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EQUIVALENCE OF FINITE ELEMENT METHODS 
FOR PROBLEMS IN ELASTICITY* 

RICHARD S. FALKt AND MARY E. MORLEYt 

Abstract. Modifications of the Morley method for the approximation of the biharmonic equa- 
tion are obtained from various finite element methods applied to the equations of linear isotropic 
elasticity and the stationary Stokes equations, by elimination procedures analogous to those used in 
the continuous case. Problems with Korn's first inequality for nonconforming P1 elements and its 
implications for the approximation of the elasticity equations are also discussed. 
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1. Introduction. It is well known that the biharmonic equation arises in several 
contexts in the theory of linear elasticity from the reduction of the equations of linear 
isotropic elasticity, in which more variables are initially present, to a single higher order 
equation (cf. [4]). For example, starting with the equations of plane strain isotropic 
elasticity 

Ao = e(u) in Q, diva = f in Q, 

where Q is a simply connected bounded domain in the plane, 

Ao = E [l- v tr ()6, 6(u) = [grad u + (grad u)]/2, 

6 is the identity, and tr(ou) denotes the trace of a, and introducing the variable p = 
ktr(ou) (k an arbitrary nonzero real number), we may easily eliminate the stresses a, 
obtaining the equations 

(1.1) k+ v(1 - 2v)p = div u. 

and 

(1.2) (1+ divE(u)?+ gradp=f. 

Applying the calculus identity: 

div(grad ut) = grad(div u), 

and the definition of e(u), (1.2) may also be rewritten as 

(1.3) E A u + 
I 

gradp f 
2(1 +v) - 2k - 

P 1_. 
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In the incompressible case (v = 2), (1.1) becomes div u = 0 and we obtain the 
stationary Stokes equations. When div u = 0, we may set u = curl w. The variable 
p may now be eliminated by differentiating and adding the remaining equations. The 
resulting equation satisfied by w is the biharmonic equation 

pA2w = g in Q, 

where p = E/[2(1 + v)] and g = 9f,/9y- f2/ax. 
A second derivation, applicable when the force f = grad q for some potential q, 

procedes by the introduction of the Airy stress function, i.e., the stress u, is written in 
the form 

_ tX OA+ K yy -wy 

so that div or = grad q = f. Letting A denote the Airy operator 

A (02/ay2 _a2/xaay) 
- V-2laXay a2/0X2 J 

an easy computation shows that if a is of the above form and satisfies Aa = ?(u), 
then 

I+1 v 2 2 

F [(1-v)zA2w+(1-2v)A]= Aij (A))ij= AjjAjij(u) = 0. 
i,j=1 i,j=1 

Hence, w satisfies the biharmonic equation: 

1 - 2v 21-i1' 

When appropriate boundary conditions are added to each of these equations, it 
is then possible to show the equivalence of various boundary value problems for the 
equations of elasticity, the stationary Stokes equations, and the biharmonic equation. 
These standard results are recalled for the reader in ? 2. Since this is the case, it is 
interesting to determine whether any finite element methods based on these formu- 
lations are also equivalent. In particular, we shall show in ? 3 how a modification of 
the Morley method for the biharmonic (cf. [6]-[9]) can be obtained from the standard 
continuous piecewise linear approximation of the elasticity equations in the case when 
f = grad 0, by elimination procedures analogous to those used in the continuous case. 
The key idea is a discrete version of the orthogonal decomposition of symmetric ten- 
sors in the form e (u) + A(w). In ? 4, we show how another modified Morley method 
for the biharmonic arises from the nonconforming piecewise linear approximation pro- 
posed in [3] for the stationary Stokes equations (1.3), (1.1) (with v = 2), by writing 
the solution as the discrete curl of a Morley element. In a similar vein, we note that 
Arnold and Brezzi [1] have shown that the Hellan-Hermann-Johnson approximation 
of the biharmonic equation is also equivalent to a modification of the Morley method. 
We then compare the error estimates that can be derived for all these various versions 
of the Morley method. 
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In ? 5, we consider what happens when (1.2) rather than (1.3) is used as the 
basis of a nonconforming P1 finite element scheme. The analysis then depends on an 
appropriate discrete version of Korn's inequality for nonconforming piecewise linear 
elements. We show that such an inequality may not hold in certain cases, and for 
other cases in which it does hold, the constant may go to infinity as the mesh size 
approaches zero. Finally, in ? 6, we give a mixed formulation which is equivalent in the 
incompressible limit to the nonconforming P1 approximation of the Stokes problem 
studied in ? 4 and compare it to a mixed method developed in [2] using Raviart- 
Thomas elements (cf. [10]). 

2. Notation and preliminaries. We will use the usual L2-based Sobolev spaces 
HS. An undertilde to a space denotes the 2-vector-valued analogue. The undertilde 
is also used to denote vector-valued functions and operators, and double undertildes 
are used for matrix-valued objects. The letter C denotes a generic constant, not 
necessarily the same in each occurrence. We will use various standard differential 
operators defined as follows: 

gradp = ( jP/ ) divrT= 0Ti/0X + 0T12/0Y 1 curl(p 9y 
&p/0y \9T21/&9X + &T22/0Y / -&p 1x1 

&v1 9V2 &v1 9V2 
div v - + 0' rot v =- + 

Ax a~~~~y Oy x 

grad v (oVi/o9x 9VJi/OY 
0V20X 09V2/ 09 

and 
,(v) = [grad v + (grad v)t]. 

