

IMSL MATH/LIBRARY Error! No text of specified style in document. • 837

DASPG
Deprecated Routine: DASPG is a deprecated routine and has been replaced with DAESL.

Solves a first order differential-algebraic system of equations, g(t, y, yʹ) = 0, using the
Petzold−Gear BDF method.

Required Arguments
T — Independent variable, t. (Input/Output)

Set T to the starting value t0

TOUT — Final value of the independent variable. (Input)
Update this value when re-entering after output, IDO = 2.

 at the first step.

IDO — Flag indicating the state of the computation. (Input/Output)

IDO State

1 Initial entry

2 Normal re-entry after obtaining output

3 Release workspace

4 Return because of an error condition

The user sets IDO = 1 or IDO = 3. All other values of IDO are defined as output. The
initial call is made with IDO = 1 and T = t0

Y — Array of size NEQ containing the dependent variable values, y. This array must contain
initial values. (Input/Output)

. The routine then sets IDO = 2, and this
value is used for all but the last entry that is made with IDO = 3. This call is used to
release workspace and other final tasks. Values of IDO larger than 4 occur only when
calling the second-level routine D2SPG and using the options associated with reverse
communication.

YPR — Array of size NEQ containing derivative values, y ʹ. This array must contain initial
values. (Input/Output)
The routine will solve for consistent values of yʹ to satisfy the equations at the starting
point.

GCN — User-supplied SUBROUTINE to evaluate g(t, y, yʹ). The usage is
CALL GCN (NEQ, T, Y, YPR, GVAL), where GCN must be declared EXTERNAL in the

838 • Error! No text of specified style in document. IMSL MATH/LIBRARY

calling program. The routine will solve for values of yʹ(t0) so that
g(t0

 NEQ – Number of differential equations. (Input)
T – Independent variable. (Input)
Y – Array of size NEQ containing the dependent variable values y(t) . (Input)
YPR – Array of size NEQ containing the derivative values yʹ(t). (Input)
GVAL – Array of size NEQ containing the function values, g(t, y, yʹ). (Output)

, y, yʹ) = 0. The user can signal that g is not defined at requested values of (t, y, yʹ)
using an option. This causes the routine to reduce the step size or else quit.

Optional Arguments
NEQ — Number of differential equations. (Input)

Default: NEQ = size(y,1)

FORTRAN 90 Interface
Generic:

Specific: The specific interface names are S_DASPG and D_DASPG.

CALL DASPG (T, TOUT, IDO, Y, YPR, GCN[,…])

FORTRAN 77 Interface
Single:

Double: The double precision name is DDASPG.

CALL DASPG (NEQ, T, TOUT, IDO, Y, YPR, GCN)

Description
Routine DASPG finds an approximation to the solution of a system of differential-algebraic
equations g(t, y, yʹ) = 0, with given initial data for y and yʹ. The routine uses BDF formulas,
appropriate for systems of stiff ODEs, and attempts to keep the global error proportional to a user-
specified tolerance. See Brenan et al. (1989). This routine is efficient for stiff systems of index 1
or index 0. See Brenan et al. (1989) for a definition of index. Users are encouraged to use DOUBLE
PRECISION accuracy on machines with a short REAL precision accuracy. The examples given
below are in REAL accuracy because of the desire for consistency with the rest of IMSL
MATH/LIBRARY examples. The routine DASPG is based on the code DASSL designed by L.
Petzold (1982-1990).

Comments
Users can often get started using the routine DASPG/DDASPG without reading beyond this point in
the documentation. There is often no reason to use options when getting started. Those readers
who do not want to use options can turn directly to the first two examples. The following tables
give numbers and key phrases for the options. A detailed guide to the options is given below in
Comment 2.

IMSL MATH/LIBRARY Error! No text of specified style in document. • 839

Value Brief or Key Phrase for INTEGER Option
6 INTEGER option numbers

7 Floating-point option numbers

IN(1) First call to DASPG, D2SPG

IN(2) Scalar or vector tolerances

IN(3) Return for output at intermediate steps

IN(4) Creep up on special point, TSTOP

IN(5) Provide (analytic) partial derivative formulas

IN(6) Maximum number of steps

IN(7) Control maximum step size

IN(8) Control initial step size

IN(9) Not Used

IN(10) Constrain dependent variables

IN(11) Consistent initial data

IN(12-15) Not Used

IN(16) Number of equations

IN(17) What routine did, if any errors

IN(18) Maximum BDF order

IN(19) Order of BDF on next move

IN(20) Order of BDF on previous move

IN(21) Number of steps

IN(22) Number of g evaluations

IN(23) Number of derivative matrix evaluations

IN(24) Number of error test failures

IN(25) Number of convergence test failures

IN(26) Reverse communiction for g

IN(27) Where is g stored?

IN(28) Panic flag

IN(29) Reverse communication, for partials

IN(30) Where are partials stored?

IN(31) Reverse communication, for solving

IN(32) Not Used

IN(33) Where are vector tolerances stored?

IN(34) Is partial derivative array allocated?

