linux

Absoft Pro Fortran User Guide

absaft

uuuuuuuuuuuuuuuuuuuuuuuuuuuu

Absoft Fortran

Linux
Fortran User Guide

abs&it

development tools and languages

2781 Bond Street
Rochester Hills, MI 48309
U.S.A.

Tel (248) 853-0095

Fax (248) 853-0108
support@absoft.com

All rights reserved. No part of this publication may be reproduced or used in any form by
any means, without the prior written permission of Absoft Corporation.

THE INFORMATION CONTAINED IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE
AND RELIABLE. HOWEVER, ABSOFT CORPORATION MAKES NO REPRESENTATION OF
WARRANTIES WITH RESPECT TO THE PROGRAM MATERIAL DESCRIBED HEREIN AND
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR ANY PARTICULAR PURPOSE. FURTHER, ABSOFT RESERVES THE RIGHT TO
REVISE THE PROGRAM MATERIAL AND MAKE CHANGES THEREIN FROM TIME TO TIME
WITHOUT OBLIGATION TO NOTIFY THE PURCHASER OF THE REVISION OR CHANGES. IN
NO EVENT SHALL ABSOFT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE PURCHASER'S USE OF THE PROGRAM
MATERIAL.

U.S. GOVERNMENT RESTRICTED RIGHTS — The software and documentation are provided with
RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at
252.227-7013. The contractor is Absoft Corporation, 2781 Bond Street, Rochester Hills, Michigan 48309.

ABSOFT CORPORATION AND ITS LICENSOR(S) MAKE NO WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE
SOFTWARE. ABSOFT AND ITS LICENSOR(S) DO NOT WARRANT, GUARANTEE OR MAKE ANY
REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE USE OF THE
SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS, OR
OTHERWISE. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE
SOFTWARE IS ASSUMED BY YOU. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT
PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

IN NO EVENT WILL ABSOFT, ITS DIRECTORS, OFFICERS, EMPLOYEES OR LICENSOR(S) BE
LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL OR INDIRECT DAMAGES (INCLUDING
DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS
INFORMATION, AND THE LIKE) ARISING OUT OF THE USE OR INABILITY TO USE THE
SOFTWARE EVEN IF ABSOFT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
BECAUSE SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR
CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATIONS MAY NOT APPLY TO
YOU. Absoft and its licensor(s) liability to you for actual damages for any cause whatsoever, and regardless of
the form of the action (whether in contract, tort, (including negligence), product liability or otherwise), will be
limited to $50.

Absoft, the Absoft logo, Fx, Fx2, Pro Fortran, and MacFortran are trademarks of Absoft Corporation
Apple, the Apple logo, Velocity Engine, OS 9, and OS X are registered trademarks of Apple Computer, Inc.
AMD64 and Opteron are trademarks of AMD Corporation

CF90 is a trademark of Cray Research, Inc.

IBM, MVS, RS/6000, XL Fortran, and XL C/C++ are trademarks of IBM Corp.

Macintosh, NeXT, and NeXTSTEP, are trademarks of Apple Computer, Inc., used under license.
MS-DOS is a trademark of Microsoft Corp.

Pentium, Pentium Pro, and Pentium II are trademarks of Intel Corp.

PowerPC is a trademark of IBM Corp., used under license.

Sun and SPARC are trademarks of Sun Microsystems Computer Corp.

UNIX is a trademark of the Santa Cruz Operation, Inc.

Windows 95/98/NT/ME/2000 and XP are trademarks of Microsoft Corp.

All other brand or product names are trademarks of their respective holders.

Copyright © 1991-2010 Absoft Corporation and its licensor(s).
All Rights Reserved

Printed and manufactured in the United States of America. 11.5.0100511

Table of Contents

Fortran User Guide

Contents

CHAPTER 1 INTRODUCTION......... et 1
Introduction to Absoft Pro Fortran 1
ADSOTt FOTIan Q0795oieeiieieeee ettt ettt ettt e et e e tae e s ta e e s abe e tbeessaeeseseessseesseasseensseenseeenes 1
ADSOTt FORTRAN 77 ..ottt ettt ettt ettt et et e b e s s e be s st eseeseensense s esesseeneeneeneansensensenes 1
Conventions Used in this Manual 2
Road Maps 2
FOrtran ROAA MAPSc.oieuiiiiiiieiicie ettt ettt ettt et e st ebe e eestesaeesseenseenseessenssesssesseesseessesssennns 2
Year 2000 Problem 3
Fortran 90/95 DATE AND TIME SUDIOULNE.....ccocciiiiiiiiiiiciiiiiciciriei e 4
Unix Compatibility LIDIAIYcc.oooviiiiiiiieieeeeee ettt et st e 4
CHAPTER 2 GETTING STARTED ..., 5
Compiling Basics 5
Application Basics 10
CHAPTER 3 USING THE EDITOR................... 13
Text Selection 13
File Menu 13
NEW . (CHIIHEIN) ettt sttt be et a e e e e b e e bt e bt ebeeseen e ene e s e teebeeaeebeeneensenseneas 13
OPENL..(CHIHFO) ottt ettt e et e et e e e bt e s teesabeessbeeassaesssaeasseessaessseessesnsseesseenssaenns 14
SAVE (CITHS) ettt ettt a ettt et e bt s bt eb e e st en e et et e beebe et e ebeeaeebe e st ennennenean 14
SAVE A .t tiieiieiiieete e et e et e et e et e st e et e s te e e be e et e e e bt e et e e anbeeanbaeanbeeenteeanbeeanbeeanbeeenbeeanbeeesbeeenbeeantaeenseennts 14
SAVE AL ...ttt e ettt h e et h et ettt et e bt bt he bt eae st et e ke ebe bt ebe e st entenentan 14
CIOSE (CHIHW) ottt ettt e et e st eeabeessbaessbeessbaessaeessseensseessseensseessesnsseensseenssannns 14
CIOSE ALttt ettt ettt e et e et e et eesbeeesteeesseessseeenbeeesbaeasseesssaensseessaessseeasseannseeasseennseenns 14
CIOSE OTNETSveeiiieiiieiie ettt et e et et e et eebeesateeesbeessteeesseeassaeasseesssaensseessseensseesseenssesnsseensseenns 14
RECENE FILES ..vtieiiieiie ettt ettt et e st e e e be e s teesabeeesbeessaeessbeensseessseensseesseenssesnsseensseenns 14
CRECK FOT UPAALESovviviiiieieeieete ettt ettt ettt eb e eetaeste e te e aeesbeesaesseesaeesseesbeesseessesssessneneeas 15
PIOIETENCES ..oneveeeeiieiieee ettt e et e st e s be e st b e e s eae e tbeessbeensbeeabeensaeeseeeasbeennseeasseennaeenns 15
Edit menu and Pop-up menus 15
FINA. ettt ettt ettt et ettt et et e e Rt ea s et e be R e st eneentent et e s e beeteeseeneeneeneensenten 15
FINd/REPIACE (CLIIFE) ..ttt ettt sttt et estestensesesseeseeseeneeseeneansesens 15
TEXE AN FIL@.c.nuiiiiiieiee ettt ettt e et e et e et e eestee et e e sabeeeaseessseessseesssaeasseessseessseessseennses 15
REPIACE WHLH ..ttt ettt st e et e ettt et e et e eneeeneeenean 15
S 0] T USRS 15

Find and REPLACEooueiiieiieee ettt sttt et et ettt e eneeeneeenean 15
RePlace and FINdcooiiiiiiiee ettt ettt ettt s nneas 15

Fortran User Guide

REPIACE Al ..ottt ettt ettt s e teeae et e e abeeteesae e be et e esbeesbeeabeeta e teenteenreennas 16
IMALCR CASC.....eeenteent ettt ettt e a e e b e e b e b e et e st s ht e bt et e bt et e bt e be et enneas 16