We also define the constant tensor 

and for any tensor T 

2 2 

tr(r) = r: 6, where a: T Z ij=Tij 
i=1 j=1 

We now recall for the convenience of the reader some standard results on the 
equivalence of various boundary value problems for the equations of plane linear 
isotropic elasticity, the stationary Stokes equations, and the biharmonic equation. To 
make matters as simple as possible, while still studying the effects of different bound- 
ary conditions, we shall consider the case when the domain Q is a convex polygon and 
IF and F2 are disjoint open connected subsets of 0Q with IF l nF2 = 0Q. 

Defining 

Hs = {T E L2() = 

v7(F) = {v E H1(Q) : v = 0 on 17, 

V1 = {v E H1(Q): v = g1 on 1}, 
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the boundary value problem for the equations of plane strain linear isotropic elasticity 
may then be stated in weak form as follows. 

Find a E Hs, u E V1 satisfying 

(2.1) jAa':rdx= j (u):rdx VT eHS, 

(2.2) j a: E(v)dx =-j f v dx+ j92 v ds Vv E V0(Fj). 

Note this corresponds to the boundary conditions u = gi, on Fl, an = 92, on F2. 

When A is invertible, then (2.1) implies that a = CE (u), where 

C = A E tr(T)=6 ';Z I + vo I 1-2v '; t 

Hence, a may be eliminated and we obtain the standard displacement formulation of 
elasticity as follows. 

Find u E V1 satisfying 

(2.3) jCE(u): :(v)dx= ff vdx+jr 92 .vds Vv E V?(I7). 

To obtain the stationary Stokes equations, set p = k tr(a). Choosing T = qp in 

(2.1), we get that 

(2.4) (1+v) I-2"j pqdx=jdiv u qdx Vq E L2(Q). 

Using the definition of A, it follows easily from (2.1) that 

(2.5) 6 = E ( )+ vp6. (1 +v) 'k~ 

Inserting this result in (2.2), we obtain 

(2.6) (IF+ ) j e(u): :(v)dx + j pdiv v dx =- f v dx+j 92 v ds 

Vv E V0(F1). 

In the case when F2 is empty so that v =0 on 9Q, we get by twice integrating 
by parts and using (2.4), that 

je (u) : E (v) dx = 2jgrad(u) : grad(v) dx + j div u div v dx 

(2.7) 
I 

jgrad(u) :grad(v) dx + (l+v)(l-2v) jpdivv dx. 
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By setting i = E/[2(l + vi)] and k =-2, and using (2.7), equation (2.6) becomes in 
this case 

(2.8) A jgrad(u) : grad(v) dx-j pdiv v dx =- f v dx Vv E V(O9Q) 

and (2.4) becomes 

(2.9) jdiv uqdx = 2v- pqdx Vq E L2(Q) 

which, in the incompressible limit v =, reduces to 

(2.10) jdivuqdx=O VqEL2(Q). 

Together, (2.6) and (2.10) are one form of the stationary Stokes equations. When 
r2 is empty, another common formulation is (2.8) and (2.10). We note that when 
-1< ii < 2, p may be easily eliminated from (2.8) to give another displacement 
formulation as follows. 

Find u E V1 satisfying 
(2.11) 

[tjgrad(u): grad(v) dx+ 1A2 jdivudiv v dx =-jf v dx Vv E V(O9Q). 

To obtain the biharmonic problem, we use (2.10) to write u = curlw for some 

w E W _ H2(Q). By defining 

W0(r) = {z E H2(Q): z = 9z/9n = 0 on r}, 

and choosing v = curlz for z E W0(F1), (2.6) and (2.8) become 

(l+ v) (curlw): e(curlz)dx f L curlzdx+f 92 gcurlzds Vz E W (1) 

and 

p j grad(curl w): grad(curl z) dx =- j f curl z dx Vz E WC (aQ) 

These are both weak formulations of the biharmonic equation A A2 W =-rot f. 
We now turn to a second derivation of the biharmonic equation from the equations 

of elasticity, applicable when the force f = grad 0 for some potential q. Inserting this 
definition of f in (2.2) and integrating by parts, we obtain 

jJQ : (v)dx=j0 (v)dx+j (92 - n) )v ds Vv E VV0(I1) 

Next define a function wP e W satisfying for all v E V/0(F1) 

fA(wP): E (v)dx =J (92-n) * v ds. 
"2 
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Integrating by parts, we see that this is the weak form of the boundary condition 

0(curl wP) 

= g2-qn onur2. 

Hence, o -06 - A(wP) satisfies 

(2.12) a- 56 -A(wP)]: 6(v)dx Vv EV?(ri). 

