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER LDA, N, DESCA(9), DESCX(9)

INTEGER INFO, MXCOL, MXLDA

COMPLEX, ALLOCATABLE :: A(:,:), B(:), X(:)
COMPLEX, ALLOCATABLE :: AO(:,:), BO(:), XO(:)
PARAMETER (LDA=5, N=5)

! Set up for MPI
MP_NPROCS = MP SETUP ()

IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A (LDA,N), B(N), X(N))

! Set values for A and B
A(l,:) = (/(2.0, 0.0),(-1.0, 1.0),¢(0.0, 0.0), (0.0, 0.0), (0.0, 0.0)/)
A(2,:) = (/(0.0, 0.0),(4.0, 0.0),(1.0, 2.0),(0.0, 0.0), (0.0, 0.0)/)
A(3,:) (/(0.0, 0.0),(0.0, 0.0),(10.0, 0.0),(0.0, 4.0), (0.0, 0.0)/)
A(4,:) (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(6.0, 0.0), (1.0, 1.0)/)
A(5,:) = (/(0.0, 0.0),(0.0, 0.0),¢(0.0, 0.0),(0.0, 0.0), (9.0, 0.0)/)

B=(/(.0, 5.0),(12.0, -6.0), (1.0, -16.0), (-3.0, -3.0), (25.0, 16.0)/)
ENDIF
! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT (DESCX, N, 1, MP MB, 1, 0, 0, MP ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (A0 (MXLDA,MXCOL), BO(MXLDA), XO (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK MAP (A, DESCA, AO)
CALL SCALAPACK_MAP(B, DESCX, BO0)

236 o Chapter 1: Linear Systems IMSL MATH LIBRARY

(

(

Solve the system of equations
CALL LSLDH (AO, BO, XO)

Unmap the results from the distributed

arrays back to a non-distributed array.

After the unmap, only Rank=0 has the full

array.
CALL SCALAPACK UNMAP (X0, DESCX, X)

Print results.

Only Rank=0 has the solution, X.
IF(MP_RANK .EQ. 0)CALL WRCRN (X', X, 1, N, 1)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, B, X)
DEALLOCATE (A0, BO, XO0)

Exit ScalAPACK usage
CALL SCALAPACK EXIT (MP_ ICTXT)

Shut down MPI
MP_NPROCS = MP_SETUP(‘FINAL’)

END
Output
X
1 2 3 4
2.000, 1.000) (3.000, 0.000) (-1.000,-1.000) (0.000,-2.000)
5
)

3.000, 2.000

LFCDH

HIGH
PE%%MCE Emepr

CAPABLE

Computes the R R factorization of a complex Hermitian positive definite matrix and estimate its
L, condition number.

Required Arguments

A — Complex v by N Hermitian positive definite matrix to be factored. (Input) Only the
upper triangle of a is referenced.

FACT — Complex n by N matrix containing the upper triangular matrix R of the factorization
of A in the upper triangle. (Output)
Only the upper triangle of FacT will be used. If A is not needed, 2 and FACT can share
the same storage locations.

RCOND — Scalar containing an estimate of the reciprocal of the L, condition number of a.
(Output)

IMSL MATH LIBRARY Chapter 1: Linear Systems e 237

Optional Arguments
N — Order of the matrix. (Input)
Default; n = size (a,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: LD = size (a,1).

LDFACT --- Leading dimension of rFacT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFCDH (A, FACT, RCOND [,..])

Specific: ~ The specific interface names are S LFCDH and D_LFCDH.

FORTRAN 77 Interface

Single: CALL LFCDH (N, A, LDA, FACT, LDFACT, RCOND)

Double: The double precision name is DLFCDH.

ScaLAPACK Interface

Generic: CALL LFCDH (A0, FACTO, RCOND [,..])
Specific: The specific interface names are S_LFCDH and D_LFCDH.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine LFCDH computes an R R Cholesky factorization and estimates the condition number of a
complex Hermitian positive definite coefficient matrix. The matrix R is upper triangular.

The L, condition number of the matrix A is defined to be k(A) = ||A|l1||A™Y|.. Since it is expensive to

compute |JA™|s, the condition number is only estimated. The estimation algorithm is the same as
used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/¢ (where ¢ is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system.

238 e Chapter 1: Linear Systems IMSL MATH LIBRARY

LEFCDH fails if any submatrix of R is not positive definite or if R has a zero diagonal element.
These errors occur only if A is very close to a singular matrix or to a matrix which is not positive
definite.

The R™ R factors are returned in a form that is compatible with routines LFIDH, LFSDH and

LFDDH. To solve systems of equations with multiple right-hand-side vectors, use LrcDH followed
by either Lr1DH or LFsDH called once for each right-hand side. The routine LrDDH can be called
to compute the determinant of the coefficient matrix after LrcpH has performed the factorization.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending
upon which supporting libraries are used during linking. For a detailed explanation see “Using
ScaLAPACK, LAPACK, LINPACK, and EISPACK” in the Introduction section of this manual.

Comments

1. Workspace may be explicitly provided, if desired, by use of L.2cps/DL2CDH. The
reference is:

CALL L2CDH (N, A, LDA, FACT, LDFACT, RCOND, WK)
The additional argument is
WK — Complex work vector of length n.

2. Informational errors
Type Code

3 1 The input matrix is algorithmically singular.

3 4 The input matrix is not Hermitian. It has a diagonal entry with a small
imaginary part.

4 4 The input matrix is not Hermitian.

4 2 The input matrix is not positive definite. It has a diagonal entry with an
imaginary part

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

A0 — Complex MmxLDA by MxcoL local matrix containing the local portions of the
distributed matrix A. A contains the Hermitian positive definite matrix to be factored.

(Input)
Only the upper triangle of a is referenced.

FACTO — Complex MxLDa by MxcoL local matrix containing the local portions of the
distributed matrix FacT. FACT contains the upper triangular matrix R of the
factorization of a in the upper triangle. (Output)

Only the upper triangle of FacT will be used. If & is not needed, A and FaACT can share
the same storage locations.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 239

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, Mxzpa and MxCOL can be obtained through a call
to scaLAPACK_GETDIM (see Utilities) after a call to scaLapack seTup (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

The inverse of a 5 X 5 Hermitian positive definite matrix is computed. L.rcDH is called to factor
the matrix and to check for nonpositive definiteness or ill-conditioning. Lr1DH is called to
determine the columns of the inverse.

