

IMSL MATH/LIBRARY MOLCH • 837

MOLCH
Dreprecated Routine: MOLCH is a deprecated routine and has been replaced with MMOLCH.

Solves a system of partial differential equations of the form ut = f(x, t, u, ux, uxx) using the method
of lines. The solution is represented with cubic Hermite polynomials.

Required Arguments
IDO — Flag indicating the state of the computation. (Input/Output)

IDO State

1 Initial entry

2 Normal reentry

3 Final call, release workspace

 Normally, the initial call is made with IDO = 1. The routine then sets IDO = 2, and this
value is then used for all but the last call that is made with IDO = 3.

FCNUT — User-supplied SUBROUTINE to evaluate the function ut. The usage is
CALL FCNUT (NPDES, X, T, U, UX, UXX, UT), where
 NPDES – Number of equations. (Input)
 X – Space variable, x. (Input)
 T – Time variable, t. (Input)
 U – Array of length NPDES containing the dependent variable values,
 u. (Input)
 UX – Array of length NPDES containing the first derivatives ux.
 (Input)
 UXX – Array of length NPDES containing the second derivative uxx.
 (Input)
 UT – Array of length NPDES containing the computed derivatives, ut.
 (Output)

The name FCNUT must be declared EXTERNAL in the calling program.

FCNBC — User-supplied SUBROUTINE to evaluate the boundary conditions. The boundary
conditions accepted by MOLCH are αk uk + βk ux ≡ γk. Note: Users must supply the values
αk and βk, which determine the values γk. Since the γk can depend on t, values of γ′k are
also required. Users must supply these values. The usage is
CALL FCNBC (NPDES, X, T, ALPHA, BTA, GAMMAP), where

838 • MOLCH IMSL MATH/LIBRARY

 NPDES – Number of equations. (Input)
X – Space variable, x. This value directs which boundary condition to compute.
(Input)
T – Time variable, t. (Input)
ALPHA – Array of length NPDES containing the αk values. (Output)
BTA – Array of length NPDES containing the βk values. (Output)

GAMMAP – Array of length NPDES containing the values of the derivatives, k
k

d
dt

′=
γ

γ

(Output)

 The name FCNBC must be declared EXTERNAL in the calling program.

T — Independent variable, t. (Input/Output)
On input, T supplies the initial time, t0. On output, T is set to the value to which the
integration has been updated. Normally, this new value is TEND.

TEND — Value of t = tend at which the solution is desired. (Input)

XBREAK — Array of length NX containing the break points for the cubic Hermite splines
used in the x discretization. (Input)
The points in the array XBREAK must be strictly increasing. The values XBREAK(1) and
XBREAK(NX) are the endpoints of the interval.

Y — Array of size NPDES by NX containing the solution. (Input/Output)
The array Y contains the solution as Y(k, i) = uk(x, tend) at x = XBREAK(i). On input, Y
contains the initial values. It MUST satisfy the boundary conditions. On output, Y
contains the computed solution.
There is an optional application of MOLCH that uses derivative values, ux(x, t0). The
user allocates twice the space for Y to pass this information. The optional derivative
information is input as

() ()0Y k,i NX ,ku x t
x

∂
∂

+ =

 at x = X(i). The array Y contains the optional derivative values as output:

 () ()Y k,i NX ,ku x tend
x

∂
∂

+ =

 at x = X(i). To signal that this information is provided, use an options manager call as
outlined in Comment 3 and illustrated in Examples 3 and 4.

Optional Arguments
NPDES — Number of differential equations. (Input)

Default: NPDES = size (Y,1).

IMSL MATH/LIBRARY MOLCH • 839

NX — Number of mesh points or lines. (Input)
Default: NX = size (Y,2).

TOL — Differential equation error tolerance. (Input)
An attempt is made to control the local error in such a way that the global relative error
is proportional to TOL.
Default: TOL = 100. * machine precision.