IN(35) User's work arrays sizes are checked

IN(36-50) Not used

840 • Error! No text of specified style in document. IMSL MATH/LIBRARY

Table 1. Key Phrases for Floating-Point Options

Value Brief or Key Phrase for Floating-Point Option
INR(1) Value of t

INR(2) Farthest internal t vaue of integration

INR(3) Value of TOUT

INR(4) A stopping point of integration before TOUT

INR(5) Values of two scalars ATOL, RTOL

INR(6) Initial step size to use

INR(7) Maximum step allowed

INR(8) Condition number reciprocal

INR(9) Value of cj for partials

INR(10) Step size on the next move

INR(11) Step size on the previous move

INR(12-20) Not Used

Table 2. Number and Key Phrases for Floating-Point Options

1. Workspace may be explicitly provided, and many of the options utilized by directly
calling D2SPG/DD2SPG. The reference is:

The additional arguments are as follows:

CALL D2SPG (N, T, TOUT, IDO, Y, YPR, GCN, JGCN, IWK, WK)

IDO State

5 Return for evaluation of g(t, y, yʹ)

6 Return for evaluation of matrix A = [∂g/∂y + cj

7 Return for factorization of the matrix A = [∂g/∂y + c

∂g/∂yʹ]

j

8 Return for solution of AΔy = Δg

∂g/∂yʹ]

These values of IDO occur only when calling the second-level routine D2SPG and using
options associated with reverse communication. The routine D2SPG/DD2SPG

GCN — A Fortran SUBROUTINE to compute g(t, y, yʹ). This routine is normally
provided by the user. That is the default case. The dummy IMSL routine

 is
reentered.

IMSL MATH/LIBRARY Error! No text of specified style in document. • 841

DGSPG/DDGSPG may be used as this argument when g(t, y, yʹ) is evaluated by
reverse communication. In either case, a name must be declared in a Fortran
EXTERNAL statement. If usage of the dummy IMSL routine is intended, then the
name DGSPG/DDGSPG should be specified. The dummy IMSL routine will never
be called under this optional usage of reverse communication. An example of
reverse communication for evaluation of g is given in Example 4.

JGCN — A Fortran SUBROUTINE to compute partial derivatives of g(t, y, yʹ). This
routine may be provided by the user. The dummy IMSL routine DJSPG/DDJSPG
may be used as this argument when partial derivatives are computed using
divided differences. This is the default. The dummy routine is not called under
default conditions. If partial derivatives are to be explicitly provided, the routine
JGCN must be written by the user or reverse communication can be used. An
example of reverse communication for evaluation of the partials is given in
Example 4.

 If the user writes a routine with the fixed name DJSPG/DDJSPG, then partial derivatives
can be provided while calling DASPG. An option is used to signal that formulas for
partial derivatives are being supplied. This is illustrated in Example 3. The name of the
partial derivative routine must be declared in a Fortran EXTERNAL statement when
calling D2SPG. If usage of the dummy IMSL routine is intended, then the name
DJSPG/DDJSPG should be specified for this EXTERNAL name. Whenever the user
provides partial derivative evaluation formulas, by whatever means, that must be noted
with an option. Usage of the derivative evaluation routine is
CALL JGCN (N, T, Y, YPR, CJ, PDG, LDPDG)

Arg Definition

 where

N Number of equations. (Input)

T Independent variable, t. (Input)

Y Array of size N containing the values of the dependent variables, y. (Input)

YPR Array of size N containing the values of the derivatives, yʹ. (Input)

CJ The value cj

PDG Array of size LDPDG * N containing the partial derivatives
A = [∂g/∂y + c

 used in computing the partial derivatives returned in PDG.
 (Input)

j∂g/∂yʹ]. Each nonzero derivative entry aij is returned in the array
location PDG(i, j). The array contents are zero when the routine is called. Thus,
only the nonzero derivatives have to be defined in the routine JGCN. (Output)

842 • Error! No text of specified style in document. IMSL MATH/LIBRARY

LDPDG The leading dimension of PDG. Normally, this value is N. It is a value larger
than N under the conditions explained in option 16 of LSLRG (Chapter 1,
Linear Systems).

JGCN must be declared EXTERNAL

IWK — Work array of integer values. The size of this array is 35 + N. The contents of

 in the calling program.

IWK must not be changed from the first call with IDO = 1 until after the final call
with IDO

WK — Work ahrray of floating-point values in the working precision. The size of this
array is

 = 3.

41 + (MAXORD + 6)N + (N + K)N(1 − L) where K is determined
from the values IVAL(3) and IVAL(4) of option 16 of LSLRG (Chapter 1,
Linear Systems). The value of L is 0 unless option IN(34) is used to avoid
allocation of the array containing the partial derivatives. With the use of this
option, L can be set to 1. The contents of array WK must not be changed from the
first call with IDO

2.

 = 1 until after the final call.

Integer and Floating-Point Options with Chapter 11 Options Manager

 The routine DASPG allows the user access to many interface parameters and internal
working variables by the use of options. The options manager subprograms IUMAG and
SUMAG/DUMAG (Chapter 11, Utilities), are used to change options from their default
values or obtain the current values of required parameters.

Options of type INTEGER

6 This is the list of numbers used for INTEGER options. Users will typically call
this option first to get the numbers, IN(I), I = 1, 50. This option has 50 entries.
The default values are IN(I) = I + 50, I = 1, 50.

:

7 This is the list of numbers used for REAL and DOUBLE PRECISION options.
Users will typically call this option first to get the numbers, INR(I), I = 1,20.
This option has 20 entries. The default values are INR(I) = I + 50, I = 1, 20.

IN(1) This is the first call to the routine DASPG or D2SPG. Value is 0 for the first call, 1
for further calls. Setting IDO = 1 resets this option to its default. Default value is
0.

IN(2) This flag controls the kind of tolerances to be used for the solution. Value is 0
for scalar values of absolute and relative tolerances applied to all components.
Value is 1 when arrays for both these quantities are specified. In this case, use
D2SPG. Increase the size of WK by 2*N, and supply the tolerance arrays at the
end of WK. Use option IN(33) to specify the offset into WK where the 2N array
values are to be placed: all ATOL values are followed by all RTOL values. Also
see IN(33). Default value is 0.