USE LFCDH_ INT
USE LFIDH INT
USE UMACH_ INT
USE WRCRN_INT
! Declare variables

INTEGER 1LDA, LDFACT, N, NOUT

PARAMETER (LDA=5, LDFACT=5, N=5)

REAL RCOND

COMPLEX A (LDA,LDA), AINV(LDA,LDA), FACT(LDFACT,LDFACT), &

RES (N), RJ(N)

Set values for A

A = (2.0+40.01i -1.0+1.01 0.0+0.01 0.0+0.01 0.0+0.01)
(4.0+0.01 1.0+2.01 0.0+0.01 0.0+0.01)
(10.0+0.01 0.0+4.01 0.0+0.01)
(6.0+0.01 1.0+1.01)
(9.0+0.01)

DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),&
4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),s&
(0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/
! Factor the matrix A
CALL LFCDH (A, FACT, RCOND)
! Set up the columns of the identity
! matrix one at a time in RJ
RJ = (0.0E0, 0.0EO)
DO 10 J=1, N

RJ(J) = (1.0E0,0.0EO0)
! RJ is the J-th column of the identity
! matrix so the following LFIDH
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
CALL LFIDH (A, FACT, RJ, AINV(:,J), RES)
RJ(J) = (0.0E0,0.0EOQ)

10 CONTINUE
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
CALL WRCRN (’AINV’, AINV)

240 o Chapter 1: Linear Systems IMSL MATH LIBRARY

99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)

END

Output

RCOND < 0.075
L1l Condition number < 25.0

g w N

g w N

AINV
1 2 3 4
7166, 0.0000) (0.2166,-0.2166) (-0.0899,-0.0300) (-0.0207, 0.0622)
2166, 0.2166) (0.4332, 0.0000) (-0.0599,-0.1198) (-0.0829, 0.0415)
0899, 0.0300) (-0.0599, 0.1198) (0.1797, 0.0000) (0.0000,-0.1244)
0207,-0.0622) (-0.0829,-0.0415) (0.0000, 0.1244) (0.2592, 0.0000)
0092, 0.0046) (0.0138,-0.0046) (-0.0138,-0.0138) (-0.0288, 0.0288)

5
0.0092,-0.0046)
0.0138, 0.0046)
0.0138, 0.0138)
0.0288,-0.0288)
0

.1175, 0.0000)

ScalLAPACK Example

The inverse of the same 5 X 5 Hermitian positive definite matrix in the preceding example is
computed as a distributed computing example. LECDH is called to factor the matrix and to check
for nonpositive definiteness or ill-conditioning. LEIDH (page 187) is called to determine the
columns of the inverse. SCALAPACK_MAP and SCALAPACK UNMAP are IMSL utility routines (see
Utilities) used to map and unmap arrays to and from the processor grid. They are used here for
brevity. DEscINIT isa ScaLAPACK tools routine which initializes the descriptors for the local
arrays.

USE MPI SETUP_ INT
USE LFCDH_INT
USE LFIDH INT
USE WRCRN_INT
USE SCALAPACK SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
Declare variables

INTEGER J, LDA, N, NOUT, DESCA(9), DESCX(9)

INTEGER INFO, MXCOL, MXLDA

REAL RCOND

COMPLEX, ALLOCATABLE :: A(:,:), AINV(:,:), RJ(:), RJO(:)
COMPLEX, ALLOCATABLE :: AO(:,:), FACTO(:,:), RESO(:), XO(:)
PARAMETER (LDA=5, N=5)

Set up for MPI
MP NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), AINV(LDA,N))

Set values for A and B
A(l,:) = (/(2.0, 0.0),(-1.0, 1.0),(0.0, 0.0),(0.0, 0.0), (0.0, 0.0)/)
A(2,:) = (/(0.0, 0.0),¢(4.0, 0.0),(1.0, 2.0),(0.0, 0.0), (0.0, 0.0)/)
A(3,:) (/¢(0.0, 0.0),(0.0, 0.0),(10.0, 0.0), (0.0, 4.0), (0.0, 0.0)/)
A(4,:) = (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(6.0, 0.0), (1.0, 1.0)/)

IMSL MATH LIBRARY

Chapter 1: Linear Systems e 241

A(5,:) = (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(0.0, 0.0), (9.0, 0.0)/)
ENDIF
! Set up a 1D processor grid and define
! its context ID, MP_ICTXT
CALL SCALAPACK SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL

CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)

! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCX, N, 1, MP MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)

! Allocate space for the local arrays
ALLOCATE (AQO (MXLDA,MXCOL) , X0 (MXLDA),FACTO (MXLDA,MXCOL), RJ(N), &

RJO (MXLDA), RESO (MXLDA))

! Map input arrays to the processor grid
CALL SCALAPACK MAP (A, DESCA, AO)

! Factor the matrix A

CALL LFCDH (AO, FACTO, RCOND)
! Set up the columns of the identity
! matrix one at a time in RJ
RJ = (0.0E0, 0.0EO)
DO 10 J=1, N
RJ(J) = (1.0E0,0.0EQ)
CALL SCALAPACK MAP (RJ, DESCX, RJO)
! RJ is the J-th column of the identity
! matrix so the following LFIDH
! reference solves for the J-th column of
! the inverse of A
CALL LFIDH (AO, FACTO, RJO, X0, RESO)

! Unmap the results from the distributed
! array back to a non-distributed array
CALL SCALAPACK_UNMAP(XO, DESCX, AINV(:,d))
RJ (J) (0.0E0,0.0EO0)
10 CONTINUE
! Print the results.
! After the unmap, only Rank=0 has the full

! array.
IF(MP_RANK .EQ. 0) THEN
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0EO0/RCOND
CALL WRCRN (’AINV’, AINV)
ENDIF
IF (MP_RANK .EQ. 0) DEALLOCATE (A, AINV)
DEALLOCATE (A0, FACTO, RJ, RJO, RESO, XO0)

! Exit ScalAPACK usage
CALL SCALAPACK_EXIT(MP_ICTXT)
! Shut down MPI

MP_NPROCS = MP_SETUP(‘FINAL’)
99999 FORMAT (/ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
END
Output

RCOND < 0.075
L1 Condition number < 25.0

242 e Chapter 1: Linear Systems IMSL MATH LIBRARY

g w N

g w N

AINV

1 2 3 4
0.7166, 0.0000) (0.2166,-0.2166) (-0.0899,-0.0300) (-0.0207, 0.0622)
0.2166, 0.2166) (0.4332, 0.0000) (-0.0599,-0.1198) (-0.0829, 0.0415)
-0.0899, 0.0300) (-0.0599, 0.1198) (0.1797, 0.0000) (0.0000,-0.1244)
-0.0207,-0.0622) (-0.0829,-0.0415) (0.0000, 0.1244) (0.2592, 0.0000)
0.0092, 0.0046) (0.0138,-0.0046) (-0.0138,-0.0138) (-0.0288, 0.0288)

(0.0138, 0.0046
(-0.0138, 0.0138
(-0.0288,-0.0288)
(0.1175, 0.0000)

5
(0.0092,-0.0046)
)
)

LFTDH

HIGH
PE%@MCE E‘%M P1

CAPABLE

Computes the R"R factorization of a complex Hermitian positive definite matrix.

Required Arguments

A — Complex n by N Hermitian positive definite matrix to be factored. (Input) Only the
upper triangle of a is referenced.