FANA PLOVIOUS ...ttt ettt ettt e a e bt s bt e bt et et e eaeenbeenbeenteenneas 16
WROLE WOTAS ...ttt et b et s et e e b e st e ebeeaeese et ens e seebeabesaeeneenean 16
Find/Replace Aain (CLrIHG) ...oouiiuiiiieieieeie ettt ettt ettt ae bttt et e e besaeeaeenean 16
GO 0 LINE (CHIIFL) eviiiiiieieeie ettt ettt ettt ettt e e b e e sae e teesraesaeesbeeseeeasesaaessesssessseseennas 16
UNAO (CHIFZ) ettt et ettt e b e e taeetaests e beesseesbeesaesseesseenbeenbeesseessessaesseenns 16
e (O (@153 o) TSSOSO 16
CUE (CITHX) ettt ettt a e et e st ekt e bt et e es e en e et e ebeebeebeeaeeseensense s eteesesaeeneenean 16
(070] o) (@4 03 TSSO USSP UTRUR 16

o T S (5§ V) TSP 17
DIBIELE ...ttt ettt h e bt h e bt ettt ea et bt e b e et ea e eateebaeebee bt enbeenes 17
SEIECT AL ...ttt ettt h et e bt e st ea e e bt e bt e bt e n e a b e b e e bt et etesateeaee e 17
(070) 001331 LA (@153)) TSRO RUR 17
Uncomment (CHrI+HSRIftD).....oiiuiiiiiiicii ettt sttt ebeebeeeb e teesaeennas 17
Indent (Tab OF CHIIHT) c.veoviiiiciecie ettt ettt et e e e e tseeteesre e veesbeeabeessessaessseseennes 17
Unindent (Shift+Tab or CtrI+Shiftrl)cccvieiieiiieciiceceeeee e 17
TO UPPErcase (CHIHU) .o.uiiiiiiiciiciiceeeeteeeee ettt et sttt r e et e e e e taeste e beesbeesbessaessaesseennas 17
To Lowercase (CHrI+ShifttU)....c.oooiiiiiciicieieeeece ettt et e eb e ba e eneas 17
BACK (CHIH) ettt b e et a et e et et e e bt e bt e bt e st e s s et e teebeeaeeneenean 18
Forward (CHIHSRITITT) cooviiiiiiccecceeee ettt ettt re bbbt esaeesteesanesnas 18
BOOKIMATKS ...ttt ekttt a et e et e b ettt e s aeeb e eneen s e se b e abeeeeeneeneense s e nteaneeaea 18
BOOKMATKS IMEIIUL. ...ttt ettt es et e et et e e b e et eseeneen s e s e b e ebesaeeneenean 18
Toggle BooKMArk (ATeouiiiie ettt ettt s aeebeeneas 18
Previous Bookmark (CtrI+ShiftK)c.ooiiiiiiiiiiciicieeeeeeee ettt 18

Next BooKmark (CLrIFK)ooiuiiiiiiiiciicieceete ettt sttt e sae et e beesbeesaessaesaeesnas 19
Clear File BOOKMATKSoouiriiiiiieitieiietieee ettt ettt et ae et e e seeste e beseeebeeneeaeeneenean 19
Clear Al BOOKIMATKScc.eiiiiiieiteeteete ettt sttt ettt sttt s ee bt eseen e nse b e besseebeeeesaeeneenean 19
Code Completion (Ctrl+E) 19
Syntax Highlight (Context menu only) 19
View menu and Pop-up menus 19
LNE NUIMDETS ..ottt ettt sttt b e e bt a et e et e bt s bt eb e e bt e st et e s et e s besbeebeeneas 20
F77 COAING FOIMN..c..tiiiiiiiieiieiieie ettt sttt ettt e et e e e esb e esbesaaesseesseesseesseesseessessaessaessaesseensennsas 20
DUAL SCIEEN DISPIAYvveviiiiiiieii ettt ettt ettt e e e et esseesaeesae e seesbeesseessessaeseesseessesssesseesseenses 20
E1MENES DISPLAY ..eeuviiniieiiieieiie ettt ettt ettt e b e et eetaestaesbeebeesseessesssesseesseesseenseesseessesssesseenseenses 21
BOOKIMATKS ...ttt ettt st b et ea et et e bbbt b e st et et et b b eaeas 22
FILES ettt b ettt bbbt h e h et b bbbt a e st et et b ehe bt eaean 22
BUILA ettt bbbttt b e a e bt h e s et et b saeeaeenean 22
FINA TN FILES 1ttt ettt s b e ettt et et bbb eaean 22
FILE TIOOL BAT ...ttt st b st eb ettt s et b e bt st et et et saeeneenean 22
BUILA TOOI BT ...ttt ettt ettt b e bt bttt et et et et bt ebeeneas 23
PrOJECt TOOI BTciiiiieiieieeie ettt e s te e s beebeesseesbeeseeesaessaenseesseessessaesseenseenns 23
Project menu 23
INEW PIOJECT -ttt ettt ettt ettt e et et e e bt et e e bt e st ea s e e et e beebeebeeaeeseeneensesenseabesaeeneenean 23
OPCI PLOJECT .ttt ettt ettt bt et s et et e bt s bt e bt e aeea e e et e beeaeebeeneens et ensesseeneeneenean 23
RECENE PIOJECLS ...ttt ettt ettt ettt et ettt e bt e st e st e e e besbeebeeseeseeneeneensesenseabesaeas 23
CHAPTER 4 DEVELOPER TOOLS INTERFACE...>5
Working with Projects 25

Table of Contents 1il

Docked Displays 26
Adding Files to the Project 26
Files Dock 28
INEW FIle 10 PTOJECT .. ecuiiiiiieiiiciieciieeee ettt ettt et s sae e beesbeesaeessessaeseesseessenssessnensens 28
A FILE(S) e vveteetieieeie ettt ettt e e te s te st e st e bt et e e st e e st eessesseesbaesseessessaesseesseenseesseesseeseenseensenssenssenseensens 28
A DITECLOTY ...veevvieiiieeieetieettete et ettt et et e e e bt et e esteettesseesseesseessesssessaesseesseesseasseassasssenseensenssenssesssasens 28
CRECK SYNTAX....etiitiiciieiietieteetest ettt ettt ettt e et e e st e e te e be e seesbesssesssesseeseenseesseessasssenseessenssenssesssensens 28
St OPLIONS fOT....uiiuvieeiieiieiieieete ettt ettt e et e et e bt et e e b e esbessaesbe e beesseessesseesseesseesseessesssasseessaesseensenssenses 29
USE DETAUIL OPLIONS ...vviviieeieitieiiett ettt ettt e eae st e ste e bt esbeessesesesseesseessaessasssesseesseesseensesssesssensennsenns 29
REMOVE Fle 1N PrOJECiiivieiieiiciicie ettt ettt b e e ae e e s e e ese e baesseessesssessnenseas 29
SROW FUIL PARS ...ttt sttt ettt b e st ebe et e eenees 29
ShOW Relative Pathisc.coiiiiiiiiieit ettt sttt 29
Build Configurations 30
Adding a New Build Configurationcocuerieiiiiiinieieie ettt ettt een 30
Creating A New Build Configuration Template............ccoceeieiiiieiiniiiieeieeeee et 31
Setting Compiler Options 31
I o0 0015 o) RS SUS 33
TATZEE TYPC ettt ettt ettt ettt b et e bt e bt st e e et et e et e s bt e et e st e e et e sabeenats 33
Multiple build and options example 33
Building 34
Execute/Debug 35
Find In Files 35
SMP Analyzer 35