HINIT — Initial step size in the t integration. (Input)
This value must be nonnegative. If HINIT is zero, an initial step size of 0.001|tend − t0|
will be arbitrarily used. The step will be applied in the direction of integration.
Default: HINIT = 0.0.

LDY — Leading dimension of Y exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDY = size (Y,1).

FORTRAN 90 Interface
Generic: CALL MOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y [,…])

Specific: The specific interface names are S_MOLCH and D_MOLCH.

FORTRAN 77 Interface
Single: CALL MOLCH (IDO, FCNUT, FCNBC, NPDES, T, TEND, NX, XBREAK, TOL, HINIT,

Y, LDY)

Double: The double precision name is DMOLCH.

Description

Let M = NPDES, N = NX and xi = XBREAK(I). The routine MOLCH uses the method of lines to solve
the partial differential equation system

2 2
1 1

1 2 2, , , , , , ,k M M
k M

u u u u uf x t u u
t x x x x

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

 
=  

 
  

with the initial conditions

uk = uk(x, t) at t = t0

and the boundary conditions

1() at and at k
k k k k N

u
u t x x x x

x
∂

α β γ
∂

+ = = =

for k = 1, …, M.

840 • MOLCH IMSL MATH/LIBRARY

Cubic Hermite polynomials are used in the x variable approximation so that the trial solution is
expanded in the series

() () () () ()(), ,
1

ˆ ,
N

k i k i i k i
i

bu x t a t x t xφ ψ
=

+= ∑

where φi(x) and ψi(x) are the standard basis functions for the cubic Hermite polynomials with the
knots x1 < x2 < … < xN. These are piecewise cubic polynomials with continuous first derivatives.
At the breakpoints, they satisfy

() ()

() ()

0

0

i l il i l

i i
l l il

x x
d d

x x
dx dx

φ δ ψ
φ ψ

δ

= =

= =

According to the collocation method, the coefficients of the approximation are obtained so that the
trial solution satisfies the differential equation at the two Gaussian points in each subinterval,

()

()

2 1 1

2 1

3 3
6

3 3
6

j j j j

j j j j

p x x x

p x x x

− +

+

−
= + −

+
= + +

for j = 1, …, N. The collocation approximation to the differential equation is

() ()

() () () () () ()()

, ,

1

1 1ˆ ˆ ˆ ˆ, , , , , , , ,

N
i k i k

i j i j
i

k j j M j j M jxx xx

da db
p p

dt dt

f p t u p u p u p u p

φ ψ
=

+ =∑
  

for k = 1, …, M and j = 1, …, 2(N − 1).

This is a system of 2M(N − 1) ordinary differential equations in 2M N unknown coefficient
functions, ai, k and bi, k. This system can be written in the matrix−vector form as A dc/dt = F (t, y)
with c(t0) = c0 where c is a vector of coefficients of length 2M N and c0 holds the initial values of
the coefficients. The last 2M equations are obtained by differentiating the boundary conditions

k k k
k k

da db d
dt dt dt

γα β+ =

for k = 1, …, M.

The initial conditions uk(x, t0) must satisfy the boundary conditions. Also, the γk(t) must be
continuous and have a smooth derivative, or the boundary conditions will not be properly imposed
for t > t0.

If αk = βk = 0, it is assumed that no boundary condition is desired for the k-th unknown at the left
endpoint. A similar comment holds for the right endpoint. Thus, collocation is done at the
endpoint. This is generally a useful feature for systems of first-order partial differential equations.