IMSL MATH/LIBRARY Error! No text of specified style in document. • 843

IN(3) This flag controls when the code returns to the user with output values of y and
 yʹ. If the value is 0, it returns to the user at T = TOUT only. If the value is 1, it
returns to the user at an internal working step. Default value is 0.

IN(4) This flag controls whether the code should integrate past a special point, TSTOP,
and then interpolate to get y and yʹat TOUT. If the value is 0, this is permitted. If
the value is 1, the code assumes the equations either change on the alternate side
of TSTOP or they are undefined there. In this case, the code creeps up to TSTOP
in the direction of integration. The value of TSTOP is set with option INR(4).
Default value is 0.

IN(5) This flag controls whether partial derivatives are computed using divided
onesided differences, or they are to be computed using user-supplied evaluation
formulas. If the value is 0, use divided differences. If the value is 1, use
formulas for the partial derivatives. See Example 3 for an illustration of one way
to do this. Default value is 0.

IN(6) The maximum number of steps. Default value is 500.

IN(7) This flag controls a maximum magnitude constraint for the step size. If the value
is 0, the routine picks its own maximum. If the value is 1, a maximum is
specified by the user. That value is set with option number INR(7). Default
value is 0.

IN(8) This flag controls an initial value for the step size. If the value is 0, the routine
picks its own initial step size. If the value is 1, a starting step size is specified by
the user. That value is set with option number INR(6). Default value is 0.

IN(9) Not used. Default value is 0.

IN(10) This flag controls attempts to constrain all components to be nonnegative. If
the value is 0, no constraints are enforced. If value is 1, constraint is enforced.
Default value is 0.

IN(11) This flag controls whether the initial values (t, y, yʹ) are consistent. If the
value is 0, g(t, y, yʹ) = 0 at the initial point. If the value is 1, the routine will try
to solve for yʹ to make this equation satisfied. Default value is 0.

IN(12-15) Not used. Default value is 0 for each option.

IN(16) The number of equations in the system, n. Default value is 0.

IN(17) This value reports what the routine did. Default value is 0.

Value Explanation
1 A step was taken in the intermediate output mode. The value

TOUT has not been reached.

844 • Error! No text of specified style in document. IMSL MATH/LIBRARY

Value Explanation
2 The integration to exactly TSTOP was completed.

3 The integration to TSTOP was completed by stepping past TSTOP

and interpolating to evaluate y and yʹ.

−1 Too many steps taken.

−2 Error tolerances are too small.

−3 A pure relative error tolerance can't be satisfied.

−6 There were repeated error test failures on the last step.

−7 The BDF corrector equation solver did not converge.

−8 The matrix of partial derivatives is singular.

−10 The BDF corrector equation solver did not converge because the
evaluation failure flag was raised.

−11 The evaluation failure flag was raised to quit.

−12 The iteration for the initial vaule of yʹ did not converge.

−33 There is a fatal error, perhaps caused by invalid input.

Table 3. What the Routine DASPG or D2SPG Did

IN(18) The maximum order of BDF formula the routine should use. Default value
 is 5.

IN(19) The order of the BDF method the routine will use on the next step. Default
 value is IMACH(5).

IN(20) The order of the BDF method used on the last step. Default value is
 IMACH(5).

IN(21) The number of steps taken so far. Default value is 0.

IN(22) The number of times that g has been evaluated. Default value is 0.

IN(23) The number of times that the partial derivative matrix has been evaluated.
 Default value is 0.

IN(24) The total number of error test failures so far. Default value is 0.

IN(25) The total number of convergence test failures so far. This includes singular
 iteration matrices. Default value is 0.

IN(26) Use reverse communication to evaluate g when this value is 0. If the value
 is 1, forward communication is used. Use the routine D2SPG for reverse

IMSL MATH/LIBRARY Error! No text of specified style in document. • 845

 communication. With reverse communication, a return will be made with
IDO = 5. Compute the value of g, place it into the array WK at the offset obtained
with option IN(27), and re-enter the routine. Default value is 1.

IN(27) The user is to store the evaluated function g during reverse communication
in the work array WK using this value as an offset. Default value is IMACH(5).

IN(28) This value is a “panic flag.” After an evaluation of g, this value is checked.
The value of g is used if the flag is 0. If it has the value −1, the routine reduces
the step size and possibly the order of the BDF. If the value is −2, the routine
returns control to the user immediately. This option is also used to signal a
singular or poorly conditioned partial derivative matrix encountered during the
factor phase in reverse communication. Use a nonzero value when the matrix is
singular. Default value is 0.

IN(29) Use reverse communication to evaluate the partial derivative matrix when
this value is 0. If the value is 1, forward communication is used. Use the routine
D2SPG for reverse communication. With reverse communication, a return will
be made with IDO = 6. Compute the partial derivative matrix A and re-enter the
routine. If forward communication is used for the linear solver, return the
partials using the offset into the array WK. This offset value is obtained with
option IN(30). Default value is 1.

IN(30) The user is to store the values of the partial derivative matrix A by columns
in the work array WK using this value as an offset. The option 16 for LSLRG is
used here to compute the row dimension of the internal working array that
contains A. Users can also choose to store this matrix in some convenient form
in their calling program if they are providing linear system solving using reverse
communication. See options IN(31) and IN(34). Default value is IMACH(5).

IN(31) Use reverse communication to solve the linear system AΔy = Δg if this
value is 0. If the value is 1, use forward communication into the routines L2CRG
and LFSRG (Chapter 1, Linear Systems) for the linear system solving. Return the
solution using the offset into the array WK where g is stored. This offset value is
obtained with option IN(27). With reverse communication, a return will be
made with IDO = 7 for factorization of A and with IDO = 8 for solving the
system. Re-enter the routine in both cases. If the matrix A is singular or poorly
conditioned, raise the “panic flag,” option IN(28), during the factorization.
Default value is 1.