CHAPTER 5 USING THE COMPILERS...... 37

Compiling Programs 37
File Name Conventions 37
Compiler Process Control 38
Generate Assembly Language (=S)....cc.eeoeoiiiieiiei et 38
Generate Relocatable ODJECT (=€) ..oveeuiriiiieiieriieie ettt ettt ettt ettt et e sttt e e eseesseennees 38
Passing Options T The LIiNKeT........cocoiiiiiiiiiiieieee ettt 39
Executable File Name (-0 NAIME).......ccuoociieciiieeeiie ettt ettt et e s ve e veesevaessseesssaesenes 39
Library Specification (=1)ooee ittt ettt eneas 39
Library Path Specification (<L)ceeoieiieieeieieeee et 39
Undefine A SYMDBOL (-11) ...eoeieii ettt ettt ettt et esne e e enee 39
LINKET OPHONS (mX) 1eenttetientieteeie et ee st e sttt et e et e et e bt e bt e bt enteeseesseesseesseeaseemseeneeeneenseeseenseeneesseensean 39
Preprocessor Options (-CPP and —N10-CPP) «-veeveemeeeeeemierrientieniieieeteeeeseeseeestee et eeeeeeeneesseesseesseenseesensees 39
Generate Debugging INformation (=€)cceereeriiiiieierieeiee ettt 40
Position Independent Code (-fPic, ~TPIC).....cceiiiiiiiiiee e 40
77 COMPALIDIIIEY (77) c-veeneeeneeeiie ettt ettt et ettt et e sttt e st e e et e te s aeesseesaeeneeeneeeneeeseesseeneeeneesneenneas 40
FPU Control Options 40
FPU Rounding Mode (FOPT:rOUNAOFF=H)oc.oiiiieieeeeeeeteeee ettt 40

Fortran User Guide

Enable EXcCeption Traceback (F€1).......c.ecvviiiiiiiiiieiiiiiiieieesie et ettt sre e esveeese st e sreesveeseesneereesseesnas 40

FPU ExXception Handlingcooiiiiiieee ettt ettt e ene s 41
Processor Specific Options 41
CPU Specific Optimizations (-march=¢ype) 41
64-bit AMD and Intel Processor Specific Options 42

Code Generation Model (-mcmodel={small | Medium})..........c.cccoeviririiriiiiriiiieeereeeieeere e 42

Generate 32-Dit COAE (-MB2) ...oouiiiiiieiieieeeietee ettt ettt ettt ettt seesb e b e b e e beeteessessessessessesbeeneas 42

Generate 64-Dit COAE (-MBA)c.ooviiiirieiieiieteeeet ettt ettt ettt ettt sb e b b e sveeteeasessessessessesaeeneas 42
Absoft Fortran 90/95 Options 42

COMPILET CONMIOL...ooutiiiiiiieiicie ettt ettt ettt et e e b e e tbeetaesteesaeebeesseesseeseesseesseenseesbeessesssessseseenns 42

SROW PIOGTESS (2V)evevenietieteietteteteteetest et etetesestestesestestesessesseseesesseseesessesessensesessensesessenseseesensesessanens 42
Output Version number (=V, ==VEISION)covivviiiiieieeieeeeeieeeeete ettt ettt eve s 42
SUPPIESS WATHNGZS (-W)...veeveneerirtiierietesieteetesteseetetesestesesessessesessessesessessesessessesessensesessessesessessesessensns 43
Warn of non-standard USAZE (=EN)c.eirueieirieieiiieieeteteteee et sbe et ss e se s e s aens 43
Warning LIEVEL (<INouiveeieiiieiietieieietee ettt b e be e eb e seebe s eseeseseneesesens 43
Suppress Warning number(s) (-MI1)oooveiiiiieieeieeeeee et 43
SEOP OIN EITOT (F8)vieveeeeeeteeteete ettt ettt ettt te ettt ettt et et e eteeteetseaeess et et e eaeeteeasessessensensenseereaseens 43
Allow greater than 100 errorS (-0Q) . ..ccveirverieirieieeieieieietet ettt se e senaens 43
Default RECUTSION (FER)viiiiieeieeeeeeeeee ettt ettt et eae e aeanas 44
Append Underscore To Names (-B108)........coooovioiiiiiiiiieeeeeeeeeeeeeee e 44
Generate Debugging Information (=€)ceevereeriiniiiiiie ettt 44
Generate Profiler Information (=P)ccoooiiiiiiiiie s 44
OPLIMIZATIONS ...ee.te ettt eiieetieeete ettt ertteesteeestteesteeeseteeteeessseessaeesseenseeessaenseeensseensseenssesnseesnseesssessnseeeseesns 44
Basic Optimizations (=O71)ccviiiiiioiieieeeeeee ettt et ettt et enas 45
Normal Optimizations (<O2)........c..cviiiiierietiee ettt ettt ettt ettt te et ete et eeaeereenas 45
Advanced Optimizations (~O3)cooiiiiiiiiiece ettt 45
Advanced Optimizations (FOTAST)c.eccviiiiiieiicie ettt sre et b e reeebeesbeenneas 45
Automatic ParalleliZation (FAD0)c.ecveiierieeriieieiee ettt ettt e e e e steebeeaeereesreesseesseensesasesseeseennens 45
DyNAMIC AP (mO5) .ottt ettt b ettt he et et 45
Loop unrolling (-U and -hnn and -HNN) ... 46
SSE2 instructions (-msse2 and —IMMNO=-SSE2)eecveerureereerirreerieesireeeireesseessseesseesssesssseesssessssessssenns 46
SSE3 iNStrUCHIONS (-IMSSE3) ..eeeuvreririeeiieiiieeiteeeieesiteesteeesteesseesseessseessseessseesssesssseesseesssessssesssseesssenns 46
SSE4a inStructions (-MSSE4@)c.eccuieiiieiieieeiieceerte et et ettt et ebeebeevestsestsesteeseesbeesaeeseesseeseenns 47
SSSE4.1 inStructions (-MSSE4T)oouiieiieieeeieee ettt ettt ettt ettt eteete et eeae et 47
Math Optimization Level (-speed_math=m)..........c.ccccooiiiiiiiiiceceeeeee e 47
Enable OpenMP Directives (FOPENMIP)eevierierierieiteesieesieeteeteeeeereesseesseeseessesssesssesssesseesseessessnas 47
OpenMP optimization Level (-Speed_OPeNnMP=1)ccccccveviiiiiiiieieeeeereereere e 47
Safe Floating-Point (=SafefD).......ccueiiiieiriee ettt 47
Report Parallelization Results (-LNO:VErbOSE=0N).........c.coevvioiiiiieieieieeceeee e 48
Report Vectorization Results (--LNO:simd_verbose=on)ccccoovevvevieioiiiciciceceeeee 48
(010355102217 10) 1 11 20O OO PO UT ORISR 48
SOULCE FOTIMNALSeeiieiieiieie ettt sttt e ne e ettt ee e sbe e b e et e e beesteeaaesaeesaeeae 48
Fre€-FOrm (-F fr@E).....cueieieieee ettt 48
Fixed-FOrm (- fIXEA)coviiiieiee ettt ettt 48
Alternate Fixed form (-f @lt_fiXed)c.ooiiiiiiiiieeeee e 48
Fixed 1Ine 1ength (=W 111 .c.oouiieiiiieeeeeeee ettt sttt ese st 49
Escape Sequences in Strings (-YCSLASHZT) ..o 49
No Dot for Percent (-YNDFP=T) ..ottt 49
MS Fortran 77 Directives (<YMSTD)cuooviiieieieeeeeeeeeeeee et 49
Integer Sizes (-2 ANd =I8)cvioieiieiieieieee bbb 49
Demote Double Precision to Real (=AP)......cviiiviioiiiieiiceeeeeeeee ettt 50
Promote REAL to REAL(KIND=8) (-NT113) ..ottt 50

ONE TP DO LOOPS (€]) vuviveeeeeeeeeeeteeteete ettt ettt ettt ettt ete et ettt e eaeeaeeteeaeessenseseeaeeaeeeas 50