If the number of partial differential equations is M = 1 and the number of breakpoints is N = 4,
then

IMSL MATH/LIBRARY MOLCH • 841

() () () ()
() () () ()

() () () ()
() () () ()

() () () ()
() () () ()

1 1

1 1 1 1 2 1 2 1

1 2 1 2 2 2 2 2

3 3 3 3 4 3 4 3

3 4 3 4 4 4 4 4

5 5 5 5 6 5 6 5

5 6 5 6 6 6 6 6

4 4

p p p p
p p p p

p p p p
A

p p p p
p p p p
p p p p

α β
φ ψ φ ψ
φ ψ φ ψ

φ ψ φ ψ
φ ψ φ ψ

φ ψ φ ψ
φ ψ φ ψ

α β

 
 
 
 
 
 =  
 
 
 
 
  

The vector c is

c = [a1, b1, a2, b2, a3, b3, a4, b4]T

and the right-side F is

() () () () () () () ()1 1 2 3 4 5 6 4, , , , , , ,
T

F x f p f p f p f p f p f p xγ γ′ ′=   

If M > 1, then each entry in the above matrix is replaced by an M × M diagonal matrix. The
element α1 is replaced by diag(α1,1, …, α1,Μ). The elements αN, β1 and βN are handled in the
same manner. The φi(pj) and ψi(pj) elements are replaced by φi(pj)IM and ψi(pj)IM where IM is the
identity matrix of order M. See Madsen and Sincovec (1979) for further details about
discretization errors and Jacobian matrix structure.

The input/output array Y contains the values of the ak, i. The initial values of the bk, i are obtained
by using the IMSL cubic spline routine CSINT (see Chapter 3, Interpolation and Approximation)
to construct functions

()0ˆ ,ku x t

such that

()0ˆ ,k i kiu x t a=

The IMSL routine CSDER, see Chapter 3, Interpolation and Approximation, is used to approximate
the values

()0 ,

ˆ
,k

i k i
dU x t b
dx

≡

There is an optional usage of MOLCH that allows the user to provide the initial values of bk, i.

The order of matrix A is 2M N and its maximum bandwidth is 6M − 1. The band structure of the
Jacobian of F with respect to c is the same as the band structure of A. This system is solved using
a modified version of IVPAG. Some of the linear solvers were removed. Numerical Jacobians are
used exclusively. The algorithm is unchanged. Gear’s BDF method is used as the default because
the system is typically stiff.

842 • MOLCH IMSL MATH/LIBRARY

We now present four examples of PDEs that illustrate how users can interface their problems with
IMSL PDE solving software. The examples are small and not indicative of the complexities that
most practitioners will face in their applications. A set of seven sample application problems,
some of them with more than one equation, is given in Sincovec and Madsen (1975). Two further
examples are given in Madsen and Sincovec (1979).

Comments
1. Workspace may be explicitly provided, if desired, by use of M2LCH/DM2LCH. The

reference is:

CALL M2LCH (IDO, FCNUT, FCNBC, NPDES, T, TEND, NX, XBREAK, TOL, HINIT, Y,
LDY, WK, IWK)

The additional arguments are as follows:

WK — Work array of length 2NX * NPDES(12 * NPDES2 + 21 * NPDES + 9).
WK should not be changed between calls to M2LCH.

IWK — Work array of length 2NX * NPDES. IWK should not be changed between
calls to M2LCH.

2. Informational errors
Type Code

 4 1 After some initial success, the integration was halted by repeated
error test failures.

 4 2 On the next step, X + H will equal X. Either TOL is too small or the
problem is stiff.

 4 3 After some initial success, the integration was halted by a test on
TOL.

 4 4 Integration was halted after failing to pass the error test even after
reducing the step size by a factor of 1.0E + 10. TOL may be too
small.

 4 5 Integration was halted after failing to achieve corrector convergence
even after reducing the step size by a factor of 1.0E + 10. TOL may
be too small.

3. Optional usage with Chapter 11 Option Manager

11 This option consists of the parameter PARAM, an array with 50 components. See
IVPAG for a more complete documentation of the contents of this array. To reset
this option, use the subprogram SUMAG for single precision, and DUMAG (see
Chapter 11, Utilities) for double precision. The entry PARAM(1) is assigned the
initial step, HINIT. The entries PARAM(15) and PARAM(16) are assigned the
values equal to the number of lower and upper diagonals that will occur in the
Newton method for solving the BDF corrector equations. The value
PARAM(17) = 1 is used to signal that the x derivatives of the initial data are
provided in the the array Y. The output values PARAM(31)-PARAM(36) , showing
technical data about the ODE integration, are available with another option

IMSL MATH/LIBRARY MOLCH • 843

manager subroutine call. This call is made after the storage for MOLCH is
released. The default values for the first 20 entries of PARAM are (0, 0, amach(2),
500., 0., 5., 0, 0, 1., 3., 1., 2., 2., 1., amach(6), amach(6), 0, sqrt(amach(4)), 1.,
0.). Entries 21−50 are defaulted to amach(6).