IN(32) Not used. Default value is 0.

IN(33) This value is used when IN(2) is set to 1, indicating that arrays of absolute
and relative tolerances are input in the WK array of D2SPG. Set this parameter to
the offset, ioff, into WK where the tolerances are stored. Increase the size of WK
by 2*N , and store tolerance values beginning at ioff=size(WK)-2*N+1.
Absolute tolerances will be stored in WK(ioff+i-1) for i=1,N and relative

846 • Error! No text of specified style in document. IMSL MATH/LIBRARY

tolerances will be stored in WK(ioff+N+i-1) for i=1,N. Also, use IN(35) to
specify the size of the work arrays.

IN(34) This flag is used if the user has not allocated storage for the matrix A in the
array WK. If the value is 0, storage is allocated. If the value is 1, storage was not
allocated. In this case, the user must be using reverse communication to evaluate
the partial derivative matrix and to solve the linear systems AΔy = Δg. Default
value is 0.

IN(35) These two values are the sizes of the arrays IWK and WK allocated in the
users program. The values are checked against the program requirements. These
checks are made only if the values are positive. Users will normally set this
option when directly calling D2SPG. Default values are (0, 0).

Options of type REAL or DOUBLE PRECISION:

INR(1) The value of the independent variable, t. Default value is AMACH(6).

INR(2) The farthest working t point the integration has reached. Default value is
AMACH(6) .

INR(3) The current value of TOUT. Default value is AMACH(6).

INR(4) The next special point, TSTOP, before reaching TOUT. Default value is
AMACH(6). Used with option IN(4).

INR(5) The pair of scalar values ATOL and RTOL that apply to the error estimates of
all components of y. Default values for both are SQRT(AMACH(4)).

INR(6) The initial step size if DASPG is not to compute it internally. Default value is
 AMACH(6).

INR(7) The maximum step size allowed. Default value is AMACH(2).

INR(8) This value is the reciprocal of the condition number of the matrix A. It is
defined when forward communication is used to solve for the linear updates to
the BDF corrector equation. No further program action, such as declaring a
singular system, based on the condition number. Users can declare the system to
be singular by raising the “panic flag” using option IN(28). Default value is
AMACH(6).

INR(9) The value of cj

INR(10) The step size to be attempted on the next move. Default value is AMACH(6).

 used in the partial derivative matrix for reverse
communication evaluation. Default value is AMACH(6).

INR(11) The step size taken on the previous move. Default value is AMACH(6).

IMSL MATH/LIBRARY Error! No text of specified style in document. • 847

4. Norm Function Subprogram

The routine DASPG uses a weighted Euclidean-RMS norm to measure the size of the
estimated error in each step. This is done using a FUNCTION subprogram: REAL
FUNCTION D10PG (N, V, WT)

()21
1D10PG /N

i iiN v wt−
=

= ∑

. This routine returns the value of the RMS weighted norm
given by:

Users can replace this function with one of their own choice. This should be done only
for problem-related reasons.

Example 1

The Van der Pol equation u″ + μ(u2

() ()

1

1 2 1
2

2 1 2 1 2

1/

0

1 0

y u

g y y

g y y y y

ε µ

ε

=
=

′= − =

′= − − + =

 − 1) uʹ + u = 0, μ > 0, is a single ordinary differential
equation with a periodic limit cycle. See Hartman (1964, page 181). For the value μ = 5, the
equations are integrated from t = 0 until the limit has clearly developed at t = 26. The (arbitrary)
initial conditions used here are u(0) = 2 and uʹ(0) = − 2/3. Except for these initial conditions and
the final t value, this is problem (E2) of the Enright and Pryce (1987) test package. This equation
is solved as a differential-algebraic system by defining the first-order system:

Note that the initial condition for

2y′

in the sample program is not consistent, g2 ≠ 0 at t = 0. The routine DASPG solves for this starting
value. No options need to be changed for this usage. The set of pairs (u(tj), uʹ(tj)) are accumulated
for the 260 values tj

 = 0.1, 26, (0.1).

USE UMACH_INT
USE DASPG_INT
IMPLICIT NONE
INTEGER N, NP, IDO
PARAMETER (N=2, NP=260)
! SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER ISTEP, NOUT, NSTEP
REAL DELT, T, TEND, U(NP), UPR(NP), Y(N), YPR(N)
! SPECIFICATIONS FOR FUNCTIONS
EXTERNAL GCN
! Define initial data

848 • Error! No text of specified style in document. IMSL MATH/LIBRARY

 IDO = 1
 T = 0.0
 TEND = 26.0
 DELT = 0.1
 NSTEP = TEND/DELT
! Initial values
 Y(1) = 2.0
 Y(2) = -2.0/3.0
! Initial derivatives
 YPR(1) = Y(2)
 YPR(2) = 0.
! Write title
CALL UMACH (2, NOUT)
WRITE (NOUT,99998)
! Integrate ODE/DAE
ISTEP = 0
DO
 ISTEP = ISTEP + 1
 CALL DASPG (T, T+DELT, IDO, Y, YPR, GCN)
! Save solution for plotting
 IF (ISTEP <= NSTEP) THEN
 U(ISTEP) = Y(1)
 UPR(ISTEP) = YPR(1)
! Release work space
 IF (ISTEP == NSTEP) IDO = 3
 CYCLE
 END IF
 EXIT
END DO
WRITE (NOUT,99999) TEND, Y, YPR
99998 FORMAT (11X, 'T', 14X, 'Y(1)', 11X, 'Y(2)',&
 10X, 'Y''(1)', 10X, 'Y''(2)')
99999 FORMAT (5F15.5)