Table of Contents v

SEALIC SEOTAZE (=5).vvvrverrererteierirtesieteeteteseeteteseetetestesesesestesseseesessesessessesessensesessassesessensesessansesensensesens 50
Structure alignment (-StrCt_aligN).......cccoirieiiiieieiceeeeeeee e 50
Disable compiler directive (-XAIMECTIVE)cooveeeeeieeiceieeeeeeeeeeee e 50
Max Internal Handle (=TrM)c.oovoiiiiioiceeeeeeeeeeeeeee ettt ettt eenas 51
Temporary String SiZ€ (=1111)ccoirieiiiieieee ettt 51
Module File Path(s) (-PP@LA)oovveiiiieeeee ettt ettt ae s 51
Disable Default Module File Path (-nodefaultmod)ccooveiiiiiiieiceeee e 51
Module File Output Path (-YMOD_OUT _DIR=pAtR)........ccoeovererierieieeeeeeeeeeeeee e 51
Check Array Boundaries (<RD)ccooiiiiiiiieicieee e 52
Check Array Conformance (-RC)ccivveieirieieiiieieiseee ettt 52
Check SUDSINGS (mRS) .uveuiiiiieiieiiieieee ettt ettt b e be s ene 52
ChecK POINLETS (FRP) ..oouviriii ettt ettt ettt ettt et ettt te e e e s e easeteeesereensansennas 52
Character Argument Parameters (-YCFRL={0]1}) c.oovoiiieieiieeieeeeeee e 52
External Symbol Character Case (-YEXT_NAMES={ASIS | UCS | LCS})...cceccecereririrerrrrrenn. 52
External Symbol Prefix (-YEXT_PFX=SING) ...c.oooiiiiieee e 52
External Symbol Suffix (-YEXT_SFXSSIING)cooeiieieieieeieieeeeeie et 53
COMMON Block Name Character Case (-YCOM_NAMES={ASIS | UCS | LCS}).....cccveeveu..... 53
COMMON Block Name Prefix (<YCOM_PFEX=SIHNG)cvovveeeeieeeeeeeeeeeeeeeeee e 53
COMMON Block Name Suffix (-<YCOM_SFX=SHING)coooveieeeeieeieeeeeeeeeeeeee e 53
Module files only (<YMOD _ONLY)ooiiiiiiieiirieieisieeee ettt 53
Variable Names Case Sensitivity (-YVAR _NAMES={ASIS | UCS | LCS}) sceeotsoeririeieieeieene. 53
Variable Names Case Sensitivity (-YALL NAMES={ASIS | UCS | LCS})..ccccceeemreriririeeieenes 53
Ignore CDECS directives (-YNO_CDEQC).......ccccoiiiiiiiieieiieietsteeeeee e 54
Pointers Equivalent to Integers (-YPEIZ{O]1}) ...cooiieiieieieeeeeeee e 54
Literal constants in DATA statements (-<YDATA _REAL _CONV)cccoooviiiioieieieeeeeen 54
Don’t Mangle COMMON Block Name (-NT110)c.cciiiriiiiiieirieeeeieecseeee e 54
Absoft Fortran 90/95 Compiler DIT€CHIVESccuiiivieiieiieiiecreeieere ettt eae e e saeebeeseeasesreesveeseees 54
NADME DITECHIVE. ...ttt ettt ettt ettt st et e ettt st e eatesb e e bt enbeenbeesaeseeesbeenbeenaeeneesaee 55
FREE[FORMY] DIFECLIVE.....cectiieiieiieeeiiiecteesiteestteestteesiteesteeeeeeeteessaeenseesnseessseesssessssessnsessssessssesnnses 55
FIXED DITECHIVE. ..c.uteitieitietieteeie ettt ettt ettt et bt e bt e sb et et e s et e sbeesbe e beenteenteebeesbeenbean 56
NOFREEFROM DIFECHIVE....couttiuiieiiieiieitiestieieete ettt sttt ettt et sttt ettt et et sbee b e beenae e e saeesee 56
FIXEDFORMLINESIZE DITE€CHIVEccutieitieeiieeiieeiieeteeeitesteestteeseveeseeeesseessaeeseneenseesnseesssessnsessnses 56
ATTRIBUTES DITECLIVEeeeutiieiiieiieeetieettesitesteesiteesteestteeseseesteeessseeseeensaessseesnseeenseesnseesssessnsesnnses 56
STACK DIFECHIVE ...ttt ettt ettt et sb ettt st saee st e e et et eateeb e e be et e eatesetesbeesbeentesneesaee 57
UNROLL DIFECHIVE ..ttt ettt ettt sttt ettt eat e sb e b et et esaeseeesbeenbeenaesaeesee 57
NOUNROLL DIFECHIVEceuvientieniieitieiieeiteet ettt ettt st sete st ettt et sbtestee bt e beentesseesbeesbeenaeenaesneeseee 57
Absoft Fortran 77 Options 57
(070353103115 o) 112 () F USSR 57
SHOW PIOZIESS (2V).erviuvevierinieeiiteiereeteteeeetesteseeteteseesesseseesesesaesessesessessessesesseseesassesessassessesansesessansasens 58
SUPPIESS WATHINGS (FW) c.vivveviitinieriitiieeeeteteseeteteseeseteseesesseseesessesessessessasessesessessesessessesessessesessessesens 58
Warn of non-ANST USAZE (-N32)c.oiiiiiieiieieieeeee ettt sb e 58
Check SyNtax ONlY (-AB)c.ooveieiiieieiiiieieieieteeste ettt ettt be bbb seebesbe e be s eseesessenens 58
Append Underscore To Names (-NT5)ocvoiiiiiiiiiiiiceeeee ettt 58
Append Underscore To Names (-B108)coveiiriiiiiiieieeeee s 58
Character Argument Parameters (-N90)..........oooieiiiiiiiiiiieieeeee e 59
Check array boundaries (=C)ciiiiiiirieieirieieisieieeset ettt s et sb et sseseebe s ne 59
Generate Debugging INformation (=€)oeeoveeierierieiee ettt 59
Generate Profiler Information (=P)coiiiiiiiiiiecceec e 59
Conditional COMPILALION (=X) ...veveririeierirreieriiteietietet et stet et s e ebe s e e ebesseseesesseseesesseseeseseseesesseseans 59
Max Internal Handle (-TNN)ocooiriiiiiieieiieieseeesiee ettt ss et s e ebe s ens 60
Define Compiler Directive (-Dname[=value])............ccooevueiierieiiiiieiiiieeeeeee e 60
Set INCIUAE Paths (=1) .ocuvieiieieceeceeee ettt ettt et e e 60
(5] 501010221 5 o) 1 1TSS 60
Basic Optimizations (O71)......cveieirieieirieieieteietest ettt b et bbbt s neebe b s ne 61
Advanced Optimizations (=0O2)cevieirierieiiieieiiieeee sttt sttt sb et sb et e et sb e ete s ens 61
Advanced Optimizations (=O3)ocuerieiiiirieiiieiee ettt sttt sa e 61

Fortran User Guide

Advanced Optimizations (~-OfaSt)coooiiviiiiiicecc e 61

Loop unrolling (-U and -hnn and -HNN) ... 61
(070355102217 10) 1 11 20O OO USRS 62
FOIding t0 LOWET CASE (<F) .euveuietiieeietiieietitee ettt bbb s ne s s 62
Folding to upper case (-NT109)c.oiiiiiiieieiieeeeee ettt 62
SEALIC SEOTAZE (55) .euveververeerertesiereeteteteetesteseeteteseetesteseeteteseeseseseesessesessessesessensesessensesessensesessensesessanens 63
One-trip DO L00PS (=) vinvieiiiieieeece ettt ettt ettt ettt ettt e eveeteeae st et aeeaeereenis 63
Integer Sizes (-2 ANd =I8)c.ivieieiiieieieee bbb 63
Set Big-Endian (-N26).........cceoiiirieieiiieieieeetete ettt ettt ettt bt bennens 63
Set Little-Endian (-N27)cooouioiiieieeeeeeeeeeeeeeeee ettt ettt ettt ettt et ettt ere s 63
Set COMMON block Name (-N22)ooviiiioiiieieieeeeeeeeeeeeeee ettt eae s 63
Promote REAL and COMPLEX (-NT13)ooiiiiiiiiice ettt 64
Escape sequences in Strings (-K).......o.eoveiriiieiiieieiceeeeee e 64
Align COMMON variables (-N34)coouiieiieieiieeee ettt 64
Temporary String SiZ€ (=1111)c.cvvuiiieiiieieeee et 64
SOULCE FOTINALSeeiiiiieiieee ettt ettt sttt ettt et e bt esb e b e et e et e esbeeaaesaeesaeeae 64
Fortran 90/95 Free-FOrm (=8).....c..oviiiiiiieeiceeeeeee ettt 64
WIAE FOIMAL (-WW) ..ottt ettt ettt ettt ete ettt eeaeereenas 65