Example 1
The normalized linear diffusion PDE, ut = uxx, 0 ≤ x ≤ 1, t > t0, is solved. The initial values are
t0 = 0, u(x, t0) = u0 = 1. There is a “zero-flux” boundary condition at x = 1, namely ux(1, t) = 0,
(t > t0). The boundary value of u(0, t) is abruptly changed from u0 to the value u1 = 0.1. This
transition is completed by t = tδ = 0.09.

Due to restrictions in the type of boundary conditions sucessfully processed by MOLCH, it is
necessary to provide the derivative boundary value function γ′ at x = 0 and at x = 1. The function γ
at x = 0 makes a smooth transition from the value u0 at t = t0 to the value u1 at t = tδ. We compute
the transition phase for γ′ by evaluating a cubic interpolating polynomial. For this purpose, the
function subprogram CSDER, see Chapter 3, Interpolation and Approximation, is used. The
interpolation is performed as a first step in the user-supplied routine FCNBC. The function and
derivative values γ(t0) = u0, γ′(t0) = 0, γ(tδ) = u1, and γ′(tδ) = 0, are used as input to routine
C2HER, to obtain the coefficients evaluated by CSDER. Notice that γ′(t) = 0, t > tδ. The evaluation
routine CSDER will not yield this value so logic in the routine FCNBC assigns γ′(t) = 0, t > tδ.

 USE MOLCH_INT
 USE UMACH_INT
 USE AMACH_INT
 USE WRRRN_INT

 IMPLICIT NONE
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER LDY, NPDES, NX
 PARAMETER (NPDES=1, NX=8, LDY=NPDES)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, IDO, J, NOUT, NSTEP
 REAL HINIT, PREC, T, TEND, TOL, XBREAK(NX), Y(LDY,NX), U0
 CHARACTER TITLE*19
! SPECIFICATIONS FOR INTRINSICS
 INTRINSIC FLOAT
 REAL FLOAT
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCNBC, FCNUT
! Set breakpoints and initial
! conditions
 U0 = 1.0
 DO 10 I=1, NX
 XBREAK(I) = FLOAT(I-1)/(NX-1)
 Y(1,I) = U0
 10 CONTINUE
! Set parameters for MOLCH
 PREC = AMACH(4)
 TOL = SQRT(PREC)
 HINIT = 0.01*TOL

844 • MOLCH IMSL MATH/LIBRARY

 T = 0.0
 IDO = 1
 NSTEP = 10
 CALL UMACH (2, NOUT)
 J = 0
 20 CONTINUE
 J = J + 1
 TEND = FLOAT(J)/FLOAT(NSTEP)
! This puts more output for small
! t values where action is fastest.
 TEND = TEND**2
! Solve the problem
 CALL MOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, TOL=TOL, &
 HINIT=HINIT)
 IF (J .LE. NSTEP) THEN
! Print results
 WRITE (TITLE,'(A,F4.2)') 'Solution at T =', T
 CALL WRRRN (TITLE, Y)
! Final call to release workspace
 IF (J .EQ. NSTEP) IDO = 3
 GO TO 20
 END IF
 END
 SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NPDES
 REAL X, T, U(*), UX(*), UXX(*), UT(*)
!
! Define the PDE
 UT(1) = UXX(1)
 RETURN
 END

 SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BTA, GAMP)
 USE CSDER_INT
 USE C2HER_INT
 USE WRRRN_INT
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NPDES
 REAL X, T, ALPHA(*), BTA(*), GAMP(*)
! SPECIFICATIONS FOR PARAMETERS
 REAL TDELTA, U0, U1
 PARAMETER (TDELTA=0.09, U0=1.0, U1=0.1)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IWK(2), NDATA
 REAL DFDATA(2), FDATA(2), XDATA(2)
! SPECIFICATIONS FOR SAVE VARIABLES
 REAL BREAK(2), CSCOEF(4,2)
 LOGICAL FIRST
 SAVE BREAK, CSCOEF, FIRST
! SPECIFICATIONS FOR SUBROUTINES
 DATA FIRST/.TRUE./
!
 IF (FIRST) GO TO 20
 10 CONTINUE

IMSL MATH/LIBRARY MOLCH • 845

!
!
! Define the boundary conditions
 IF (X .EQ. 0.0) THEN
! These are for x=0.
 ALPHA(1) = 1.0
 BTA(1) = 0.0
 GAMP(1) = 0.
! If in the boundary layer,
! compute nonzero gamma prime.
 IF (T .LE. TDELTA) GAMP(1) = CSDER(1,T,BREAK,CSCOEF)
 ELSE
! These are for x=1.
 ALPHA(1) = 0.0
 BTA(1) = 1.0
 GAMP(1) = 0.0
 END IF
 RETURN
 20 CONTINUE
! Compute the boundary layer data.
 NDATA = 2
 XDATA(1) = 0.0
 XDATA(2) = TDELTA
 FDATA(1) = U0
 FDATA(2) = U1
 DFDATA(1) = 0.0
 DFDATA(2) = 0.0
! Do Hermite cubic interpolation.
 CALL C2HER (NDATA, XDATA, FDATA, DFDATA, BREAK, CSCOEF, IWK)
 FIRST = .FALSE.
 GO TO 10
 END

Output

 Solution at T =0.01
 1 2 3 4 5 6 7 8
0.969 0.997 1.000 1.000 1.000 1.000 1.000 1.000

 Solution at T =0.04
 1 2 3 4 5 6 7 8
0.625 0.871 0.963 0.991 0.998 1.000 1.000 1.000

 Solution at T =0.09
 1 2 3 4 5 6 7 8
0.0998 0.4603 0.7171 0.8673 0.9437 0.9781 0.9917 0.9951

 Solution at T =0.16
 1 2 3 4 5 6 7 8
0.0994 0.3127 0.5069 0.6680 0.7893 0.8708 0.9168 0.9316

 Solution at T =0.25
 1 2 3 4 5 6 7 8
0.0994 0.2564 0.4043 0.5352 0.6428 0.7223 0.7709 0.7873

846 • MOLCH IMSL MATH/LIBRARY

 Solution at T =0.36
 1 2 3 4 5 6 7 8
0.0994 0.2172 0.3289 0.4289 0.5123 0.5749 0.6137 0.6268

 Solution at T =0.49
 1 2 3 4 5 6 7 8
0.0994 0.1847 0.2657 0.3383 0.3989 0.4445 0.4728 0.4824

 Solution at T =0.64
 1 2 3 4 5 6 7 8
0.0994 0.1583 0.2143 0.2644 0.3063 0.3379 0.3574 0.3641

 Solution at T =0.81
 1 2 3 4 5 6 7 8
0.0994 0.1382 0.1750 0.2080 0.2356 0.2563 0.2692 0.2736

 Solution at T =1.00
 1 2 3 4 5 6 7 8
0.0994 0.1237 0.1468 0.1674 0.1847 0.1977 0.2058 0.2085

Additonal Examples

Example 2

In this example, using MOLCH, we solve the linear normalized diffusion PDE ut = uxx but with an
optional usage that provides values of the derivatives, ux, of the initial data. Due to errors in the
numerical derivatives computed by spline interpolation, more precise derivative values are
required when the initial data is u(x, 0) = 1 + cos[(2n − 1)πx], n > 1. The boundary conditions are
“zero flux” conditions ux(0, t) = ux(1, t) = 0 for t > 0. Note that the initial data is compatible with
these end conditions since the derivative function

() () () ()
,0

,0 2 1 sin 2 1x

du x
u x n n x

dx
π π= = − − −  

vanishes at x = 0 and x = 1.