Now using the orthogonal decomposition 

(2.13) L2(Q) = e(V0(]7i)) + A(W0 (r2)), 

it follows from (2.12) that 

o, - f6- 4A(wP) = A(w?) 

for some wo E W0(r2). Inserting this result in (2.1) and choosing r = A(z) for 

z E W0(P2), we find that w = wo + wP satisfies 

j AA(w): A(z) dx = j E(u): A(z) dx -j A6: A(z) dx Vz E W0(F2). 

Integrating by parts and using the boundary condition, u = Y = (gl, 912) on r1, we 

obtain for all z E W0(P2) 

jAA(w) :A(z) dx = (1 + v)(l-2v) J dA Z dx + j(9g11 Oz 0912 Az d. 
I-- E (9 rl s y A s" ')'X 

This is the weak form of a boundary value problem for the equation 

1 
=- 2~AO in Q. 1v 

3. From elasticity to the biharmonic via the Airy stress tensor. In this 
section, we consider the approximation of the equations of elasticity when f = grad 0, 
where the biharmonic equation arises through the introduction of the Airy stress 
tensor. To see how different types of boundary conditions are handled, we consider 
the boundary conditions: 

u = gi on ui, on = 92 on ut2 

We shall assume that Q is a convex polygon and denote by Th a triangulation of Q 
into triangles T of diameter < h. We further assume that IL and r2 are disjoint open 
connected subsets of O9Q with 1P1 U r2 = 9Q, and that the two points of intersection 
of rP nl n2 are mesh points. 
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Let us now recall the standard approximation of the displacement form of the 
elasticity equations by continuous piecewise linear functions. By defining 

Uh= {V E [C(Q)]2: VilT E P1(T)}, 

U(rl) =V e Uhv = 0 on Pl, 

where Pi(T) denotes the set of polynomials of degree < i on T, and letting gj denote 
a suitable interpolant of g, into UhlrF, the method based on (2.3) is as follows. 

Find Uh E Uh, Uh = 9 on IF such that 

jCIE(Uh): E(v)dx f-j f v dx+ 92 vds Vv E Uh(rl). 

Once uh is computed, an approximation to the stress tensor of is given by ch = 

Ce (U h).* 

We now show how this same approximation arises through a nonconforming ap- 
proximation of the biharmonic equation using Morley elements. 

First define 

Hh = { ijIT E PO(T)} and Hh = {f E Hh :T12 =T21}. 

Note that Uh E Hs satisfies: 

JAOh Tdx=E(uh) :Tdx VT EHs, 

jOh :E (v)dx=- j vdx+ j 92 vds Vv E U (I1). 

Next observe that when f = grad b, the right side may be written 

JQ E (v)dx+ j(92 -X n) v ds. 

The key fact is now the use of a discrete version of the orthogonal decomposition 
(2.13). To state this discrete version, define the Morley finite element spaces 

Mh = {W: WIT E P2 (T), w continuous at vertices 
of Th, ow/on continuous at midpoints of Th} 

and 

Mho(F2) = {W E Mh: w = 0 at vertices of Th n F2, 
Ow/On = 0 at midpoints of edges of Th n F2.} 

Let Ahh(W) E L2(Q) be defined by Ah(w)IT = A(w)IT, for w E H2(T). We then get 
the following discrete version of (2.13). 
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THEOREM 3.1. 
H = (U (rF)) + Ah(Mh(F2)) 

and this is an L2 (Q) orthogonal decomposition. 
Proof. Clearly 

6 (Uh(1)) + Ah(Mho(F2)) C Hsh. 

To show equality, we now show that the dimensions are the same. Let vI, ei, and eB 
denote the number of interior vertices, interior edges, and boundary edges, respectively, 
of Th. Let vs and e', i = 1, 2 denote the number of vertices and edges, respectively, of 
Th on ]i Then eB-eB + e2B = VB + v2 -2, since there are two points of intersection 
of F nl nF2. Counting degrees of freedom, we get that 

dimAh(Mh2(F2)) = dimMh(F2) = vI + eI + VB + eB-2 

dim E(Uh(F)) = dim U (]1) = 2v, + 242 - 4 

(because of duplication of vertices). Letting e, v, and T denote the number of edges, 
vertices, and triangles of Th, respectively, and using the identity 

2e, + eB = 3T (?: 4ei + 2eB = 6T) 

and Euler's formula 

T-e + v = 1 (= 3 + 3eI -3v = 3T), 

we get 

dim Ah(Mho(F2)) + dim (U (IF)) = 3vi + e, + 2eB -3 = 3T = dim Hs. 

Hence, the spaces are the same. 
To check the orthogonality condition, let v E U?(]F1), Ah(W) E Ah(Mho(r2)). 

Then 
E-JT e (v v : Oh(w) dx 1 Ow 09V2 OW \s = 0) 

T - 2rII & T K9 09Y o59 i ds=O 

since Ovi/Os is a constant on each edge which is continuous across neighboring tri- 
angles and Ow/Ox and Ow/Oy are piecewise linear functions which are continuous at 
the midpoints. Thus contributions from adjoining triangles cancel and there are no 
contributions from boundary edges because of the boundary conditions. [] 

To use this decomposition, we first define a function wP E Mh satisfying for all 
v E u? (r) 

(3.1) 
Owvl _9 09V2 O9wp 

Ah)d=1 (i 0s OY s Ox ) ds= j(92 -rn) .vds. 