END

SUBROUTINE GCN (N, T, Y, YPR, GVAL)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(N), YPR(N), GVAL(N)
! SPECIFICATIONS FOR LOCAL VARIABLES
 REAL EPS
 EPS = 0.2
!
 GVAL(1) = Y(2) - YPR(1)
 GVAL(2) = (1.0-Y(1)**2)*Y(2) - EPS*(Y(1)+YPR(2))
RETURN
END

IMSL MATH/LIBRARY Error! No text of specified style in document. • 849

Output

 T Y(1) Y(2) Y'(1) Y'(2)
26.00000 1.45462 -0.24437 -0.24596 -0.09216

Figure 5- 1 Van der Pol Cycle, (u(t), uʹ (t)), µ = 5.

Additional Examples

Example 2
The first-order equations of motion of a point-mass m suspended on a massless wire of length 
under the influence of gravity force, mg and tension value λ, in Cartesian coordinates, (p, q), are

2 2 2 0

p u
q v

mu p
mv q mg

p q

λ
λ

′ =
′ =
′ = −
′ = − −

+ − =

This is a genuine differential-algebraic system. The problem, as stated, has an index number equal
to the value 3. Thus, it cannot be solved with DASPG directly. Unfortunately, the fact that the index
is greater than 1 must be deduced indirectly. Typically there will be an error processed which

850 • Error! No text of specified style in document. IMSL MATH/LIBRARY

states that the (BDF) corrector equation did not converge. The user then differentiates and replaces
the constraint equation. This example is transformed to a problem of index number of value 1 by
differentiating the last equation twice. This resulting equation, which replaces the given equation,
is the total energy balance:

2 2 2() 0m u v mgq λ+ − − =

With initial conditions and systematic definitions of the dependent variables, the system becomes:

() () () () ()
1

2

3

4

5

0 , 0 0 0 0 0p q u v
y p
y q
y u
y v
y

λ

λ

= = = = =

=
=
=

=
=



()

1 3 1

2 4 2

3 1 5 3

4 2 5 4
2 2 2

5 3 4 2 5

0
0

0
0

0

g y y
g y y
g y y my
g y y mg my

g m y y mgy y

′= − =
′= − =

′= − − =
′= − − − =

= + − − =

The problem is given in English measurement units of feet, pounds, and seconds. The wire has
length 6.5 ft, and the mass at the end is 98 lb. Usage of the software does not require it, but
standard or “SI” units are used in the numerical model. This conversion of units is done as a first
step in the user-supplied evaluation routine, GCN. A set of initial conditions, corresponding to the
pendulum starting in a horizontal position, are provided as output for the input signal of n = 0. The
maximum magnitude of the tension parameter, λ(t) = y5

 (t), is computed at the output points,
t = 0.1, π, (0.1). This extreme value is converted to English units and printed.

USE DASPG_INT
USE CUNIT_INT
USE UMACH_INT
USE CONST_INT
IMPLICIT NONE
INTEGER, PARAMETER :: N=5
! SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER IDO, ISTEP, NOUT, NSTEP
REAL DELT, GVAL(N), MAXLB, MAXTEN, T, TEND, TMAX,&
 Y(N), YPR(N)
! SPECIFICATIONS FOR SUBROUTINES
EXTERNAL GCN
! Define initial data
 IDO = 1

IMSL MATH/LIBRARY Error! No text of specified style in document. • 851

 T = 0.0
 TEND = CONST('pi')
 DELT = 0.1
 NSTEP = TEND/DELT
CALL UMACH (2, NOUT)
! Get initial conditions and parameters
! set in evaluator:

CALL GCN (0, T, Y, YPR, GVAL)
 ISTEP = 0
 MAXTEN = 0.
! Loop and record max tension at
! various time output points:
DO
 ISTEP = ISTEP + 1
 CALL DASPG (T, T+DELT, IDO, Y, YPR, GCN)
 IF (ISTEP <= NSTEP) THEN
! Note max tension value
 IF (ABS(Y(5)) > ABS(MAXTEN)) THEN
 TMAX = T
 MAXTEN = Y(5)
 END IF
 IF (ISTEP == NSTEP) IDO = 3
 T = T + DELT
 CYCLE
 END IF
 EXIT
END DO
! Convert to English units
CALL CUNIT (MAXTEN, 'kg/s**2', MAXLB, 'lb/s**2')
! Print maximum tension
WRITE (NOUT,99999) MAXLB, TMAX
99999 FORMAT (' Extreme string tension of', F10.2, ' (lb/s**2)', &
' occurred at ', 'time ', F10.2)
END
!
SUBROUTINE GCN (N, T, Y, YPR, GVAL)
USE CUNIT_INT
USE CONST_INT
! SPECIFICATIONS FOR ARGUMENTS
INTEGER N
REAL, INTENT(INOUT) :: T, Y(*), YPR(*)
REAL, INTENT(OUT) :: GVAL(*)
! SPECIFICATIONS FOR LOCAL VARIABLES
REAL FEETL, GRAV, LENSQ, MASSKG, MASSLB, METERL, MG
! SPECIFICATIONS FOR SAVE VARIABLES
LOGICAL :: FIRST=.TRUE.

SAVE FIRST, LENSQ, MASSKG, MASSLB, METERL, MG
! SPECIFICATIONS FOR SUBROUTINES
!