The example illustrates the use of the IMSL options manager subprograms SUMAG or, for double
precision, DUMAG, see Chapter 11, Utilities, to reset the array PARAM used for control of the
specialized version of IVPAG that integrates the system of ODEs. This optional usage signals that
the derivative of the initial data is passed by the user. The values u(x, tend) and ux(x, tend) are
output at the breakpoints with the optional usage.

 USE IMSL_LIBRARIES

 IMPLICIT NONE
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER LDY, NPDES, NX, IAC
 PARAMETER (NPDES=1, NX=10, LDY=NPDES)
! SPECIFICATIONS FOR PARAMETERS
 INTEGER ICHAP, IGET, IPUT, KPARAM
 PARAMETER (ICHAP=5, IGET=1, IPUT=2, KPARAM=11)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, IACT, IDO, IOPT(1), J, JGO, N, NOUT, NSTEP

IMSL MATH/LIBRARY MOLCH • 847

 REAL ARG1, HINIT, PREC, PARAM(50), PI, T, TEND, TOL, &
 XBREAK(NX), Y(LDY,2*NX)
 CHARACTER TITLE*36
! SPECIFICATIONS FOR INTRINSICS
 INTRINSIC COS, FLOAT, SIN, SQRT
 REAL COS, FLOAT, SIN, SQRT
! SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCNBC, FCNUT
! Set breakpoints and initial
! conditions.
 N = 5
 PI = CONST('pi')
 IOPT(1) = KPARAM
 DO 10 I=1, NX
 XBREAK(I) = FLOAT(I-1)/(NX-1)
 ARG1 = (2.*N-1)*PI
! Set function values.
 Y(1,I) = 1. + COS(ARG1*XBREAK(I))
! Set first derivative values.
 Y(1,I+NX) = -ARG1*SIN(ARG1*XBREAK(I))
 10 CONTINUE
! Set parameters for MOLCH
 PREC = AMACH(4)
 TOL = SQRT(PREC)
 HINIT = 0.01*TOL
 T = 0.0
 IDO = 1
 NSTEP = 10
 CALL UMACH (2, NOUT)
 J = 0
! Get and reset the PARAM array
! so that user-provided derivatives
! of the initial data are used.
 JGO = 1
 IACT = IGET
 GO TO 70
 20 CONTINUE
! This flag signals that
! derivatives are passed.
 PARAM(17) = 1.
 JGO = 2
 IACT = IPUT
 GO TO 70
 30 CONTINUE
! Look at output at steps
! of 0.001.
 TEND = 0.
 40 CONTINUE
 J = J + 1
 TEND = TEND + 0.001
! Solve the problem
 CALL MOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, NPDES=NPDES, &
 NX=NX, HINIT=HINIT, TOL=TOL)
 IF (J .LE. NSTEP) THEN
! Print results

848 • MOLCH IMSL MATH/LIBRARY

 WRITE (TITLE,'(A,F5.3)') 'Solution and derivatives at T =', T
 CALL WRRRN (TITLE, Y)
! Final call to release workspace
 IF (J .EQ. NSTEP) IDO = 3
 GO TO 40
 END IF
! Show, for example, the maximum
! step size used.
 JGO = 3
 IACT = IGET
 GO TO 70
 50 CONTINUE
 WRITE (NOUT,*) ' Maximum step size used is: ', PARAM(33)
! Reset option to defaults
 JGO = 4
 IAC = IPUT
 IOPT(1) = -IOPT(1)
 GO TO 70
 60 CONTINUE
! RETURN
! Internal routine to work options
 70 CONTINUE
 CALL SUMAG ('math', ICHAP, IACT, IOPT, PARAM, numopt=1)
 GO TO (20, 30, 50, 60), JGO
 END
 SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NPDES
 REAL X, T, U(*), UX(*), UXX(*), UT(*)
!
! Define the PDE
 UT(1) = UXX(1)
! RETURN
 END
 SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BTA, GAMP)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NPDES
 REAL X, T, ALPHA(*), BTA(*), GAMP(*)
!
 ALPHA(1) = 0.0
 BTA(1) = 1.0
 GAMP(1) = 0.0
! RETURN
 END