FACT — Complex n by N matrix containing the upper triangular matrix R of the factorization
of a in the upper triangle. (Output)
Only the upper triangle of FacT will be used. If A is not needed, 2 and FACT can share
the same storage locations.

Optional Arguments
N — Order of the matrix. (Input)
Default: n = size (2,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling
program. (Input)
Default: DA = size (a,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFTDH (A, FACT [,..]1)

IMSL MATH LIBRARY Chapter 1: Linear Systems e 243

Specific: ~ The specific interface names are S _LFTDH and D_LETDH.

FORTRAN 77 Interface

Single: CALL LFTDH (N, A, LDA, FACT, LDFACT)

Double: The double precision name is DLFTDH.

ScaLAPACK Interface

Generic: CALL LETDH (AO, FACTO [,..])
Specific: ~ The specific interface names are S LFTDH and D_LFTDH.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine LFTDH computes an R™ R Cholesky factorization of a complex Hermitian positive definite
coefficient matrix. The matrix R is upper triangular.

LrTDH fails if any submatrix of R is not positive definite or if R has a zero diagonal element.
These errors occur only if A is very close to a singular matrix or to a matrix which is not positive
definite.

The R" R factors are returned in a form that is compatible with routines L= 1DH, LFSDH and
LFDDH. To solve systems of equations with multiple right-hand-side vectors, use LrcDH followed
by either Lr1DH or LFsDH called once for each right-hand side. The IMSL routine LFDDH can be
called to compute the determinant of the coefficient matrix after LrcpH has performed the
factorization.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending
upon which supporting libraries are used during linking. For a detailed explanation see “Using
ScaLAPACK, LAPACK, LINPACK, and EISPACK” in the Introduction section of this manual.

Comments
Informational errors

Type Code

3 4 The input matrix is not Hermitian. It has a diagonal entry with a
small imaginary part.

4 2 The input matrix is not positive definite.

4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

244 e Chapter 1: Linear Systems IMSL MATH LIBRARY

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

A0 — Complex Mxnpa by mxcoL local matrix containing the local portions of the
distributed matrix A. A contains the Hermitian positive definite matrix to be factored.
(Input)

Only the upper triangle of a is referenced.

FACTO — Complex mxLpa by mMxcoL local matrix containing the local portions of the
distributed matrix FACT. FACT contains the upper triangular matrix R of the
factorization of 2 in the upper triangle. (Output)

Only the upper triangle of FacT will be used. If 2 is not needed, 2 and FACT can share
the same storage locations.

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, MxLDA and MXCOL can be obtained through a call
to SCALAPACK_GETDIM (see Utilities) after a call to scaLapack SeETUP (see Utilities) has been
made. See the ScaLAPACK Example below.

Example

The inverse of a5 X 5 matrix is computed. LFTDH is called to factor the matrix and to check for
nonpositive definiteness. LEsDH is called to determine the columns of the inverse.

USE LFTDH INT
USE LFSDH INT
USE WRCRN_INT
! Declare variables

INTEGER LDA, LDFACT, N

PARAMETER (LDA=5, LDFACT=5, N=5)

COMPLEX A(LDA,LDA), AINV(LDA,LDA), FACT (LDFACT,LDFACT), RJ(N)
!
! Set values for A
!
! A = (2.0+0.0i -1.0+1.0i 0.0+0.01 0.0+0.01 0.0+0.01)
! (4.0+0.04 1.0+2.01 0.0+0.01 0.0+0.01)
! (10.0+40.01 0.0+4.01 0.0+0.01)
! (6.0+0.01 1.0+1.01)
! (9.0+0.01i)
|

DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),&
4%*(0.0,0.0), (1.0,2.0), (L0.0,0.0), 4*(0.0,0.0),¢&
(0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/
! Factor the matrix A
CALL LFTDH (A, FACT)
! Set up the columns of the identity
! matrix one at a time in RJ
RJ = (0.0E0,0.0EQ)
DO 10 J=1, N
RJ(J) = (1.0E0,0.0E0)
! RJ is the J-th column of the identity
! matrix so the following LFSDH
! reference places the J-th column of

IMSL MATH LIBRARY Chapter 1: Linear Systems e 245

the inverse of A in the J-th column

! of AINV
CALL LFSDH (FACT, RJ, AINV(:,J))
RJ(J) = (0.0E0,0.0EQ)
10 CONTINUE
! Print the results
CALL WRCRN ("AINV’, AINV, ITRING=1)
|
END
Output
AINV
1 2 3 4
1 (0.7166, 0.0000) (0.2166,-0.2166) (-0.0899,-0.0300) (-0.0207, 0.0622)
2 (0.4332, 0.0000) (-0.0599,-0.1198) (-0.0829, 0.0415)
3 (0.1797, 0.0000) (0.0000,-0.1244)
4 (0.2592, 0.0000)
5
1 (0.0092,-0.00406)
2 (0.0138, 0.00406)
3 (-0.0138, 0.0138)
4 (-0.0288,-0.0288)
5 (0.1175, 0.0000)

ScaLAPACK Example

The inverse of the same 5 X 5 Hermitian positive definite matrix in the preceding example is
computed as a distributed computing example. LFTDH is called to factor the matrix and to check
for nonpositive definiteness. LEsDH (page 192) is called to determine the columns of the inverse.
SCALAPACK MAP and SCALAPACK UNMAP are IMSL utility routines (see Utilities) used to map
and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a
ScaL APACK tools routine which initializes the descriptors for the local arrays.

USE
USE
USE

MPI SETUP INT
LETDH_INT
LFSDH_INT

USE WRCRN_INT

USE SCALAPACK SUPPORT
IMPLICIT NONE

INCLUDE ‘mpif.h’

INTEGER
INTEGER
COMPLEX, ALLOCATABLE
COMPLEX, ALLOCATABLE

PARAMETER (LDA=5, N=
|
MP NPROCS = MP_SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A (LDA,N),

J, LDA, N,
INFO, MXCOL, MXLDA

Declare variables
DESCA (9), DESCX(9)

A(:,:),
A0 (:,:),

AINV(:,:),
FACTO (:,:),

RJ(:),
X0 (:)

RJO ()
5)
Set up for MPI

AINV (LDA,N))
Set values for A and B

246 e Chapter 1: Linear Systems

IMSL MATH LIBRARY

A(l,:) = (/(2.0, 0.0),(-1.0, 1.0),(0.0, 0.0), (0.0, 0.0), (0.0, 0.0)/)
A(2,:) = (/(0.0, 0.0),(4.0, 0.0),(1.0, 2.0),(0.0, 0.0), (0.0, 0.0)/)
A(3,:) (/(.0, 0.0),(0.0, 0.0),(10.0, 0.0), (0.0, 4.0), (0.0, 0.0)/)
A(4,:) (/(.0, 0.0),(0.0, 0.0),(0.0, 0.0),(6.0, 0.0),(1.0, 1.0)/)
A(5,:) = (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(9.0, 0.0)/)
ENDIF