IF (FIRST) GO TO 20
10 CONTINUE
! Define initial conditions

852 • Error! No text of specified style in document. IMSL MATH/LIBRARY

IF (N .EQ. 0) THEN
! The pendulum is horizontal
! with these initial y,y' values:
 Y(1) = METERL
 Y(2) = 0.
 Y(3) = 0.
 Y(4) = 0.
 Y(5) = 0.
 YPR(1)= -GRAV
 YPR(2) = 0.
 YPR(3) = 0.
 YPR(4) = 0.
 YPR(5) = 0.
RETURN
END IF
! Compute residuals
 GVAL(1) = Y(3) - YPR(1)
 GVAL(2) = Y(4) - YPR(2)
 GVAL(3) = -Y(1)*Y(5) - MASSKG*YPR(3)
 GVAL(4) = -Y(2)*Y(5) - MASSKG*YPR(4) - MG
 GVAL(5) = MASSKG*(Y(3)**2+Y(4)**2) - MG*Y(2) - LENSQ*Y(5)
 RETURN
! Convert from English to
! Metric units:
20 CONTINUE
 FEETL = 6.5
 MASSLB = 98.0
! Change to meters
CALL CUNIT (FEETL, 'ft', METERL, 'meter')
! Change to kilograms
CALL CUNIT (MASSLB, 'lb', MASSKG, 'kg')
! Get standard gravity
 GRAV = CONST('StandardGravity')
 MG = MASSKG*GRAV
 LENSQ = METERL**2
 FIRST = .FALSE.
 GO TO 10
END

Output

Extreme string tension of 1457.24 (lb/s**2) occurred at time 2.50

Example 3
In this example, we solve a stiff ordinary differential equation (E5) from the test package of
Enright and Pryce (1987). The problem is nonlinear with nonreal eigenvalues. It is included as an
example because it is a stiff problem, and its partial derivatives are provided in the user-supplied
routine with the name JCN. The level 2 code D2SPG is used for providing the partial derivatives
or Jacobian matrix:

CALL D2SPG (N, T, TEND, IDO, Y, YPR, GCN, JCN, IWK, WK)

IMSL MATH/LIBRARY Error! No text of specified style in document. • 853

The working space arrays IWK(*) and WK(*) are allocated in the calling program. The sizes of
these arrays are defined above. Their length depends on the value of N.

Providing explicit formulas and code for partial derivatives is an important consideration for
problems where evaluations of the function g(t, y, yʹ) are expensive. Signaling that a derivative
matrix is provided requires a call to the Chapter 11 options manager utility, IUMAG. An initial
integration step size is provided for this test problem. A signal for this is passed using the options
manager routine IUMAG. The error tolerance is changed from the defaults to a pure absolute
tolerance of 0.1 * SQRT(AMACH(4)). Also see IUMAG, and SUMAG/DUMAG in Chapter 11, Utilities,
for further details about the options manager routines.

USE AMACH_INT
USE DASPG_INT
USE SUMAG_INT
IMPLICIT NONE

INTEGER N
PARAMETER (N=4)
! SPECIFICATIONS FOR PARAMETERS
INTEGER ICHAP, IGET, INUM, IPUT, IRNUM
PARAMETER (ICHAP=5, IGET=1, INUM=6, IPUT=2, IRNUM=7)
! SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER IDO, IN(50), INR(20), IOPT(2), IVAL(2), NOUT
INTEGER IWK(35 + N)
REAL C0, PREC, SVAL(3), T, TEND, Y(N), YPR(N)
REAL WK(41 + 11*N + N**2)

! SPECIFICATIONS FOR FUNCTIONS
EXTERNAL GCN, JCN
! Define initial data
 IDO = 1
 T = 0.0
 TEND = 1000.0
! Initial values
 C0 = 1.76E-3
 Y(1) = C0
 Y(2) = 0.
 Y(3) = 0.
 Y(4) = 0.
! Initial derivatives
 YPR(1) = 0.
 YPR(2) = 0.
 YPR(3) = 0.
 YPR(4) = 0.
! Get option numbers
 IOPT(1) = INUM
 CALL IUMAG ('math', ICHAP, IGET, 1, IOPT, IN)
 IOPT(1) = IRNUM
 CALL IUMAG ('math', ICHAP, IGET, 1, IOPT, INR)

! Provide initial step
 IOPT(1) = INR(6)
 SVAL(1) = 5.0E-5

854 • Error! No text of specified style in document. IMSL MATH/LIBRARY

! Provide absolute tolerance
 IOPT(2) = INR(5)
 PREC = AMACH(4)
 SVAL(2) = 0.1*SQRT(PREC)
 SVAL(3) = 0.0
 CALL SUMAG ('math', ICHAP, IPUT, IOPT, SVAL, NUMOPT=1)
! Using derivatives and
 IOPT(1) = IN(5)
 IVAL(1) = 1
! providing initial step
 IOPT(2) = IN(8)
 IVAL(2) = 1
 CALL IUMAG ('math', ICHAP, IPUT, 2, IOPT, IVAL)
! Write title
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99998)
! Integrate ODE/DAE
 CALL D2SPG (N, T, TEND, IDO, Y, YPR, GCN, JCN, IWK, WK)
 WRITE (NOUT,99999) T, Y, YPR
! Reset floating options to defaults
 IOPT(1) = -INR(5)
 IOPT(2) = -INR(6)
!
 CALL SUMAG ('math', ICHAP, IPUT, IOPT, SVAL, NUMOPT=1)
! Reset integer options to defaults
 IOPT(1) = -IN(5)
 IOPT(2) = -IN(8)
!
 CALL IUMAG ('math', ICHAP, IPUT, 2, IOPT, IVAL)
 STOP
99998 FORMAT (11X, 'T', 14X, 'Y followed by Y''')
99999 FORMAT (F15.5/(4F15.5))
END
!
SUBROUTINE GCN (N, T, Y, YPR, GVAL)
! SPECIFICATIONS FOR ARGUMENTS
INTEGER N
REAL T, Y(N), YPR(N), GVAL(N)
! SPECIFICATIONS FOR LOCAL VARIABLES
REAL C1, C2, C3, C4
!
 C1 = 7.89E-10
 C2 = 1.1E7
 C3 = 1.13E9
 C4 = 1.13E3
!
 GVAL(1) = -C1*Y(1) - C2*Y(1)*Y(3) - YPR(1)
 GVAL(2) = C1*Y(1) - C3*Y(2)*Y(3) - YPR(2)
 GVAL(3) = C1*Y(1) - C2*Y(1)*Y(3) + C4*Y(4) - C3*Y(2)*Y(3) - &
 YPR(3)
 GVAL(4) = C2*Y(1)*Y(3) - C4*Y(4) - YPR(4)
 RETURN
END