Output

 Solution and derivatives at T =0.001
 1 2 3 4 5 6 7 8 9 10
 1.483 0.517 1.483 0.517 1.483 0.517 1.483 0.517 1.483 0.517

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.002

IMSL MATH/LIBRARY MOLCH • 849

 1 2 3 4 5 6 7 8 9 10
 1.233 0.767 1.233 0.767 1.233 0.767 1.233 0.767 1.233 0.767

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.003
 1 2 3 4 5 6 7 8 9 10
 1.113 0.887 1.113 0.887 1.113 0.887 1.113 0.887 1.113 0.887

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.004
 1 2 3 4 5 6 7 8 9 10
 1.054 0.946 1.054 0.946 1.054 0.946 1.054 0.946 1.054 0.946

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.005
 1 2 3 4 5 6 7 8 9 10
 1.026 0.974 1.026 0.974 1.026 0.974 1.026 0.974 1.026 0.974

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.006
 1 2 3 4 5 6 7 8 9 10
 1.012 0.988 1.012 0.988 1.012 0.988 1.012 0.988 1.012 0.988

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.007
 1 2 3 4 5 6 7 8 9 10
 1.006 0.994 1.006 0.994 1.006 0.994 1.006 0.994 1.006 0.994

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.008
 1 2 3 4 5 6 7 8 9 10
 1.003 0.997 1.003 0.997 1.003 0.997 1.003 0.997 1.003 0.997

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.009
 1 2 3 4 5 6 7 8 9 10
 1.001 0.999 1.001 0.999 1.001 0.999 1.001 0.999 1.001 0.999

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

850 • MOLCH IMSL MATH/LIBRARY

 Solution and derivatives at T =0.010
 1 2 3 4 5 6 7 8 9 10
 1.001 0.999 1.001 0.999 1.001 0.999 1.001 0.999 1.001 0.999

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Maximum step size used is: 1.00000E-02

Example 3
In this example, we consider the linear normalized hyperbolic PDE, utt = uxx, the “vibrating string”
equation. This naturally leads to a system of first order PDEs. Define a new dependent variable
ut = v. Then, vt = uxx is the second equation in the system. We take as initial data u(x, 0) = sin(πx)
and ut(x, 0) = v(x, 0) = 0. The ends of the string are fixed so u(0, t) = u(1, t) = v(0, t) = v(1, t) = 0.
The exact solution to this problem is u(x, t) = sin(πx) cos(πt). Residuals are computed at the output
values of t for 0 < t ≤ 2. Output is obtained at 200 steps in increments of 0.01.

Even though the sample code MOLCH gives satisfactory results for this PDE, users should be aware
that for nonlinear problems, “shocks” can develop in the solution. The appearance of shocks may
cause the code to fail in unpredictable ways. See Courant and Hilbert (1962), pages 488-490, for
an introductory discussion of shocks in hyperbolic systems.