Note that this only involves assigning boundary values of wP and a solution may be 
found in the following way. Let x1 and X2 denote the points of intersection of IF 
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and 12. Let wP satisfy OwP/an = 0 at midpoints of all interior edges of Th and of 
edges of Th on IF and wp = 0 at all interior vertices of rh and at vertices of Th on 
rl, including x1, but excluding x2. The remaining degrees of freedom of wp are the 
values of awP/an at the midpoints of the edges of Th on 172 and the values of wP at 
the vertices of fh on I2, including x2, but excluding xl. We now show how these may 
be easily determined from (3.1) and the additional equations 

1 _ h 2 h ds = O, 
r2 as 09Y As Ax 

where vP E UP = span (X, 0), (0, X)7 with X the piecewise linear function which is one 

at x2 and zero at all other vertices. For v E U5 (1) U UP, it is not difficult to see that 
avIOs maps onto the space of piecewise constant vectors on Th I12. Writing 

a vp awph av2 awh 0 aw h 49Wh 
I _ 

2 hds n O Ov 
h ) ds, (as ay as ax rl' As As n J2 2 

with n and s the unit normal and tangent vectors, respectively, we get that the 
average values of awP/as and awP/Oan are uniquely determined. Since the average 
value of awP/as is the difference of the values of wP at neighboring vertices, the 
remaining degrees of freedom of wp are easily determined. 

We now note that since 

a- Ah(Wh) - Po6 E HsX 

we may write it in the form 
c (u?) + Ah(W? ) 

where u E U(P(r1) wo E Mh(F2)- Inserting this identity into the equation: 

j h E(v))dx= j 6 v(v)dx+ j(92-4n) v ds8 

it follows immediately that 

j[,((u?) + Ah(Wo)]: E(V) dX = 0 Vv E U' (ri) 

and hence by the orthogonality of the decomposition and Korn's inequality that 
o= 0. 

,h- 

Next, setting Wh = WO + wP and using the equation 

JAUh :Tdx =/E (u):Tdx VrEH , 

with r =Ah(Z),z E M0(P2), we get for all z E MO(P2) 

j AAh(Wh): Ahh(z) dx = j e(Uh): Ah(Z) - AP046: Ah(Z) dx, 

(3.2) f(O 1i Oz _ 0?12 ?az ds (Jrj( as ay as ax 
(I + v)(1 -2v) E A zdx, 

E T 



EQUIVALENCE OF FINITE ELEMENT METHODS 1495 

where we have used integration by parts and the boundary condition Uh = 91 = 

(9g1, 912). Observing that 

JAAh (Wh) :h (z) dx 

1+V ~0 2h 
2+ 2OxWhOx2y 

02 W 2 

~1 +v~j O~tth 0 O2Wh V0WhAz dh E SEO JT(02 aXs2 + XO 2 _a 0zy 
a y 2 a Y2-v h z)d 

we have thus constructed an approximation to a weak formulation of the partial dif- 
ferential equation 

1 - 2v 
1-v 

Note that the approximation of this equation by the standard Morley method 
would be slightly different than the method we have derived, since the right-hand side 
would have the term ET fT / qz dx instead of ET fT q /\ z dx, as we have obtained. 
It is interesting to compare the error estimates for these two methods and a third 
modified Morley method analysed in [1], in which the right-hand side would have the 
term ET fT A oZI dx, where ZI denotes the continuous piecewise linear interpolate of 
z. In order to make use of existing estimates in the literature, we shall only consider 
the special case when IF is empty, 92 = 0, and q$ = 0 on OQ. These conditions imply 
that w satisfies the boundary conditions w = Ow/On = 0. 

The error estimates of interest will be those for the approximate stress. Denoting 
by wk, w2, and w' the approximate solutions of this problem produced by the standard 
Morley method, the Arnold-Brezzi modified Morley method, and (3.2), respectively, 
we define corresponding approximations oih to of by u,= Po8 + Ah(W') Since 

11- Oh, < 11? - PoqIlo + IW - Wh12,h, 

error estimates for of - o,' follow directly from the results of [1] for the cases i = 1 

and i = 2. For the case i = 3, we use the equivalence of a3 and CIE(Uh) and standard 
estimates for the usual finite element approximation of the displacement form of the 
elasticity equations. We thus obtain the following estimates, valid on a convex polygon 
for 0 < v < 2 

110a - OJ < Ch(II /\ $i- + hII /llo), 
- -ho ?-h 

110, - O,2110< ChIIA /\11-1, 

11Hu- O ? <Chllgradq$llo. 