CHAPTER 6 PORTING CODE ... 67

Porting Code from VAX 67
Compile Time Options and ISSUEScc.eeruieiieiiieieeieet ettt ettt et e e teenaeeneesseenseenees 68
Porting Code from IBM VS FORTRAN 69
Compile-time Options and ISSUESccuevciirierieiieiieie ettt ettt et eseesaesraesseenseennes 70
Porting Code From Microsoft FORTRAN (PC version) 70
Compile-time Options and ISSUESccuiviiiierieitietieieet ettt ete e eesee st e sseesseesseesseesaessaessaesseensas 70
Porting Code from Sun Workstations 71
Porting Code From Macintosh Systems 72
Other Absoft Macintosh COMPILETS.........eeouieiieiieieei ettt e sne e 72
Distribution Issues 72
Other Porting Issues 73
MEMOTY MANAZEIMENTeeetiieiieetieetieeieeeieeeteesbeeeteesbeessteesbeessseessseessseessseesnseessseessseesnsessssesnsseensseens 73
DYNAMIC STOTAZE. ... veivveivieriietietieteeteesteesteetestestesteesseesseesteessesseesseesseassesssesseessesssesssesssesseesseesensens 73
STATIC STOTAZE ...vvevveieetieie et ete et e st et et e et e eteestee bt esbeessesssesseesseesseenseesseassesssesssessaesseessesssesseesseenseenss 73
INAMING CONVENTIONSevviiveieieriierieesteeteeteeseesseesseesseesseessesssesssesseesseesseessesssesssesssessesssesssesssesssssssesseesses 74
ProCeAUIE INAIMESc.eeiiiiitiiieiceiet ettt b ettt b et beeb e st et e et et ebesbeebeeaean 74
COMMON BIOCK NAIMES......cuteuieiiriiniiitieiieieiesteste sttt ettt ettt et b st ebe et es et e stenbesbesbesbeebeeneeneas 74

File and Path NAMEScouoiiiiiiiiieeee ettt ettt ettt ettt sbe b enean 75
TaD CRATACIET S1ZE....c..eeuieiieiieieitieteee ettt ettt st b et es et et e bt sb e bt bt e st e e et e s besbeebeenean 75
RUNEIME ENVITONIMENL.....couiiiiiiiitiitiiieeieteee ettt ettt st b ettt et e b sae b enean 75
Floating Point Math COntrol...........ccoccuieiieierieiieiecie ettt st e sae e esbeesaeesaeste e seeseessessaessaessaennas 77
ROUNAING DITECHION.cuiiitieiieiieiieeiesieeie et e st et e st ebeette e e e steebeessesssessaesseesseessesssesssesssenseessenssens 77
EXCeption HANAIINGccooviiiiiiieiecieseeeee ettt ettt ettt e e s te e beesaeesaeseeesseenseensaensens 78
Fsplit - Source Code Splitting Utility 78

CHAPTER 7 ABSOFT WINDOW ENVIRONMENT .s1

Table of Contents

Vil

AWE Preferences 82
Opening Additional Text Windows 83
AWE Menus 83
Alert Boxes 84
LANGUAGES ...t ssessssssssessssssssssssssasessssssens 85
Interfacing with C 85
Fortran Data TYPES 1 C ...oouiiiieiieieeie ettt ettt et st ae e be e ee et e eae e et e bt enteeneeeseeeneenneas 86
Required Compiler OPtioNS.veiieiierieee et ettt sttt ettt e et essee st ete e et eneeeseesseenbeeseesseenneas 86
RUIES 01 LINKINE. ...ttt sttt ettt et et esae e bt et e eneeeseeeseenneas 87
Passing Parameters Between C and FOrtrancoocooiiiiiiiiiieiiee et 87
RETEIENCE PATAIMELEIS. ... ieutieiieeiieeeieet ettt ettt ettt ettt e et e bt et e et e et e saeesaee et eneeeneeeneeeneesseennean 87
VAlUC PATAIMNELETS ...cuveieeieieeiieiiete ettt ettt et et et e et e s et et e e bt enee e st e ese e st e seenteenseeseesseesneeseeneeeneeenes 89

W N a2) 10011 1<) TSSO 90
FUNCHON RESUILS ..ottt sttt b s st s n e 90
PasSINg SIINES 10 C..neereiiiieieeie ettt ettt ettt e et ese e sa e e s et e et et e eae e e st et e e teenteeneeeneennean 91
Calling Fortran math TOULINEScceiiiiriieieeieetiete ettt ettt st e st e e aeeee et e eaeeste e teeneeeneesseenneas 92
NAMING CONVENMEIONS -....tetteiieteeie ettt etee et et et e et eeteeseeeteesseesseanseeaeeeseeeseesseaseanseenseeneesseesseenseenseeneeenes 92
ProCeduIe NAIMESc..oouiriiriiriieiieeetetet ettt ettt sttt ettt et e besh e bttt e e et e besaeebesaeeaneneennen 93
Accessing COMMON blocks fTOm €o..ooiiiiiiiiiieieee et 93
Declaring C Structures in Absoft Pro FOItrancoocooiioiiiiieiiieeee e 93
Interfacing with Assembly Language 94
The Fortran Stack FIameccoooiiiiiiiiiiiieicc ettt ettt 94
FUNCHON RESUILS ...ttt sttt ettt st b e sae et ennenaens 95
Debugging 95
COMPILET OPLIOIS ..eevvieurieeiieiieeiiesieesteeteetestesteesteesseesseesaeaseesseesseessesssesssesseesseesseassesssesseessesssenssenssesseessens 95
Profiling 95
COMPILET OPLIONS ..euviierieerieeieeiieiteesieeteette et e et e bt ebeesbeetseesease e beesseessesssesssesseesseesseessassseseesseessesssesssesens 95

APPENDIX A ABSOFT COMPILER OPTION GUIDE

Absoft Fortran Compiler Options

97

FPU Control Options

98

98

Processor SPecific Options
AMD and Intel 64-bit Processor SPecific Options

Fortran 90/95 Control Options

98

98

Fortran Optimization Options

929

Fortran User Guide

Fortran 90/95 Source Format Options 100

Fortran 90/95 Compatibility Options 100
FORTRAN 77 Control Options 101
FORTRAN 77 Source Format Options 102
FORTRAN 77 Compatibility Options 102
APPENDIX B ASCHTABLE........ . 103
APPENDIX C BIBLIOGRAPHY ..., 107
Fortran 90/95 107
FORTRAN 77 107
APPENDIX D SPEED_MATH OPTION......... 109

APPENDIX E TECHNICAL SUPPORT ... 111

CHAPTER 1

Introduction

INTRODUCTION TO ABSOFT PRO FORTRAN

Absoft specializes in the development of Fortran compilers and related tools. Full
implementations of Fortran 77 and Fortran 90/95 are available for Macintosh, Windows,
and Linux platforms. Absoft will continue to focus on Fortran in the future, but the
popularity of C/C++ in the Unix environment has required many of today's Fortran
programmers who are moving code to their desktop, to link Fortran code with C libraries.
Absoft compilers support most popular inter-language calling conventions implemented
on Linux systems, providing compatibility with existing libraries and object files,
simplifying porting efforts.