! Set up a 1D processor grid and define
! its context ID, MP_ ICTXT
CALL SCALAPACK SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP ICTXT, MXLDA, INFO)
CALL DESCINIT(DESCX, N, 1, MP MB, 1, 0, 0, MP_ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (AQO (MXLDA,MXCOL), X0 (MXLDA),FACTO (MXLDA,MXCOL), RJ(N), &
RJO (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK MAP (A, DESCA, AO)
! Factor the matrix A
CALL LFTDH (A0, FACTO)
! Set up the columns of the identity
! matrix one at a time in RJ
RJ = (0.0E0, 0.0EO)
DO 10 J=1, N
RJ(J) = (1.0E0,0.0E0)
CALL SCALAPACK_MAP(RJ, DESCX, RJO)
! RJ is the J-th column of the identity
! matrix so the following LFIDH
! reference solves for the J-th column of
! the inverse of A
CALL LFSDH (FACTO, RJO, XO0)
! Unmap the results from the distributed
! array back to a non-distributed array
CALL SCALAPACK_UNMAP(XO, DESCX, AINV (:,Jd))
RJ(J) = (0.0E0,0.0E0)
10 CONTINUE
! Print the results.
! After the unmap, only Rank=0 has the full
! array.
IF(MP_RANK .EQ. 0) CALL WRCRN (’/AINV’, AINV)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, AINV)
DEALLOCATE (A0, FACTO, RJ, RJO, X0)
! Exit ScalAPACK usage
CALL SCALAPACK_EXIT(MP_ICTXT)
! Shut down MPI
MP NPROCS = MP_SETUP(‘FINAL’)

END
Output
AINV
1 2 3 4
1 (0.7166, 0.0000) (0.2166,-0.2166) (-0.0899,-0.0300) (-0.0207, 0.0622)
2 (0.2166, 0.2166) (0.4332, 0.0000) (-0.0599,-0.1198) (-0.0829, 0.0415)
3 (-0.0899, 0.0300) (-0.0599, 0.1198) (0.1797, 0.0000) (0.0000,-0.1244)

IMSL MATH LIBRARY Chapter 1: Linear Systems e 247

4 (-0.0207,-0.0622) (-0.0829,-0.0415) (0.0000, 0.1244) (0.2592, 0.0000)

5 (0.0092, 0.0046) (0.0138,-0.0046) (-0.0138,-0.0138) (-0.0288, 0.0288)
5

1 (0.0092,-0.0046)

2 (0.0138, 0.0046)

3 (-0.0138, 0.0138)

6 (-0.0288,-0.0288)

7 (0.1175, 0.0000)

LFSDH

HIGH
PE%@MCE E‘%M P1

CAPABLE

Solves a complex Hermitian positive definite system of linear equations given the R"R
factorization of the coefficient matrix.

Required Arguments

FACT — Complex N by N matrix containing the factorization of the coefficient matrix a as
output from routine LFCDH/DLFCDH Of LFTDH/DLFTDH. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length n containing the solution to the linear system. (Output)
If B is not needed, B and x can share the same storage locations.

Optional Arguments

N — Number of equations. (Input)
Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFSDH (FACT,B, X [,..])
Specific: The specific interface names are S_LFSDH and D_LFSDH.

FORTRAN 77 Interface

Single: CALL LFSDH (N, FACT, LDFACT, B, X)

248 o Chapter 1: Linear Systems IMSL MATH LIBRARY

Double: The double precision name is DLFSDH.

ScaLAPACK Interface

Generic: CALL LFSDH (FACTO, BO, X0 [,..])
Specific: ~ The specific interface names are S LFsDH and D_LEFSDH.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

Description

Routine LFsDH computes the solution for a system of linear algebraic equations having a complex
Hermitian positive definite coefficient matrix. To compute the solution, the coefficient matrix
must first undergo an R™ R factorization. This may be done by calling either LrcDH or LETDH. R is
an upper triangular matrix.

The solution to Ax = b is found by solving the triangular systems R" y=band Rx=y.

LFSDH and LFIDH both solve a linear system given its RM R factorization. LF1DH generally takes
more time and produces a more accurate answer than LrsDH. Each iteration of the iterative
refinement algorithm used by Lr1DH calls LFSDH.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending
upon which supporting libraries are used during linking. For a detailed explanation see

“Using ScaLAPACK, LAPACK, LINPACK, and EISPACK? in the Introduction section of this
manual.

Comments
Informational error

Type Code
4 1 The input matrix is singular.

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

FACTO — mxzpa by mxcor complex local matrix containing the local portions of the
distributed matrix FacT as output from routine LECDH/DLFCDH Of LFTDH/DLFTDH.
FACT contains the factorization of the matrix a. (Input)

B0 — Complex local vector of length MxLDA containing the local portions of the distributed
vector B. B contains the right-hand side of the linear system. (Input)

X0 — Complex local vector of length mxT.pa containing the local portions of the distributed
vector x. X contains the solution to the linear system. (Output)
If B is not needed, B and x can share the same storage locations.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 249

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, MxzLpA and MxCOL can be obtained through a call
to scaLAPACK GETDIM (see Utilities) after a call to scaLapack _setup (Utilities) has been
made. See the ScaLAPACK Example below.

Example

A set of linear systems is solved successively. LrTDH is called to factor the coefficient matrix.
LEFSDH is called to compute the four solutions for the four right-hand sides. In this case, the
coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be
better to call LrcDH to perform the factorization, and LFIDH to compute the solutions.

USE LFSDHilNT
USE LFTDH INT
USE WRCRN_INT
! Declare variables
INTEGER LDA, LDFACT, N
PARAMETER (LDA=5, LDFACT=5, N=5)
COMPLEX A(LDA,LDA), B(N,3), FACT(LDFACT,LDFACT), X(N,3)

Set values for A and B

|
!
! A= (2.040.0i =-1.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)
! (4.040.0i 1.0+2.0i 0.0+0.0i 0.0+0.0i)
! (10.0+0.0i 0.0+4.0i 0.0+0.0i)
! (6.0+0.0i 1.0+1.0i)
! (9.0+0.0i)
|
! B = (3.0+3.0i 4.0+0.01 29.0-9.0i)
! (5.0-5.0i 15.0-10.0i -36.0-17.0i)
! (5.0+44.0i -12.0-56.0i =-15.0-24.0i)
! (9.0+47.0i -12.0+10.0i =-23.0-15.0i)
! (-22.0+1.01 3.0-1.0i -23.0-28.01i)
DATA A /(2.0,0.0), 4%(0.0,0.0), (-1.0,1.0), (4.0,0.0),&
4%(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),s&
(0.0,4.0), (6.0,0.0), 4*%(0.0,0.0), (1.0,1.0), (9.0,0.0)/
DATA B /(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0),&
(4.0,0.0), (15.0,-10.0), (-12.0,-56.0), (-12.0,10.0),&
3.0,-1.0), (29.0,-9.0), (-36.0,-17.0), (-15.0,-24.0),&