SUBROUTINE JCN (N, T, Y, YPR, CJ, PDG, LDPDG)

IMSL MATH/LIBRARY Error! No text of specified style in document. • 855

! SPECIFICATIONS FOR ARGUMENTS
INTEGER N, LDPDG
REAL T, CJ, Y(N), YPR(N), PDG(LDPDG,N)
! SPECIFICATIONS FOR LOCAL VARIABLES
REAL C1, C2, C3, C4
!
 C1 = 7.89E-10
 C2 = 1.1E7
 C3 = 1.13E9
 C4 = 1.13E3
!
 PDG(1,1) = -C1 - C2*Y(3) - CJ
 PDG(1,3) = -C2*Y(1)
 PDG(2,1) = C1
 PDG(2,2) = -C3*Y(3) - CJ
 PDG(2,3) = -C3*Y(2)
 PDG(3,1) = C1 - C2*Y(3)
 PDG(3,2) = -C3*Y(3)
 PDG(3,3) = -C2*Y(1) - C3*Y(2) - CJ
 PDG(3,4) = C4
 PDG(4,3) = C2*Y(1)
 PDG(4,4) = -C4 - CJ
RETURN
END

Output

 T Y followed by Y’
1000.00000
 0.00162 0.00000 0.00000 0.00000
 0.00000 0.00000 0.00000 0.00000

Example 4
In this final example, we compute the solution of n = 10 ordinary differential equations,
g = Hy − yʹ, where y(0) = y0= (1, 1, …, 1)T

()1
n
i iy t=∑

. The value

is evaluated at t = 1. The constant matrix H has entries hi, j

1. The function g,

= min(j − i, 0) so it is lower
Hessenberg. We use reverse communication for the evaluation of the following intermediate
quantities:

2. The partial derivative matrix A = ∂g/∂y + cj∂g/∂yʹ = H − cj

3. The solution of the linear system AΔy = Δg.

I,

In addition to the use of reverse communication, we evaluate the partial derivatives using
formulas. No storage is allocated in the floating-point work array for the matrix. Instead, the

856 • Error! No text of specified style in document. IMSL MATH/LIBRARY

matrix A is stored in an array A within the main program unit. Signals for this organization are
passed using the routine IUMAG (Chapter 11, Utilities).

An algorithm appropriate for this matrix, Givens transformations applied from the right side, is
used to factor the matrix A. The rotations are reconstructed during the solve step. See SROTG
(Chapter 9, Basic Matrix/Vector Operations) for the formulas.

The routine D2SPG stores the value of cj. We get it with a call to the options manager routine
SUMAG (Chapter 11, Utilities). A pointer, or offset into the work array, is obtained as an integer
option. This gives the location of g and Δg. The solution vector Δy replaces Δg at that location.
Caution: If a user writes code wherein g is computed with reverse communication and partials are
evaluated with divided differences, then there will be two distinct places where g is to be stored.
This example shows a correct place to get this offset.

This example also serves as a prototype for large, structured (possibly nonlinear) DAE problems
where the user must use special methods to store and factor the matrix A and solve the linear
system AΔy = Δg. The word “factor” is used literally here. A user could, for instance, solve the
system using an iterative method. Generally, the factor step can be any preparatory phase required
for a later solve step.

 USE IUMAG_INT
USE SUMAG_INT
USE DASPG_INT
IMPLICIT NONE
INTEGER N
PARAMETER (N=10)
! SPECIFICATIONS FOR PARAMETERS
INTEGER ICHAP, IGET, INUM, IPUT, IRNUM
PARAMETER (ICHAP=5, IGET=1, INUM=6, IPUT=2, IRNUM=7)
! SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER I, IDO, IN(50), INR(20), IOPT(6), IVAL(7),&
 IWK(35+N), J, NOUT
REAL A(N,N), GVAL(N), H(N,N), SC, SS, SUMY, SVAL(1),&
 T, TEND, WK(41+11*N), Y(N), YPR(N), Z

! SPECIFICATIONS FOR DUMMY SUBROUTINES
EXTERNAL DGSPG, DJSPG
! Define initial data
IDO = 1
T = 0.0E0
TEND = 1.0E0

! Initial values
CALL SSET (N, 1.0E0, Y, 1)
CALL SSET (N, 0.0, YPR, 1)

! Initial lower Hessenberg matrix
CALL SSET (N*N, 0.0E0, H, 1)
 DO 20 I=1, N - 1
 DO 10 J=1, I + 1
 H(I,J) = J - I
 10 CONTINUE
20 CONTINUE