This User Guide explains the operation of Absoft Fortran 90/95, and Absoft FORTRAN
77 on the Linux operating system for the x86 and x64 families of processors. In the event
you have licensed only one of these compilers, please refer only to the appropriate
section(s) and disregard the others. All compilers operate in a similar manner, share a
common tool set, and are link compatible. A brief summary of each compiler appears
below.

Absoft Fortran 90/95

A complete, optimizing ANSI Fortran 90/95 implementation with extensions. Absoft
Fortran 90/95 is the result of a five-year joint development effort with Cray Research. It
utilizes a version of the CF90 front-end and is source compatible with several Cray F90
releases. It provides full support for interfacing with FORTRAN 77 and C Programming
Language libraries.

Absoft FORTRAN 77

Refined over 16 years, with emphasis on porting legacy code from workstations. Absoft
Fortran 77 is full ANSI 77 incorporating MIL-STD-1753, Cray-style POINTERSs, plus
most extensions from VAX FORTRAN as well as many from IBM, Sun, HP, and Cray.
Absoft Fortran 77 supports legacy extensions that are not part of the Fortran 90/95
standard. See the chapter on Porting Code in this manual for further information. Fortran
77 is fully link compatible with Fortran 90/95 and C/C++ so existing, extended
FORTRAN 77 routines can be easily compiled and linked with new Fortran 90/95 or
C/C++ code.

2 Introduction

CONVENTIONS USED IN THIS MANUAL

There are a few typographic and syntactic conventions used throughout this manual for
clarity.

* [] square brackets indicate that a syntactic item is optional.

... indicates a repetition of a syntactic element.

» Term definitions are underlined.

» -option font indicates a compiler option.

» [talics are used for emphasis and book titles.

* Unless otherwise indicated, all numbers are in decimal form.

« FORTRAN examples appear in the following form:

PROGRAM SAMPLE
WRITE (9,*) "Hello World!"
END

ROAD MAPS

Although this manual contains all the information needed to build programs with Absoft
Pro Fortran on Linux, there are a number of other manuals that describe Fortran 90/95
and FORTRAN 77 in further detail. The road map in this chapter will guide you to these
manuals for introductory or advanced reference. The bibliography in appendices lists
further information about each manual.

Fortran Road Maps

The Absoft implementation of FORTRAN 77 and Fortran 90/95 is detailed in the online
manual, Absoft Fortran Language Reference, in the doc directory of the Pro Fortran
installation. A discussion of floating point precision is at the end of the chapter Porting
Code. Figures 1-1 shows additional manuals that can be used for referencing the
FORTRAN language and internal math operations.

Introduction 3

Absoft Pro Fortran User Guide

v N,

ANSI FORTRAN 77 Standard Absoft Fortran
ANSI X3.9-1978 Language Reference
ANSI Fortran 90 Standard Absoft Supoort
ANSI X3.198-1992 Library Guide
ANSI C Standard IEEE Floating Point Standard
ANSI X3.159-1989 P754
Annotated C++ Reference Manual
Ellis and Stroustrup

FORTRAN language road map
Figure 1-1

YEAR 2000 PROBLEM

All versions of Absoft Fortran products for Macintosh, Window, Linux, and UNIX will
operate correctly across the date transition to the year 2000. Neither the compilers nor the
runtime libraries have ever used 2-digit years in their internal operation. This means the
version of Absoft Pro Fortran that you already have will continue to operate correctly. No
patches or version updates are required.

The only caveat may be for those porting code from VAX/VMS systems. Since the early
1980s, Absoft Pro Fortran products have included software libraries designed to facilitate
porting code from the VAX/VMS environment. Included in these VAX compatibility
libraries are two subroutines that emulate the VAX/VMS DATE and IDATE subroutines.
These subroutines return the year using a two-digit format. If you use DATE or IDATE
in a program that stores or compares dates, you may need to recode portions of your
application. Below are listed some of the alternatives supplied with Pro Fortran:

Fortran User Guide

4 Introduction

Fortran 90/95 DATE_AND_TIME Subroutine

This subroutine is part of the Fortran 90/95 language and returns integer data from the
date and real time clock. Refer to the Fortran 95 Concise Reference for further
information.

Unix Compatibility Library

There are a number of subroutines in the Unix Compatibility Library that return the date
and time in both INTEGER and CHARACTER format. Refer to the manual Absoft Support
Libraries for information on their format and use.

CHAPTER 2

Getting Started

The tutorial in this chapter introduces the two main functions of the Absoft Pro Fortran
Software Development package for Linux: compiling source code and running compiled
applications. If you are familiar with the basics of compiling and running programs,
please see the table below as a guide to topics you may find useful.

TO DO THIS... TURN TO THIS SECTION...

Use the editor Using the Absoft Editor, Chapter 3

Use the tools interface Developer Tools Interface, Chapter 4

Use the compiler and options Using the Compilers, Chapter 5

Port from other platforms Porting Code, Chapter 6

Create applications Interfacing With Other Languages, Chapter 7
Debug programs FX Debugger Manual

Road map for experienced users

COMPILING BASICS

The Absoft compilers can be run either from a command line or from the Absoft
Developer Tools Interface. This chapter describes how to use the Developer Tools
Interface — the command line interface is described in the Chapter 5, Using the
Compilers.

The Developer Tools Interface, AbsoftTools, is started by entering atools from the
command prompt in a terminal window. The environment variable SABSOFT must be set
to point to the directory where the compiler was installed and the environment variable
$PATH must be set to include the compiler’s bin directory. If they are not set, the
command atools will not be found. They can be set sourcing the Absoft supplied setup
script:

/opt/absoftll.5/bin/atools/absvars.sh

NOTE: there is space between the period and the path to the script.

6 Getting Started

During the installation process, several example programs were placed in the
/opt/abosftll.5/examples directory. The example program used in this tutorial is
Fibonacci.f95. Follow the tutorial on the following pages to learn how to use the
graphical interface to quickly compile small to medium size programs.

First, start up the interface to the compiler:

What to do How to do it
Invoke the Absoft Developer Enter atools from a terminal
Tools Interface. prompt.

The Absoft Developer Tools Interface is project oriented, so the first thing you must do is
to establish a name and location for your project.

What to do How to do it

Set the project name and Select New Project from the

location. Project menu or type
Ctrl+Shift N.

(General ________|

Libraries Project Options

Target

FORTRAN . :

C/C++ Project Name project

Linker

a‘:{‘;“rces Target Filename |project

Run
Project Directory |/home/cag E]
Scripts

Prebuild Script

Postbuild Script

4

Ignore Debug and Optimize Options [@ Cancel l l @gK]

Getting Started 7

On the General options page, change the Project Name to “Fibonacci” and the Target
Filename to “Fibonacci”. You may also want to change the Project Directory from the
default to a Fortran specific directory.

You will now want to set the target type to AWE Application. AWE is the Absoft Window
Environment. It provides an automatic windowed interface for your program with menus,
a scrollable text window for program output, and the ability to print.

What to do How to do it

Set the project Target Type to Click on Target in the left
AWE Application (a Windows panel to select the target
program). options and then choose AWE

Application from the Target
Type drop menu in the upper

left corner.
General Target
Libraries
Target Options Optimize/Debug
FORTRAN
C/C++ Target Type Debug: Standard %
Linker [AWE Application S o "
Resources Optimize: Normal =
Make ¥ 64-bit Code
Run Large Memory (> 32 bits) peed Ma
Position Independent Multi-Core / SMP
Enable Profiling lelizati
) Auto-Pa t
Exception Traceback uto-rarafielization
Enable OpenMP 3.0
SSE Tuning
| Auto-detect Host Architecture
S5E2 S5E4.1
SSE3 S5Eda
AVX
Ignore Debug and Optimize Options l @) Cancel @gr{ l

Fortran User Guide

8 Getting Started

These are the only options you will want to set for this application, so click on the OK
button to dismiss the Default Tools Options dialog.