(

(-23.0,-15.0), (-23.0,-28.0)/

! Factor the matrix A
CALL LFTDH (A, FACT)

! Compute the solutions
DO 10 1I=1, 3

CALL LFSDH (FACT, B(:,I), X(:,I))
10 CONTINUE

! Print solutions

CALL WRCRN ('X’, X)

END

250 o Chapter 1: Linear Systems IMSL MATH LIBRARY

Output

X
1 2 3
1 (1.00, 0.00) (3.00, -1.00) (11.00, -1.00)
2 (1.00, -2.00) (2.00, 0.00) (-7.00, 0.00)
3 (2.00, 0.00) (-1.00, -6.00) (-2.00, -3.00)
4 (2.00, 3.00) (2.00, 1.00) (-2.00, =-3.00)
5 (-3.00, 0.00) (0.00, 0.00) (-2.00, -3.00)

ScaLAPACK Example

The same set of linear systems as in in the preceding example is solved successively as a
distributed computing example. LETDH is called to factor the matrix. LEsDH is called to compute
the four solutions for the four right-hand sides. In this case, the coefficient matrix is assumed to be
well-conditioned and correctly scaled. Otherwise, it would be better to call LrcDH to perform the
factorization, and LF1DH to compute the solutions.

SCALAPACK MAP and SCALAPACK UNMAP are IMSL utility routines (see Utilities) used to map
and unmap arrays to and from the processor grid. They are used here for brevity. DESCINIT is a
ScaLAPACK tools routine which initializes the descriptors for the local arrays.

USE MPI SETUP INT
USE LFTDH INT
USE LFSDH_INT
USE WRCRN_INT
USE SCALAPACK_SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER J, LDA, N, DESCA(9), DESCX(9)

INTEGER INFO, MXCOL, MXLDA

COMPLEX, ALLOCATABLE :: A(:,:), B(:,:), BO(:), X(:,1)
COMPLEX, ALLOCATABLE :: AO(:,:), FACTO(:,:), XO0(:)
PARAMETER (LDA=5, N=5)

! Set up for MPI
MP NPROCS = MP SETUP ()
IF(MP_RANK .EQ. 0) THEN
ALLOCATE (A (LDA,N), B(LDA,3), X(LDA,3)

)
! Set values for A and B
A(l,:) = (/(2.0, 0.0),(-1.0, 1.0),¢(0.0, 0.0), (0.0, 0.0), (0.0, 0.0)/)
A(2,:) = (/(0.0, 0.0),(4.0, 0.0),(1.0, 2.0),(0.0, 0.0), (0.0, 0.0)/)
A(3,:) = (/(0.0, 0.0),(0.0, 0.0),(10.0, 0.0), (0.0, 4.0), (0.0, 0.0)/)
A(4,:) = (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(6.0, 0.0), (1.0, 1.0)/)
A(5,:) = (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(0.0, 0.0), (9.0, 0.0)/)
|
B(l,:) = (/(3.0, 3.0), (4.0, 0.0), (29.0, -9.0)/)
B(2,:) = (/(5.0, -5.0), (15.0,-10.0), (-36.0,-17.0)/)
B(3,:) = (/(5.0, 4.0), (-12.0,-56.0), (-15.0,-24.0)/)
B(4,:) = (/(9.0, 7.0), (-12.0, 10.0), (-23.0,-15.0)/)
B(5,:) = (/(-22.0,1.0), (3.0, -1.0), (-23.0,-28.0)/)
ENDIF

! Set up a 1D processor grid and define
! its context ID, MP_ ICTXT
CALL SCALAPACK SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,

IMSL MATH LIBRARY Chapter 1: Linear Systems e 251

! and MXCOL
CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptors
CALL DESCINIT (DESCA, N, N, MP MB, MP NB, 0, 0, MP ICTXT, MXLDA, INFO)
CALL DESCINIT (DESCX, N, 1, MP MB, 1, 0, 0, MP ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (AQO (MXLDA,MXCOL), X0 (MXLDA),FACTO (MXLDA,MXCOL), &
BO (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK MAP (A, DESCA, AO)
! Factor the matrix A
CALL LFTDH (A0, FACTO)
! Compute the solutions
Do 10 J=1, 3
CALL SCALAPACK MAP (B(:,J), DESCX, BO)
CALL LFSDH (FACTO, BO, XO0)
! Unmap the results from the distributed
! array back to a non-distributed array
CALL SCALAPACK UNMAP (X0, DESCX, X(:,J))
10 CONTINUE
! Print the results.
! After the unmap, only Rank=0 has the full
! array.
IF(MP_RANK .EQ. 0) CALL WRCRN ('X’, X)
IF (MP_RANK .EQ. 0) DEALLOCATE (A, B, X)
DEALLOCATE (A0, BO, FACTO, XO)
! Exit ScalAPACK usage
CALL SCALAPACK_EXIT(MP_ICTXT)
! Shut down MPI
MP NPROCS = MP_SETUP(‘FINAL’)

END
Output
X

1 2 3
1 (1.00, 0.00) (3.00, -1.00) (11.00, -1.00)
2 (1.00, -2.00) (2.00, 0.00) (-7.00, 0.00)
3 (2.00, 0.00) (-1.00, -6.00) (-2.00, -3.00)
4 (2.00, 3.00) (2.00, 1.00) (-2.00, -3.00)
5 (-3.00, 0.00) (0.00, 0.00) (-2.00, -3.00)

MPI

CAPABLE

Uses iterative refinement to improve the solution of a complex Hermitian positive definite system
of linear equations.

252 e Chapter 1: Linear Systems IMSL MATH LIBRARY

Required Arguments

A — Complex § by n matrix containing the coefficient matrix of the linear system. (Input)
Only the upper triangle of a is referenced.

FACT — Complex N by N matrix containing the factorization of the coefficient matrix a as
output from routine LFCDH/DLFCDH Of LETDH/DLFTDH. (Input)
Only the upper triangle of FACT is used.

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length n containing the solution. (Output)

RES — Complex vector of length n containing the residual vector at the improved solution.
(Output)

Optional Arguments

N — Number of equations. (Input)
Default: n = size (a,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: Lpa = size (a,1).

LDFACT — Leading dimension of FacT exactly as specified in the dimension statement of

the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFIDH (A, FACT, B, X,RES [,..])

Specific: ~ The specific interface names are S LFIDH and D_LFIDH.

FORTRAN 77 Interface

Single: CALL LFIDH (N, A, LDA, FACT, LDFACT, B, X, RES)

Double: The double precision hame is DLFIDH.