Note that since q$ = 0 on OQ, I /\ 1 and I grad q$o are equivalent norms and so 
the last two estimates are equivalent in terms of the regularity required. Since for 
T E K = {r: rij E H(f(Q),rij = rji,Crn =0 on 3Q}, 

(a - o7,3) = (C[E(U) - (Uh)],T) = (U - Uh,div[CT]) < IJU - Uh,lOllflll, 

it follows directly from standard L2 estimates for 1u - Uh 10, that 

11a - O,h3II < Ch211q$11, - -h 

where the negative one norm is the norm in the dual space of K. Negative norm 
estimates in the other two cases are not so obvious. 
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4. Nonconforming P1 and the Morley element. We next consider the 
relationship of some finite element approximations to the stationary Stokes and bi- 
harmonic problems 

()-au+gradp=-f inQ, 

div u = O in Q, u = O on &Q, 

and 

(4.2) uL2W= in Q, W = Ow/n =O on OQ, 

in the case where (4.2) is derived from (4.1) so that g =-rot f. 

In particular, we shall consider a method analyzed by Crouzeix and Raviart [3], 
in which u is approximated by nonconforming piecewise linear functions and p by 
piecewise constants. Again assuming that Q is a convex polygon and Th a triangulation 
of Q into triangles T with diameter < h, we define 

Vh = {V: ViIT E P1(T), i = 1,2, vi continuous at the midpoints of T}, 

Vh = { V E Vh: v = O at midpoints of T E &Q}, 

Qh = {q qlT E Po(T)}. 

The approximation scheme is: Find Uh E V, Ph E Qh such that 

ItEZJ grad u: grad v dx- J pdiv v dx= E f vdx Vv EV,h 

EZj divuqdx=O VqEQh- 

Defining 

Zh= {V E V divuqdx=O VqEQh-} 

the above approximation scheme is equivalent to the following problem. 
Find Uh E Zh such that 

AZj grad ua: grad v dx= jf vdx Vv E Zh 

Now consider the Morley nonconforming finite element space Mh defined in ? 3. 
We shall slightly simplify the notation of the previous section by defining Mho = 
Mh(OQ), i.e, Mho = {w E Mh: w = 0 at vertices of Th n aQ, Ow/On = 0 at midpoints 
of edges of Th n aQ}. 

Counting degress of freedom, it is easy to see that dim Mh = the number of 
interior vertices (VI) + the number of interior edges (el). We now give a simple 
characterization of Zh using the Morley space Mho. Let curlh VIT = curlVIT = 
(O4jOy, -00/OX)T. Then we have the following theorem. 
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THEOREM 4.1. Zh = curlh MOh. 

Proof. We first show that curlh MO C Zh. For + E Mho, let v = curlh +. Then 
curl V. s = -&Vb/&n is continuous at midpoints of T and curl . n= &9b/9s is also, 
since its value along an edge of T is the difference in the values of 'X at the vertices 
determining that edge. Hence v s and v n and thus v are continuous at midpoints 

of Th. A similar argument shows that v =0 at midpoints lying on 9Q. Thus v E V. 
Since 

ddivvqdx=O VqEQh, 
T T 

V E Zh- We now show equality by proving that the dimensions of the two spaces 
are the same. Again let T, e, and v denote the number of triangles, edges, and 
vertices, respectively, in the triangulation Th, and eB denote the number of boundary 
edges. First observe that dim curlh MO = dim MO = el + vI. Using Euler's formula 

v = e-T + 1 and the fact that v -VI = eB, we get that dim curlh MO= 2ei-T + 1. 

Now note that dim Zh > dim V? - (T- 1) = 2e, -T+1, since the divergence condition 
involves one constraint per triangle and at least one of these is redundant, i.e., 

Zj[divvdx = nds = O. 
T T T T 

Next observe that 

dim Zh = dimKA(div V?) = dim V - dim R(div V?) = 2e1-dim R(div V?), 

where KV and R denote the null space and range respectively. Hence, to complete 
the proof, we need only show that dimR(div VO) > T - 1. This is easily done by 
induction on T. When T = 2, let u be zero at the midpoints of boundary edges and 
u be one of the unit normal vectors at the midpoint of the common edge. A simple 
computation shows that div u $0 . Assuming the result is true for some T1 > 2, add 
another triangle in such a way that the number of interior edges increases by at least 
one. Now take u = 0 at all midpoints except the midpoint of the new interior edge, 
where we again take it to be one of the unit normals to this edge. Again div u $4 0 
and div u is not contained in the range of the divergence operator on T1 triangles. 
Hence the range of div has increased by at least one, and the result now follows by 
induction. [] 

Using this result, we may substitute u = curl w, v = curl z in the equation 

IIEZj grad u: grad v dx = ZE JfE. *Vdx VvCZh, 

thus obtaining 
(4.3) 

f 92w &2 2z 092 W 02 2w 0Z%A2 2 AZ 
A E: JTt 0 + 2 + jV2 zi dx EL T-fi + f2 jz dx. 

&5X2O2 O9xOy 0t9xy ' ' /T J T Y X/9 
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Note that this is a slight modification of the usual Morley method for the biharmonic 
problem. In the usual Morley method, the right-hand side of (4.3) is replaced by 

(4.4) -)Of W z dx. T T (9 ax 0 
For z E Mh,, these are not the same. 