The next step is to specify the file (or files) that the project consists of:

What to do How to do it
Add the file Fibonacci.f95 to Choose Add File(s)... from the
the project. Project menu. The file section
dialog will open automatically
Look in: [Dmptfabmftllﬁfexamples =] & H

@ Compu... 7] cublas_examples
— N’ —_ H
cag

hmpp_example

smp_auto_parallel

smp_dynamic_apo

ooohm

SMp_openmp

Fibonaccifas

File name: Fibonaccifas

Files of type: [AII Files (*)

i l @ Cancel

If you are not already in the /opt/absoft11.5/examples folder, browse to that directory.
Click on the file named Fibonacci.f95 and click OK to add it to the project. The project
Files pane will now contain your source file and the options that will be used to compile
it. This pane maintains all of the files in your project. Each file type will be kept in a
separate folder. If you wish, you can also manage the files in your project directly from
this window; you delete selected files and drag new files into this window.

Getting Started 9
File Edit View Project Build Help
N A _j v 3 \ﬂ) @ @ rﬁ ﬁ J LEI"'] H Active Build: | Release $ IS
Files = ®
Name * Options
=-F95
MWE_Preferencesfa5 -02 -awe -m64
Fibonaccifgs -02 -awe -mb4
Find In Files [E3]

The last step is to build (compile) your application:

What to do

How to do it

Compile the source file
Fibonacci.f95 into the
application file Fibonacci.

Choose the Build command
from the Build menu.

Fortran User Guide

10 Getting Started

File Edit View Project Build Help

by 74 _1'3 ™) i @ t & _J I.E""] ﬂActiveBuild:m L»

Files ®

Name * Options
=-F95
MWE_Preferencesfa5 -02 -awe -m64
Fibonaccifgs -02 -awe -mb4
Build

[E3]
Build | Errors/Warnings] SMP Analyzer
Begin build
fa5 -c -nowdir -YLOOP_ANALYZER -LNO:simd_verbose=on -LNO:apo_verbose=on -CGfiletable_verbose=on -02 -awe -m64 -o
" /Release/AWE_Preferences.o" "AWE_Preferences f95"
fa5 -c -nowdir -YLOOP_ANALYZER -LNO:simd_verbose=on -LNO:apo_verbose=on -CGfiletable_verbose=on -02 -awe -m64 -o
" JRelease/Fibonacci.o" "././ fopt/absoft11.5/examples/Fibonacci fa5"

fa5 "/Release/AWE_Preferences.o" " /Release/Fibonaccio" -o "/Fibonacci® -IPA:debug=on -IPA:source_pu_order=on -m64 -awe -02
Build completed

Build | Find In Files

The compiler will then create Fibonacci from Fibonacci.f95. More detailed

information concerning the creation of an application can be found in the chapters
Developer Tools Interface and Using the Compilers.

APPLICATION BASICS

The application is now ready to execute.

What to do How to do it

Execute the compiled Choose the Execute

application. command from the Build
menu.

Getting Started 11

File Edit
011235 813213455

Additional examples that may be helpful in writing Fortran 90/95 or FORTRAN 77
programs can be found in the /opt/Absoftll.5/examples directory. Each example
source file starts out with a large comment, referred to as the header. Before compiling an
example, look at the header in the source code. It will list all of the compiler options
necessary to insure that the example will compile and run correctly. In addition, the
header describes the purpose of the example and other useful information.

Fortran User Guide

CHAPTER 3

Using The Editor

This chapter describes how to use the editor in Absoft Tools to create and edit source
files written in FORTRAN. Since word processors embed formatting characters in a
document, using a word processor to create source files is not recommended. You can
create source files in a word processor or another editor and export them in text format,
but the features of the Absoft Editor make this unnecessary. The Absoft Editor
incorporates powerful features for editing FORTRAN 77, FORTRAN 90/95, C, and C++
source files. However, this chapter will concentrate specifically on editing FORTRAN
programs.

The Absoft Editor is a powerful tool for creating and maintaining program source files. It
is source language sensitive and will display keywords and comments in different text
colors, making them easier to distinguish in your source code.

Basic editing functions are available as menu commands and there is usually more than
one way to initiate any command:

e Select the command from the menu or tool bar.

e Type in the key equivalent (such as typing the Control and the letter O for the
Open command).

e Right click on the text edit window to display a context menu

TEXT SELECTION

Text may be selected by dragging the cursor over the text while holding the mouse button
down. Choosing Select All from the Edit menu or Ctrl+A will select the whole document.

FILE MENU File g

The File menu contains commands for creating, opening,
saving, and closing files. There are also commands for
printing and for establishing your preferences for the way
that Absoft Tools operates.

Print...
Print Preview...

& save Ctrl+5
Save As..
New...(Ctrl+N) save Al
This menu contains commands for creating new tabs for Close Ctrlw
entering and editing text. The tab will be untitled (it will Close Al
have the name “Untitled”) with the extension of the type of Recent Files ,

file you choose until the first time you save it.
Check For Updates..

Preferences...
Quit Ctri+Q

14 Using The Editor

Open...(Ctrl+0O)

Use this command to open an existing file. This command displays a standard file
selection dialog box to select the file to be opened. If you select a file that is already
open, the tab that contains that file will be brought to the front of the editor.

Save (Ctrl+S)

Choose this command to save the text in the active tab. If the file does not exist, you will
be asked to provide a name and a path for the file.

Save As...

Use the Save As command to save the text in the active tab to a different file. A standard
file save dialog will appear, allowing you to specify the name of file. The active tab
becomes the newly named file.

Save All

Use this command to save the text in all open tabs.

Close (Ctr1+W)

This command closes the file displayed in the active tab. If any unsaved changes had
been made to the text, you will be asked to save it. This action is also available by right-
clicking on the tab name.

Close All

This command closes all files. If any unsaved changes had been made to any files, you
will be asked to save them.

Close Others

This command is only available by right-clicking on the tab name. The command closes
all files except for the active tab. If any unsaved changes had been made to any files, you
will be asked to save them.

Recent Files

Up to 8 files will appear in this list. Each menu item represents the file that has been most
recently opened or saved. They are listed as a convenience for quickly opening files for
editing. The Clear Recent Files selection in this menu will remove all 8 files from the list
without any warning.

Using The Editor 15

Check For Updates

This menu selection opens a dialog to check for updates to your Absoft product.

Preferences

Opens a dialog to edit the preferences for Absoft Tools.

EDIT MENU AND POP-UP MENUS

Right-clicking the mouse button in a text edit window will display a pop-up menu of
context sensitive commands. These commands are also available under the Edit menu.
The Edit menu is not available if a file is not open for editing.

Find EQ

This command displays the Find sub-menu with Find/Replace... Ctri+F
commands for finding and replacing text within the Find/Replace Again Ctri+G
file. Find/Replace Previous Ctrl+Shift+G
Find in Files...
Find/Replace (Ctrl+F) Gotaline cri+L
. . . Undo Ctrl+Z
Use this command to open the Find dialog for . -
locating or replacing specified text within the front- -
most window. The controls in the Find dialog are e B
used as follows: Copy B
Paste Ctri+Vv
Text in File Select All Ctri+A
. . c t Ctrl+D
Enter the text string you wish to locate here. ammern e
Uncomment Ctrl+Shift+D
Replace With Indent Ctri+l
Unindent Ctri+Shift+
Enter the text string that will replace found text. This e g
text is used with the Replace All and Replace buttons. To Uppercase eiET
To Lowercase Ctrl+Shift+U
Replace o
L |

Replaces selected text with Replace With
Find and Replace

Executes a Find and then a Replace.
Replace and Find

Executes a Replace on selected text and executes a Find

Fortran User Guide

16 Using The Editor

Replace All
Replaces all text in the file.
Match Case

Check this box to find text occurrences in your source file that match your specified text
exactly. Uncheck to search regardless of case.