IMSL MATH/LIBRARY Error! No text of specified style in document. • 857

 DO 30 J=1, N
 H(N,J) = J - N
30 CONTINUE
! Get integer option numbers
IOPT(1) = INUM
CALL IUMAG ('math', ICHAP, IGET, 1, IOPT, IN)
! Get floating point option numbers
IOPT(1) = IRNUM
CALL IUMAG ('math', ICHAP, IGET, 1, IOPT, INR)

! Set for reverse communication evaluation of g.
IOPT(1) = IN(26)
IVAL(1) = 0

! Set for evaluation of partial derivatives.
IOPT(2) = IN(5)
IVAL(2) = 1

! Set for reverse communication evaluation of partials.
IOPT(3) = IN(29)
IVAL(3) = 0

! Set for reverse communication
! solution of linear equations.
IOPT(4) = IN(31)
IVAL(4) = 0

! Storage for the partial
! derivative array is not needed.
IOPT(5) = IN(34)
IVAL(5) = 1

! Set the sizes of IWK, WK
! for internal checking.
IOPT(6) = IN(35)
IVAL(6) = 35 + N
IVAL(7) = 41 + 11*N

! 'Put' these integer options.
CALL IUMAG ('math', ICHAP, IPUT, 6, IOPT, IVAL)

! Write problem title.
CALL UMACH (2, NOUT)
WRITE (NOUT,99998)

! Integrate ODE/DAE. Use dummy IMSL names.
DO
 CALL D2SPG (N, T, TEND, IDO, Y, YPR, DGSPG, DJSPG, IWK, WK)
! Find where g goes. (It only goes in one place
! here, but can vary if divided differences are used
! for partial derivatives.)
 IOPT(1) = IN(27)
 CALL IUMAG ('math', ICHAP, IGET, 1, IOPT, IVAL)

! Direct user response.

858 • Error! No text of specified style in document. IMSL MATH/LIBRARY

 GO TO (50, 180, 60, 50, 90, 100, 130, 150), IDO
50 CONTINUE
! This should not occur.
 WRITE (NOUT,*) ' Unexpected return with IDO = ', IDO
60 CONTINUE

! Reset options to defaults and quit.
 DO I=1, 50
 IN(I) = -IN(I)
 END DO
 CALL IUMAG ('math', ICHAP, IPUT, 50, IN, IVAL)
 DO I=1, 20
 INR(I) = -INR(I)
 END DO

 CALL SUMAG ('math', ICHAP, IPUT, INR, SVAL, NUMOPT=1)
 EXIT

90 CONTINUE
! Return came for g evaluation.
 CALL SCOPY (N, YPR, 1, GVAL, 1)
 CALL SGEMV ('NO', N, N, 1.0E0, H, N, Y, 1, -1.0E0, GVAL, 1)
! Put g into required place.
 CALL SCOPY (N, GVAL, 1, WK(IVAL(1)), 1)
! Re-enter integrator
CYCLE

100 CONTINUE
! Return came for partial derivative evaluation.
 CALL SCOPY (N*N, H, 1, A, 1)

! Get value of c_j for partials.
 IOPT(1) = INR(9)
 CALL SUMAG ('math', ICHAP, IGET, IOPT, SVAL, NUMOPT=1)

! Subtract c_j from diagonals to compute (partials for y')*c_j.
 DO I=1, N
 A(I,I) = A(I,I) - SVAL(1)
 END DO
! Re-enter integrator
CYCLE

130 CONTINUE
! Return came for factorization
 DO J=1, N - 1
! Construct and apply Givens transformations.
 CALL SROTG (A(J,J), A(J,J+1), SC, SS)
 CALL SROT (N-J, A(J+1,J), 1, A(J+1,J+1), 1, SC, SS)
 END DO
! Re-enter integrator
CYCLE

150 CONTINUE
! Return came to solve the system
 CALL SCOPY (N, WK(IVAL(1):), 1, GVAL, 1)

IMSL MATH/LIBRARY Error! No text of specified style in document. • 859

 DO J=1, N - 1
 GVAL(J) = GVAL(J)/A(J,J)
 CALL SAXPY (N-J, -GVAL(J), A(J+1,J), 1, GVAL(J+1),1)
 END DO
 GVAL(N) = GVAL(N)/A(N,N)
! Reconstruct Givens rotations
 DO J=N - 1, 1, -1
 Z = A(J,J+1)
 IF (ABS(Z) < 1.0E0) THEN
 SC = SQRT(1.0E0-Z**2)
 SS = Z
 ELSE IF (ABS(Z) > 1.0E0) THEN
 SC = 1.0E0/Z
 SS = SQRT(1.0E0-SC**2)
 ELSE
 SC = 0.0E0
 SS = 1.0E0
 END IF
 CALL SROT (1, GVAL(J), 1, GVAL(J+1), 1, SC, SS)
 END DO
 CALL SCOPY (N, GVAL, 1, WK(IVAL(1)), 1)
! Re-enter integrator
CYCLE
!
180 CONTINUE
SUMY = 0.E0
 DO I=1, N
 SUMY = SUMY + Y(I)
 END DO
 WRITE (NOUT,99999) TEND, SUMY
! Finish up DASPG internally
 IDO = 3
! Re-enter integrator
END DO

99998 FORMAT (11X, 'T', 6X, 'Sum of Y(i), i=1,n')
99999 FORMAT (2F15.5)
END

Output

 T Sum of Y(i), i=1,n
1.00000 65.17058

	DASPG
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Comments
	Example 1
	Output
	Additional Examples
	Example 2
	Output
	Example 3
	Output
	Example 4
	Output