Once again, it is interesting to compare the error estimates for these two methods 
and the modified Morley method analysed in [1], in which the function z in (4.4) is 
replaced by its continuous piecewise linear interpolate. Denote by wi, wh, and w3, the 
approximate solutions produced by the standard Morley method, the Arnold-Brezzi 
modified Morley method, and (4.3), respectively. Then we have for the cases i = 1, 2 
from [1] and for i = 3 from [3] and the fact that Uh = curlh Wh, the following error 
estimates valid on a convex polygon. 

|-wh112,h < Ch(// rot fII|i1 + h// rot f |lo), 

|w- WhII2,h < Ch// rot f 11-1, 

/|W-whll2,h < Chilf |l, 

||w - wk/l1,h < Ch2(// rot f/I-1 + 11 rot filo), 

||W- w 2I,h < Ch2(11 rot f/-i + I/rotf I/), 

|w3- || //,h < Ch2/f //o, 

where 
[(O2w\ 2( 2w\2 /92w\2l WI2 h EJ [k(a2)+ 2 J w + 

(\2) dx, 

W|1 h= 
2 j gradw/2 dx. 

T 

To compare these, we note that by the Helmholtz decomposition, f may be 

written in the form f = curlq + gradr, where q E Ho'(Q) and r E Hi(Q), and 
that this is an orthogonal decomposition in L2(Q). Hence, 

//rotf//i- = 11//qll-l = //curlqllo, 

while 
lf 112 = 1/ curlq//2 + 1/ gradr 11. 

If we are given the function f, then the 11 / 112,h estimate for w2 is somewhat better 
than that for w3, and definitely better than the corresponding estimate for wl. In 
the 11 / 1i1,h, however, the estimate for w3 is the best in terms of regularity required 
for the data. If we think of the function g as given, then by setting f = curlq, where 

q E Ho' satisfies A q = g in Q, we may replace lif /lo by /lgl/-i in the error estimates for 
W3. This would make the estimates for W3 the best in both cases. The problem with 
this, of course, is that it requires the exact solution of Poisson's equation. In fact, it is 
not difficult to show that if q is approximated by its Ritz projection into continuous 
piecewise polynomials of degree > 2, then the same estimates hold. This extra work 
may only be worthwhile if f E L2(Q), but rot f ? L2(Q). 
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5. Nonconforming P1 approximation of the equations of elasticity. In 
the previous section, we considered the approximation of the Stokes problem by non- 
conforming P1 elements. If we view this equation as having arisen as the incompressible 
limit of the equations of elasticity, then it is important to note that the form of the 
Stokes equations we considered in ? 4 was dependent on the choice of pure displace- 
ment boundary conditions. If we had considered pure traction or mixed boundary 
conditions instead, the the natural bilinear form would have been 

j C(u) : e (v ) dx instead of grad u: grad v dx. 

Although this distinction is not crucial for conforming finite element methods, it is 
crucial for nonconforming P1 elements. In this section, we show why this is so by con- 
sidering the nonconforming piecewise linear approximation of the equations of linear 
isotropic elasticity, subject to the boundary conditions u = 0 on F1, an = g on F2. A 
natural method is as follows. 

Find c7h E Hs, Uh E V? such that 

jAuh: f dx =ZJA E(Uh):rTdx VrEHS, 

E : e (v)d= d J f v dx + J 9 v ds Vv E V, 

where now V0 - {v E Vh: v = 0 at midpoints of T on IF4. When A is invertible, 
this system is easily seen to be equivalent to the pure displacement method as follows. 

Find Uh E V5h such that 

Z j CE(uh): E(v)dx= jf v dx + jg 9 v ds Vv E V. 

When v = , it is also equivalent to the following approximation of the Stokes equa- 
tions. 

Find Uh E V?, Ph E Qh such that for all v E V? and q E Qh 

2b ZCE(u): e(v) dx - Z divvdx= -Z f v dx + f g v ds, 
T ~~~~T T2 

ZjTdiv uqdx = 0. 
T` 

The key step in the analysis of any of these equivalent formulations is a proof of 
a discrete version of Korn's inequality, i.e., 

(5.1) 11gradU2 T < KE LjE(U)J,T 
T T 

Unfortunately, this inequality does not always hold. In particular, consider the case 
when F1 is empty so that no boundary conditions are imposed on u. On the continuous 



1500 RICHARD S. FALK AND MARY E. MORLEY 

level, Korn's inequality holds if we factor out the three-dimensional space (a + by, c - 
bx) of rigid motions. On the discrete level, the dimension of {u E Vh: c(U) - 

0 on each T} is greater than or equal to 2e - 3T > eB, where e, T, and eB are defined 
as in the previous sections. Hence, removing global rigid motions is not enough for 
the inequality to be satisfied. A more thorough discussion of Korn's inequality in this 
case for nonconforming piecewise linear, quadratic, and cubic finite elements may be 
found in [5]. 

If we consider the case when u = 0 on the boundary, then the situation is more 
complicated. The following example shows that for some meshes, Korn's inequality 
fails. Consider the triangulation in Fig. 1. 