ScaLAPACK Interface

Generic: CALL LFIDH (AO, FACTO, BO, X0, RESO [,..])
Specific: The specific interface names are S_LFIDH and D_LFIDH.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed
computing.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 253

Description

Routine LF1DH computes the solution of a system of linear algebraic equations having a complex
Hermitian positive definite coefficient matrix. Iterative refinement is performed on the solution
vector to improve the accuracy. Usually almost all of the digits in the solution are accurate, even if
the matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an R" R factorization. This may
be done by calling either .FCDH or LFTDH.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFIDH and LFsDH both solve a linear system given its RM R factorization. LFIDH generally takes
more time and produces a more accurate answer than LFsDH. Each iteration of the iterative
refinement algorithm used by Lr1DH calls LFSDH.

Comments
Informational error
Type Code
3 3 The input matrix is too ill-conditioned for iterative refinement to be

effective.

ScaLAPACK Usage Notes
The arguments which differ from the standard version of this routine are:

A0 — MxLDA by MxCOL complex local matrix containing the local portions of the
distributed matrix A. a contains the coefficient matrix of the linear system. (Input)
Only the upper triangle of a is referenced.

FACTO0 — mxLpa by MxcoL complex local matrix containing the local portions of the
distributed matrix FacT as output from routine LECDH OF LETDH. FACT contains the
factorization of the matrix 2. (Input)

Only the upper triangle of FacCT is referenced.

B0 — Complex local vector of length MxL.DA containing the local portions of the distributed
vector B. B contains the right-hand side of the linear system. (Input)

X0 — Complex local vector of length MxL.Da containing the local portions of the distributed
vector x. X contains the solution to the linear system. (Output)

RESO — Complex local vector of length mxT.DA containing the local portions of the
distributed vector REs. RES contains the residual vector at the improved solution to the
linear system. (Output)

All other arguments are global and are the same as described for the standard version of the
routine. In the argument descriptions above, MxL.DA and MxCOL can be obtained through a call to
SCALAPACK_GETDIM (Utilities) after a call to SCALAPACK SETUP

(Chapter 11, Utilities) has been made. See the ScaLAPACK Example below.

254 o Chapter 1: Linear Systems IMSL MATH LIBRARY

Example

A set of linear systems is solved successively. The right-hand-side vector is perturbed by adding
(1 +1)/2 to the second element after each call to LFIDH.

USE LFIDH INT
USE LFCDH_ INT
USE UMACH_ INT
USE WRCRN_ INT
! Declare variables

INTEGER LDA, LDFACT, N
PARAMETER (LDA=5, LDFACT=5, N=5)
REAL RCOND
COMPLEX A(LDA,LDA), B(N), FACT (LDFACT,LDFACT), RES(N,3), X(N,3)
!
! Set values for A and B
!
! A = (2.0+0.0i -1.0+1.04i 0.0+0.01 0.0+0.01 0.0+0.01)
! (4.0+0.01 1.0+2.01 0.0+0.01 0.0+0.01)
! (10.0+40.01 0.0+4.01 0.0+0.01)
! (6.0+0.01 1.0+1.01)
! (9.0+0.01i)
!
! B = (3.0+43.01 5.0-5.04 5.0+4.0i 9.0+7.01i -22.0+1.01)
!
DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),&
4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),¢&
(0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/
DATA B /(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0)/

! Factor the matrix A
CALL LFCDH (A, FACT, RCOND)
! Print the estimated condition number
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0EO0/RCOND
! Compute the solutions, then perturb B
DO 10 I=1, 3
CALL LFIDH (A, FACT, B, X(:,I), RES(:,I))
B(2) = B(2) + (0.5E0,0.5E0)
10 CONTINUE
! Print solutions and residuals
CALL WRCRN (’X’, X)
CALL WRCRN (’RES’, RES)
i
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
END

Output

RCOND < 0.07
L1 Condition number < 25.0

X
1 2 3
1 (1.000, 0.000) (1.217, 0.000) (1.433, 0.000)
2 (1.000,-2.000) (1.217,-1.783) (1.433,-1.567)
3 (2.000, 0.000) (1.910, 0.030) (1.820, 0.060)

IMSL MATH LIBRARY Chapter 1: Linear Systems e 255

4 (2.000, 3.000) (1.979, 2.938) (1.959, 2.876)
5 (-3.000, 0.000) (-2.991, 0.005) (-2.982, 0.009)

RES
2
.592E-08, 1.686E-07)
.329E-08,-5.329E-08)
.390E-07,-3.309E-08)
.240E-08,-8.790E-09)
.813E-07, 6.981E-09)

.192E-07, 0.000E+00

1

) .318E-07, 2.010E-14
.192E-07,-2.384E-07)

)

)

)

3

)

.318E-07,-2.258E-07)

.384E-07, 8.259E-08)
.384E-07, 2.814E-14)
.384E-07,-1.401E-08)

.395E-07, 1.015E-07
.648E-07,-1.758E-08
.241E-07,-2.795E-08

G wWN R
NN N R
N o N U oy
—~—— o~ —~
WRE NP

ScalLAPACK Example

As in the preceding example, a set of linear systems is solved successively as a distributed
computing example. The right-hand-side vector is perturbed by adding (1 + i)/2 to the second
element after each call to LFIDH. SCALAPACK_MAP and SCALAPACK UNMAP are IMSL utility
routines (see Utilities) used to map and unmap arrays to and from the processor grid. They are
used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors
for the local arrays.

USE MPI SETUP INT
USE LFCDH_ INT
USE LFIDH_INT
USE UMACH_ INT
USE WRCRN_INT
USE SCALAPACK SUPPORT
IMPLICIT NONE
INCLUDE ‘mpif.h’
! Declare variables

INTEGER J, LDA, N, NOUT, DESCA(9), DESCX(9)

INTEGER INFO, MXCOL, MXLDA

REAL RCOND

COMPLEX, ALLOCATABLE :: A(:,:), B(:), BO(:), RES(:,:), X(:,:)
COMPLEX, ALLOCATABLE :: AO(:,:), FACTO(:,:), X0(:), RESO(:)
PARAMETER (LDA=5, N=5)

! Set up for MPI
MP NPROCS = MP_ SETUP ()
IF (MP_RANK .EQ. 0) THEN
ALLOCATE (A(LDA,N), B(N), RES(N,3), X(N,3))
! Set values for A and B

A(l,:) = (/(2.0, 0.0),(-1.0, 1.0),(0.0, 0.0),(0.0, 0.0),(0.0, 0.0)/)

A(2,:) = (/(0.0, 0.0),(4.0, 0.0),(1.0, 2.0),(0.0, 0.0), (0.0, 0.0)/)

A(3,:) = (/(0.0, 0.0),(0.0, 0.0),(10.0, 0.0),(0.0, 4.0),(0.0, 0.0)/)

A(4,:) = (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(6.0, 0.0), (1.0, 1.0)/)

A(5,:) = (/(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(0.0, 0.0),(9.0, 0.0)/)
!