 USE IMSL_LIBRARIES

 IMPLICIT NONE
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER LDY, NPDES, NX
 PARAMETER (NPDES=2, NX=10, LDY=NPDES)
! SPECIFICATIONS FOR PARAMETERS
 INTEGER ICHAP, IGET, IPUT, KPARAM
 PARAMETER (ICHAP=5, IGET=1, IPUT=2, KPARAM=11)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, IACT, IDO, IOPT(1), J, JGO, NOUT, NSTEP
 REAL HINIT, PREC, PARAM(50), PI, T, TEND, TOL, XBREAK(NX), &
 Y(LDY,2*NX), ERROR(NX), ERRU
! SPECIFICATIONS FOR INTRINSICS
 INTRINSIC COS, FLOAT, SIN, SQRT
 REAL COS, FLOAT, SIN, SQRT
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCNBC, FCNUT
! Set breakpoints and initial
! conditions.
 PI = CONST('pi')
 IOPT(1) = KPARAM
 DO 10 I=1, NX
 XBREAK(I) = FLOAT(I-1)/(NX-1)
! Set function values.
 Y(1,I) = SIN(PI*XBREAK(I))
 Y(2,I) = 0.
! Set first derivative values.
 Y(1,I+NX) = PI*COS(PI*XBREAK(I))
 Y(2,I+NX) = 0.0

IMSL MATH/LIBRARY MOLCH • 851

 10 CONTINUE
! Set parameters for MOLCH
 PREC = AMACH(4)
 TOL = 0.1*SQRT(PREC)
 HINIT = 0.01*TOL
 T = 0.0
 IDO = 1
 NSTEP = 200
 CALL UMACH (2, NOUT)
 J = 0
! Get and reset the PARAM array
! so that user-provided derivatives
! of the initial data are used.
 JGO = 1
 IACT = IGET
 GO TO 90
 20 CONTINUE
! This flag signals that
! derivatives are passed.
 PARAM(17) = 1.
 JGO = 2
 IACT = IPUT
 GO TO 90
 30 CONTINUE
! Look at output at steps
! of 0.01 and compute errors.
 ERRU = 0.
 TEND = 0.
 40 CONTINUE
 J = J + 1
 TEND = TEND + 0.01
! Solve the problem
 CALL MOLCH (IDO, FCNUT, FCNBC, T, TEND, XBREAK, Y, NX=NX, &
 HINIT=HINIT, TOL=TOL)
 DO 50 I=1, NX
 ERROR(I) = Y(1,I) - SIN(PI*XBREAK(I))*COS(PI*TEND)
 50 CONTINUE
 IF (J .LE. NSTEP) THEN
 DO 60 I=1, NX
 ERRU = AMAX1(ERRU,ABS(ERROR(I)))
 60 CONTINUE
! Final call to release workspace
 IF (J .EQ. NSTEP) IDO = 3
 GO TO 40
 END IF
! Show, for example, the maximum
! step size used.
 JGO = 3
 IACT = IGET
 GO TO 90
 70 CONTINUE
 WRITE (NOUT,*) ' Maximum error in u(x,t) divided by TOL: ', &
 ERRU/TOL
 WRITE (NOUT,*) ' Maximum step size used is: ', PARAM(33)
! Reset option to defaults

852 • MOLCH IMSL MATH/LIBRARY

 JGO = 4
 IACT = IPUT
 IOPT(1) = -IOPT(1)
 GO TO 90
 80 CONTINUE
! RETURN
! Internal routine to work options
 90 CONTINUE
 CALL SUMAG ('math', ICHAP, IACT, IOPT, PARAM)
 GO TO (20, 30, 70, 80), JGO
 END
 SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NPDES
 REAL X, T, U(*), UX(*), UXX(*), UT(*)
!
! Define the PDE
 UT(1) = U(2)
 UT(2) = UXX(1)
! RETURN
 END
 SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BTA, GAMP)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER NPDES
 REAL X, T, ALPHA(*), BTA(*), GAMP(*)
!
 ALPHA(1) = 1.0
 BTA(1) = 0.0
 GAMP(1) = 0.0
 ALPHA(2) = 1.0
 BTA(2) = 0.0
 GAMP(2) = 0.0
! RETURN
 END

Output

Maximum error in u(x,t) divided by TOL: 1.28094
Maximum step size used is: 9.99999E-02

	MOLCH
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example 1
	Output
	Additonal Examples
	Example 2
	Output
	Example 3
	Output