(0,1) 

T1 T2 

(-1,0) (1,0) 

T3 T4 

(0, -1) 

FIG. 1 

Then it is easy to check that u of the form 

u= 1/2?-) in T1l, U= ) in T2, 

u ( 1/2 Y y in T3, u = 1/2 - Y in 4 
Ul. - 1/2 -x r_ -1/2-y 

satisfies u E V1, grad u $ 0, but h(U) = 0. Hence, Korn's inequality fails. 
A second possibility is that Korn's inequality may hold, but the constant will 

approach infinity as h approaches zero. To see an example of this, consider the case of a 
uniform mesh of isosceles right triangles of minimum side h defined on Q = (0, 1) x (0, 1) 
(see Fig. 2). 

FIG. 2 
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For this mesh, we shall first prove the following theorem. 
THEOREM 5.1. If U E VI? satisfies Eh(U) = 0, then u = 0. 
Proof. The proof follows inductively from the following two lemmas, starting from 

the triangle in the upper left-hand corner of the square. 
LEMMA 5.2. If e(u) = 0 in a triangle T and u vanishes at the midpoints of two 

edges of T, then u = 0 in T. 
Proof. Since e(u) = 0, u is a rigid motion, i.e., it has the form 

ta + byA 
U = rl tc-bxJ 

A simple calculation shows that if u vanishes at two distinct points, it must be iden- 
tically zero. [] 

LEMMA 5.3. Let T1 and T2 be two triangles with a common edge e. Let P3 
denote the midpoint of e and P1 = (x1,y') and P2 = (X2,Y2) denote the midpoints 
of a noncommon edge of T1 and T2, respectively. Suppose u is a function defined on 
T1 U T2 that is continuous at P3, vanishes at P1 and P2, and satisfies Eh(U) = 0 in 
T1 U T2. If the points P1, P2, P3 do not lie on a line, then u = 0 in T1 U T2. 

Proof. To simplify the computation, we may take (without loss of generality) the 
midpoint P3 of e to be (0, 0). First note that the equation of the line through the 
points P3 and P1 is given by -y1x + x1y = 0. Since the point P2 is not on this line, 
-XlY2 + X2Y1 7$ 0- 

Now since e(u) = 0 on each triangle, u will have the form 

u= (a +by inT,, u= 
a 

+dy) in T2. 

The constants a and c are the same on the two triangles, since u is continuous at P3. 

Since u = 0 at P1 and P2 

a+by, = 0, c-bxl = 0, a+dy2 = 0, c-dx2 = 0. 

Hence, 
bx1-dx2 = 0, by,-dy2 = 0 

Since it was shown above that the determinant -x1y2 + x2y1 7& 0, b = d = 0. This 
implies that a = c = O and so u = O in T1 U T2. [D 

From Theorem 5.1, it follows that 11E(u)y1o is a norm on Vo. Since all norms 

are equivalent on the finite-dimensional space Vo, (5.1) holds for the uniform mesh 
under consideration for some constant K. We now show that for this uniform mesh, 
the constant K is at least O(h-1/2) and hence tends to infinity as h tends to zero. 
Setting 

xi = (i + 1/2)h, yj = (j + 1/2)h, i,j =0,1,** , N-1, 

we define 
= ( 1)i+j+l (Y - y 
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for ih < x < (i + 1)h, jh < y < (j + 1)h, i,j = 1, 2,.. , N-2 and u = O at all 
remaining degrees of freedom. 

Then, for example, u = 0 on the triangle with vertices (ih, 0), ([i + 1]h, 0), (ih, h), 

and u = (-1)i+1 (8-O/2) on the triangle with vertices ([i + 1]h, 0), (ih, h), ([i + 1]h, h). 
An explicit computation shows that 

N-2 

'Eh(U)llo2 = 4 Z J2dx = 4h2(N-2) = 4h(1 -2h) 

and 
N-2 

grad h u 112 4 1 dx + 2(1-2h)2 =2h2 (N-2) + 2(1-2h)2 =2(1-2h)(1-h). 0 

Hence, 

- l'tll ? =1 h) 0 (h-1/2). 

6. A nonconforming mixed approximation of the elasticity equations. In 
the case of pure displacement boundary conditions, we may easily avoid the difficulty 
of the last section by basing our nonconforming P1 finite element approximation of 
the elasticity equations on the weak formulations (2.8) or (2.11) rather than (2.3) or 
(2.6). The method based on (2.8) would be as follows. 

Find Uh E V?, Ph E Qh such that 

(6.1) 

iuZEj gradh Uh:grad v dx-EZj Ph div v dx =- f v dx Vv E Vo. 

(6.2) ZJdiv uqdx = 2v- Phqdx Vq E Qh 

We note that when -1 < v < 2, Ph may be easily eliminated as in the continuous 
case to give the pure displacement approximation of (2.11). 

Find Uh E V5h such that 
(6.3) 

JuZJ Agrad u h: grad v dx+ 2 div uhdiv v dx f v dx Vv E V? 