B = (/(3.0, 3.0),(5.0,-5.0),(5.0, 4.0), (9.0, 7.0),(-22.0,1.0)/)

! Set up a 1D processor grid and define
! its context ID, MP_ ICTXT
CALL SCALAPACK SETUP(N, N, .TRUE., .TRUE.)
! Get the array descriptor entities MXLDA,
! and MXCOL
CALL SCALAPACK GETDIM(N, N, MP MB, MP NB, MXLDA, MXCOL)
! Set up the array descriptors

256 o Chapter 1: Linear Systems IMSL MATH LIBRARY

CALL DESCINIT(DESCA, N, N, MP MB, MP NB, 0, 0, MP_ICTXT, MXLDA, INFO)
CALL DESCINIT (DESCX, N, 1, MP MB, 1, O, 0, MP ICTXT, MXLDA, INFO)
! Allocate space for the local arrays
ALLOCATE (AQO (MXLDA, MXCOL), X0 (MXLDA),FACTO (MXLDA,MXCOL), &
BO (MXLDA), RESO (MXLDA))
! Map input arrays to the processor grid
CALL SCALAPACK MAP (A, DESCA, AO0)
! Factor the matrix A
CALL LFCDH (A0, FACTO, RCOND)
! Print the estimated condition number
IF (MP_RANK .EQ. 0) THEN
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
ENDIF
! Compute the solutions
Do 10 J=1, 3
CALL SCALAPACK_MAP(B, DESCX, BO)
CALL LFIDH (AO, FACTO, BO, X0, RESO)
! Unmap the results from the distributed
! array back to a non-distributed array
CALL SCALAPACK UNMAP (X0, DESCX, X(:,J))
CALL SCALAPACK UNMAP (RESO, DESCX, RES(:,J))
IF (MP_RANK .EQ. 0) B(2) = B(2) + (0.5E0, 0.5EO0)
10 CONTINUE
! Print the results.
! After the unmap, only Rank=0 has the full
! array.
IF (MP_RANK .EQ. 0) THEN
CALL WRCRN ('X’, X)
CALL WRCRN (’RES’, RES)
ENDIF
IF (MP_RANK .EQ. 0) DEALLOCATE (A, B, RES, X)
DEALLOCATE (A0, BO, FACTO, RESO, XO0)

! Exit ScalAPACK usage
CALL SCALAPACK_EXIT(MP_ICTXT)

! Shut down MPI
MP_NPROCS = MP_SETUP(‘FINAL’)

99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
END

Output

RCOND < 0.07
L1 Condition number < 25.0

X
1 2 3
1 (1.000, 0.000) (1.217, 0.000) (1.433, 0.000)
2 (1.000,-2.000) (1.217,-1.783) (1.433,-1.567)
3 (2.000, 0.000) (1.910, 0.030) (1.820, 0.060)
4 (2.000, 3.000) (1.979, 2.938) (1.959, 2.876)
5 (-3.000, 0.000) (-2.991, 0.005) (-2.982, 0.009)
RES
1 2 3
1 (1.192E-07, 0.000E+00) (6.592E-08, 1.686E-07) (1.318E-07, 2.010E-14)

IMSL MATH LIBRARY Chapter 1: Linear Systems e 257

1.192E-07,-2.384E-07
2.384E-07, 8.259E-08
-2.384E-07, 2.814E-14
2.384E-07,-1.401E-08

.329E-08,-5.329E-08)
.390E-07,-3.309E-08)
.240E-08,-8.790E-09)
.813E-07, 6.981E-09)

318E-07,-2.258E-07
395E-07, 1.015E-07
648E-07,-1.758E-08
241E-07,-2.795E-08

o w N
N oo N ol

) 1.)
) 2.)
) 1.)
) 3.)

(
(
(
(

LFDDH

Computes the determinant of a complex Hermitian positive definite matrix given the RMR
Cholesky factorization of the matrix.

Required Arguments

FACT — Complex N by N matrix containing the RMR factorization of the coefficient matrix a
as output from routine LECDH/DLFCDH Of LETDH/DLFTDH. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 < [DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = pET1 * 10PET2,

Optional Arguments

N — Order of the matrix. (Input)
Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of

the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface

Generic: CALL LFDDH (FACT, DET1, DET2 [,..])

Specific: The specific interface names are S_LFDDH and D_LFDDH.

FORTRAN 77 Interface

Single: CALL LFDDH (N, FACT, LDFACT, DET1, DET2)
Double: The double precision hame is DLFDDH.
Description

Routine LFDDH computes the determinant of a complex Hermitian positive definite coefficient
matrix. To compute the determinant, the coefficient matrix must first undergo an R" R
factorization. This may be done by calling either L.rcps or LTDH. The formula det A = det R" det

258 o Chapter 1: Linear Systems IMSL MATH LIBRARY

R = (det R)? is used to compute the determinant. Since the determinant of a triangular matrix is the
product of the diagonal elements,

N
detR::IiLle”
(The matrix R is stored in the upper triangle of FacT.)

LFDDH is based on the LINPACK routine cpoDT; see Dongarra et al. (1979).

Example

The determinant is computed for a complex Hermitian positive definite 3 X 3 matrix.

USE LFDDH INT
USE LFTDH INT
USE UMACH_ INT
! Declare variables

INTEGER LDA, LDFACT, NOUT

PARAMETER (LDA=3, LDFACT=3)

REAL DET1, DET2

COMPLEX A (LDA,LDA), FACT (LDFACT,LDFACT)

Set values for A

A = (6.0+0.01 1.0-1.01 4.0+40.01)
(1.0+1.01 7.0+40.01 -5.0+1.01i)
(4.0+0.01 -5.0-1.0i 11.0+40.01)

DATA A /(6.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (7.0,0.0),%&
(-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (11.0,0.0)/

! Factor the matrix
CALL LFTDH (A, FACT)

! Compute the determinant
CALL LFDDH (FACT, DET1, DET2)

! Print results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) DET1, DET2

i

99999 FORMAT (' The determinant of A is ’,F6.3,’ * 10**’,F2.0)
END

Output

The determinant of A is 1.400 * 10**2.

LSAHF

HEIGH
PE%I;MCE

Solves a complex Hermitian system of linear equations with iterative refinement.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 259

Required Arguments

A — Complex § by n matrix containing the coefficient matrix of the Hermitian linear system.
(Input)
Only the upper triangle of a is referenced.

B — Complex vector of length § containing the right-hand side of the linear system. (Input)

X — Complex vector of length ~ containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)
Default: v = size (2,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling

program. (Input)
Default: Lpa =size (a,1).

FORTRAN 90 Interface

Generic: CALL LSAHF (A,B,X [,..])

Specific: ~ The specific interface names are S LSAHF and D_LSAHF.