The incompressible limit of the first of these approximations is the approximation 
considered in ? 4. This approximation is also equivalent to a mixed finite element 
approximation of the elasticity equations, which is similar to the one developed in [2] 
for the purpose of alleviating the requirement of symmetric stress tensors. We end the 
paper by deriving this equivalent mixed formulation beginning from (6.1), (6.2) and 
comparing it to the method of [2]. 

Define a variable 

(6.4) eh = ,ugrad uh -Ph6. 
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Taking the trace of this equation, we get that tr(eh) = ,udiv uh - 2Ph. Since (6.2) 
implies that on each triangle T, div Uh = [(2V-1 )/I]ph, we obtain tr(Ph) = (2v-3)Ph- 

Using this result and (6.4), we find that grad uh = Bph, where 

Br =- [T-3 2tr()>] 1 

Taking the weak form of this equation, and inserting (6.4) in (6.1), we see that eh, 
uh satisfies the following mixed formulation. 

Find ph C Hh, Uh E V? such that 

(6.5) BPh: Tdx= grad Uh: T dx VT E Hh, 

(6.6) Z [Ph: grad v dx=- f v dx Vv E V. 
TJT 

To obtain (6.1), (6.2) from the mixed formulation (6.5), (6.6), we define Ph E Qh 
by Ph = tr(eh)/(2v - 3). Then on every triangle T, (6.5) implies that grad uh = 
Bph = [eh + Ph8j/, SO 

(6.7) gh = ugrad Uh -Ph6- 

Inserting this result in (6.6), we obtain (6.1). Now taking the trace of (6.7) and using 
the definition of Ph, we find that on each triangle T, div Uh = [(2v - 1)/I]ph. This 
equation is equivalent to (6.2). 

Although a is not a variable in any of these formulations, an approximation to a 
may be easily recovered based on the formula (2.5), i.e., 

Ah = 2pEh(Uh)-2Vph6. 

It is easy to check that this is equivalent to obtaining ah from eh by the formula 

0hPh ~~ 2(1 -v) 
Jh = Ph + Ph + 2v -3 tr(Ph)86 

We now compare (6.5), (6.6) to the method of [2] in the special case where the 
lowest order Raviart-Thomas-Nedelec elements are used. To do so, we define the 
lowest order Raviart-Thomas spaces 

RTo(T) = {q = (a + bx, c + by) : a, b, c E R}, 

RTo 1(Th) = {q E [L2(Q)]2: qlT E RTo(T), VT E Th}, 

RTO?(Th) = {q C RT- 1 (Th): q * n continuous across interelement boundaries}, 

Mo (Th) = {V E L2(Q) : VIT C Po(T), VT E Th}. 
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We then define R? = RTo (Th) x RTo (Th), R-' = RTol'(Th) x RTol'(Th), and Sh = 

Mo 1(Th) x MoG1(Th). The method of [2] using these spaces may then be stated as 
follows. 

Find p;L E Rh Uhm C Sh satisfying 

(6.8) JBem : dx + um divr dx = 0 VT E R? 

(6.9) jdive" - v dx = f. v dx VV G Sh. 

To show the relationship to (6.5), (6.6), we use the ideas of [1] for the second- 
order scalar problem to give an equivalent formulation of (6.8), (6.9). Following [1], 
we introduce piecewise constant Lagrange multipliers A h to eliminate the interelement 

continuity on Ro and then define a function Olh E Vo U B3(Th) satisfying 

j(Oh- Ah) ds =O j (Oh- u ) dx = 0, 

for each edge e and every triangle T of Th, where B3(rh) denotes the space of cubic 
bubble functions. Inserting these definitions and integrating by parts, we find that 
phm, Oh satisfy 

fBp : r dx -j grad0h:Tdx=O VTERh1 
TE1rh 

Zj#,eWn: grad X 
dx = Pof v dx Vv E V? U B3(Th), 

TErh 

where 1Pof denotes the L2 projection of f into piecewise constants. 

We next observe that R-1 = Hh + Lh, where Lh is the set of T which on each 
triangle T have the form 

T (bi(x-Xt) bi(y-9)A 
- V b2 (x-X) b2 (Y-Y)J 

where b1 and b2 are constants and x and y denote the average values on T of x and y, 
respectively. We note further that this decomposition is orthogonal in L2 (Q). Hence, 
we may write 

m h = X +L h = ,)Lh + = 
O+hX f~~~h_h=N fishe.. 

with je e GHh, p L e Lh, JL E Vo, and B 3 B3(Th). Since for , E Vo, grad C Hh 
and ZTEh fTgradd: rdx = 0 for , E B3(-rh) and T e Hh, it is easy to check that 

pC, L satisfy (6.5), (6.6), with f replaced by Pof. If we define pm = tr(pC)/(2v-3), 

then by our previous analysis, OL, ph satisfy (6.1), (6.2) and V/L satisfies (6.3) with 

f again replaced by Pof. This is exactly analogous to the result derived in [1] for the 

scalar case. The computations of eL and hB may then be carried out independently, 
although the system is somewhat more complicated than the scalar case, due to the 
presence of the tr(g)6 term. 
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