FORTRAN 77 Interface

Single: CALL LSAHF (N, A, LDA, B, X)
Double: The double precision name is DLSAHF.
Description

Routine LsaHF solves systems of linear algebraic equations having a complex Hermitian
indefinite coefficient matrix. It first uses the routine LECHF to compute a U DU factorization of
the coefficient matrix and to estimate the condition number of the matrix. D is a block diagonal
matrix with blocks of order 1 or 2 and U is a matrix composed of the product of a permutation
matrix and a unit upper triangular matrix. The solution of the linear system is then found using the
iterative refinement routine LFIHF.

1.saHF fails if a block in D is singular or if the iterative refinement algorithm fails to converge.
These errors occur only if A is singular or very close to a singular matrix.

If the estimated condition number is greater than 1/e (where ¢ is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system. LsaAHF solves the
problem that is represented in the computer; however, this problem may differ from the problem
whose solution is desired.

260 o Chapter 1: Linear Systems IMSL MATH LIBRARY

Comments

1. Workspace may be explicitly provided, if desired, by use of L2aHF/DL2AHF. The
reference is:

CALL L2AHF (N, A, LDA, B, X, FACT, IPVT, CWK)

The additional arguments are as follows:

FACT — Complex work vector of length N containing information about the
U DU" factorization of 2 on output.

IPVT — Integer work vector of length n containing the pivoting information
for the factorization of a on output.

CWK — Complex work vector of length .

2. Informational errors
Type Code
3 1 The input matrix is algorithmically singular.
3 4 The input matrix is not Hermitian. It has a diagonal entry with a
small imaginary part.
4 2 The input matrix singular.
4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

3. Integer Options with Chapter 11 Options Manager

16

17

This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L.2AHF the leading dimension of FACT is increased by
1vaL(3) when N is a multiple of TvaL(4). The values 1vaL(3) and 1vaL(4) are
temporarily replaced by 1var(1) and 1vaL(2), respectively, in LSAHF.
Additional memory allocation for FacT and option value restoration are done
automatically in LsanF. Users directly calling .2asF can allocate additional
space for FacT and set 1varL(3) and 1varL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LsaHF or L2aHF. Default values for the option are
1vaL(*) =1, 16,0, 1.

This option has two values that determine if the L; condition number is to be
computed. Routine L.saHF temporarily replaces 1vaL(2) by 1var(l). The
routine L2cHF computes the condition number if TvaL(2) = 2. Otherwise L2CHF
skips this computation. LSaAHF restores the option. Default values for the option
are

TvaLnL(*) =1, 2.

IMSL MATH LIBRARY

Chapter 1: Linear Systems e 261

Example

A system of three linear equations is solved. The coefficient matrix has complex Hermitian form

and the right-hand-side vector b has three elements.

USE LSAHF INT
USE WRCRN_INT

! Declare variables

INTEGER LDA, N
PARAMETER (LDA=3, N=3)
COMPLEX A (LDA,LDA), B(N), X(N)
|
! Set
|
! A = (3.0+0.01
! (1.0+1.01
! (4.0+0.01
|
! B = (
!
DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0),
(-5.0,-1.0), (4.0,0.0), (=5.0,1.0)
DATA B/(7.0,32.0), (-39.0,-21.0), (51.0,

CALL LSAHF (A, B, X)

! Print results

CALL WRCRN ('X’, X, 1, N, 1)

END
Output
X
1 2
(2.00, 1.00) (-10.00, -1.00) (3.00, 5

values for A and B

1.0-1.01
2.0+0.01
-5.0-1.01

(1.0,-1.0),
, (=2.0,0.0)/
9.0)/

.00)

4.0+40.01)
-5.0+1.01)
-2.0+40.01)

7.0+32.01i -39.0-21.0i 51.0+49.01)

(2.0,0.0),&

LSLHF

PE%‘?%CE

Solves a complex Hermitian system of linear equations without iterative refinement.

Required Arguments

A — Complex n by n matrix containing the coefficient matrix of the Hermitian linear system.

(Input)
Only the upper triangle of a is referenced.

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

262 e Chapter 1: Linear Systems

IMSL MATH LIBRARY

X — Complex vector of length ~ containing the solution to the linear system. (Output)

Optional Arguments

N — Number of equations. (Input)
Default: n = size (2,2).

LDA — Leading dimension of a exactly as specified in the dimension statement of the calling

program. (Input)
Default; Lpa = size (a,1).

FORTRAN 90 Interface

Generic: CALL LSLHF (A,B,X [,..])

Specific: ~ The specific interface names are S LSLHF and D_LSLHF.

FORTRAN 77 Interface

Single: CALL LSLHF (N, A, LDA, B, X)
Double: The double precision name is DLSLHF.
Description

Routine LsLHF solves systems of linear algebraic equations having a complex Hermitian
indefinite coefficient matrix. It first uses the routine LFCHF to compute a UDU" factorization of
the coefficient matrix. D is a block diagonal matrix with blocks of order 1 or 2 and U is a matrix
composed of the product of a permutation matrix and a unit upper triangular matrix.

The solution of the linear system is then found using the routine LrsHF. LsLHF fails if a block in
D is singular. This occurs only if A is singular or very close to a singular matrix. If the coefficient
matrix is ill-conditioned or poorly scaled, it is recommended that 1.saHF be used.

Comments

1. Workspace may be explicitly provided, if desired, by use of L2LHF/DL2LHF. The
reference is:

CALL L2LHF (N, A, LDA, B, X, FACT, IPVT, CWK)
The additional arguments are as follows:

FACT — Complex work vector of length N containing information about the
UDU" factorization of 2 on output.

IPVT — Integer work vector of length N containing the pivoting information
for the factorization of A on output.

IMSL MATH LIBRARY Chapter 1: Linear Systems e 263

CWK — Complex work vector of length n.

2. Informational errors
Type Code
3 1 The input matrix is algorithmically singular.
3 4 The input matrix is not Hermitian. It has a diagonal entry with a
small imaginary part.
4 2 The input matrix singular.
4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L.2LHF the leading dimension of FACT is increased by
1VAL(3) when n is a multiple of 1vaL(4). The values 1vaL(3) and 1vaL(4) are
temporarily replaced by 1var(1) and 1vaL(2), respectively, in LSLHF.
Additional memory allocation for FacT and option value restoration are done
automatically in LsLHF. Users directly calling L.21.HF can allocate additional
space for rFacT and set 1varL(3) and 1vaL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LsLHF or L2LHF. Default values for the option are
1vaL(*) =1, 16,0, 1.

17 This option has two values that determine if the L; condition number is to be
computed. Routine LsLHF temporarily replaces 1vaL(2) by 1vaL(1). The
routine L2CcHF computes the condition number if 1vaL(2) = 2. Otherwise L2CHF
skips this computation. LSLHF restores the option. Default values for the option
are TvaL(*) =1, 2.

Example

A system of three linear equations is solved. The coefficient matrix has complex Hermitian form
and the right-hand-side vector b has three elements.

USE LSLHF_INT
USE WRCRN_INT
! Declare variables
INTEGER LDA, N
PARAMETER (LDA=3, N=3)
COMPLEX A (L