Find Previous
Check this box to find text searching backwards from the cursor.
Whole Words

Match only whole word matches of the find text. For example, if the find text is soft,
Absoft will not match when this is checked.

Find/Replace Again (Ctrl+G)

This command repeats the last Find/Replace command in the active tab.

Go to Line (Ctrl+L)

This command opens the Goto dialog. Enter the line number of the line you wish to go to
and click on the Ok button.

Undo (Ctrl+Z)

The undo command undoes the last edit in the active tab. You can undo all actions since
the document was opened.

Redo (Ctrl+Y)

The redo command redoes the last edit in the active tab. You can redo all actions since
the document was opened.

Cut (Ctrl+X)

The cut command removes the selected text from the active tab and places it on the
clipboard. Text on the clipboard may be pasted into other windows.

Copy (Ctr1+C)

The Copy command copies the selected text from the active tab and places it on the
clipboard. Text on the clipboard may be pasted into other windows.

Using The Editor 17

Paste (Ctrl+V)

The paste command replaces the selected text in the active tab with the text on the
clipboard. If no text is selected in the active tab, the clipboard text is inserted at the
insertion point.

Delete

The delete command removes the selected text from the active tab without placing it on
the clipboard. Text previously available on the clipboard is still available for pasting into
other windows.

Select All

The Select All command selects all text in the document.

Comment (Ctrl+D)

This command inserts a comment character in column one of the current line if there is
no selected text section. Otherwise, it will comment the entire selected text. . For C/C++
files this is a double forward slash (“//’) and for all other files it is an exclamation mark

).

Uncomment (Ctrl+Shift+D)

This command deletes a comment character in column one of the current line or the
selected lines. For C/C++ files this is a double slash (“//”’) and for all other files it is an
exclamation mark (!”).

Indent (Tab or Ctrl+I)

Use this command to shift either the selected text or current line to the right by one tab
stop.

Unindent (Shift+Tab or Ctrl+Shift+I)

Use this command to shift either the selected text or current line to the left by one tab
stop.

To Uppercase (Ctrl+U)

Use this command to change the selected text to upper case.

To Lowercase (Ctrl+Shift+U)

Use this command to change the selected text to lower case.

Fortran User Guide

18 Using The Editor

Back (Ctrl+J)

Use this command to navigate back to the last cursor position in the file or project.

Forward (Ctrl+Shift+J)

Use this command to navigate forward to the last cursor position in the file or project.

Bookmarks

Bookmarks provide an easy way to “save your place” in a file so that you can later return
there quickly. Positioning the insertion caret on the line where you want the bookmark
set and then typing Alt+K sets (or unsets) a bookmark. In other words, Alt+K toggles a
bookmark.

A bookmark appears as a small flag at the beginning of the line. Pressing the Ctrl+K key
alone moves the insertion caret to the next bookmarked line in the file. Holding the Shift
key down and pressing the Ctrl+K key moves the insertion caret to the previous
bookmarked line in the file. The Clear File Bookmarks action in the Edit menu or context
menu clears all bookmarks in the file. The Clear All Bookmarks action clears all the
bookmarks for all files.

The View->Bookmarks action will open a display showing all available bookmarks in all
files. Clicking on a bookmark opens the file (if not already opened) and sets the cursor to
the line of the bookmark clicked. Double clicking on a bookmark name will allow you to
edit the name.

Note: Bookmarks are either associated with a specific project (see Developer
Tools Interface in the next chapter) or with no project (editor bookmarks).
Editor bookmarks are only accessible with no project open, and project
bookmarks are only accessible with the associated project open.
Bookmarks are saved in a project save file.

Bookmarks Menu Toggle Bookmark Alt+K

Previous Bookmark Ctrl+Shift+k

The Bookmarks sub-menu provides commands for

. . . Mext Bookmark Ctrl+K
setting, clearing, and moving between bookmarks.

Clear File Bookmarks

Clear All Bookmarks

Toggle Bookmark (Alt+K)

Use this command to set or unset a bookmark on the line where the insertion caret is
positioned.

Previous Bookmark (Ctrl+Shift+K)

Use this command to move to a previous bookmark location in the file.

Using The Editor 19

Next Bookmark (Ctrl+K)

Use this command to move to the next bookmark location in the file.
Clear File Bookmarks

Use this command to remove all bookmarks in the file.

Clear All Bookmarks

Use this command to remove all bookmarks in all files.

CODE COMPLETION (CTRL+E)

Code completion is a pop-up box that suggests possible ways of completing the words or
strings based on previously used words in that file. It is automatically turned on once the
length of the word typed is more than 3 characters. Typing Ctrl+E can also manually
bring up the pop-up box. To navigate the pop-up box, use up and down arrow keys. The
selection can be made by either pressing the enter key or left clicking the mouse. When
the pop-up box is open, you can dismiss it by pressing the Esc key.

SYNTAX HIGHLIGHT (CONTEXT MENU ONLY)

The Syntax Highlight command will specify which programming language to highlight
the document with. This is automatic for common FORTRAN and C file extensions. The
current highlighting language may be changed through this menu. Choices are F95, F77,
C/C++, and None. It is recommended to use standard file extensions so you do not have
to change this setting.

Standard file extensions are:

F95: * f95, * 90, .F95, .F90
F77: * f, *.for, .F, FOR
FORTRAN headers: *.inc
C: *.c, *.C
C++ *.cpp
C/C++ headers: *h
Wiew
VIEW MENU AND POP-UP MENUS L D D

F77 Coding Form

. L) Dual S Displ
The view menu allows you to change what is displayed in Absoft v SeTEEn MR

Elemerts Browser
Tools.

Bookmarks
Files

Buiild

Fird I Files
File Tool Bar
Build Tool Bar

|
x| (% % % x

Project Tool Bar

20 Using The Editor

Line Numbers

Toggles line number display in the margin for the active tab.

F77 Coding Form

Toggle coding form background for the active tab. Coding form highlights significant
F77 columns in gray. The highlighted columns are columns 6, and 72-80. You must have
a fixed form font for this the columns to be highlighted correctly. You can change fonts
in the File->Preferences menu. F77 Coding Form cannot be toggled on in other file
formats.

Dual Screen Display

Dual Screen display provides a convenient way to open files side-by-side. Toggling dual
screen display on will create another text editor window pane to the right of the existing
one. By default, toggling it on will give the focus to this second text editor pane. For
example, if you open a file, the file will be opened in this new pane. This can be used for
comparing two different files. Note that the same file cannot be opened twice. All the edit
actions such as cut, copy, and paste apply on both panes.

File Edit View Project Build Help

A _1 ~ LE H) i @ rﬁ ! ‘J L.m] E Active Build: | Release| v |

abcd.fo0 | xyz.fao |

1 ! Notes: “1 1 |! Notes: —
Zi 1 2 1

3 1 By declaring the common block using 34 | By declaring the common block using

4 1! COMMON, no storage is defined. The 4 ! COMMON, no storage is defined. The

5 1 declared in setup comm.c 54 1 declared in setup comm.c

6 | 6 !

7 7

8 PROGRAM abcd 8 PROGRAM xyz !
9 IMPLICIT NONE = 9 IMPLICIT NONE i
10 INTEGER(4) :: result 10 INTEGER(4) :: result

11 REAL(4) 73 a,b,c 11 REAL(4) :: a,b,c

12 GLOBAL/one/a,b,c 12 GLOBAL/one/a,b,c

13 13

14 CALL create shared common(result) 14 CALL attach shared common(result)

15 IF (result .ne. 1) THEN 15 IF (result .ne. 1) THEN

16 WRITE(*,*) "shared common create fal || 16 WRITE(*,*) "shared common attach faili_
17 STOP | 17 STOP

18 END IF 18 END IF

19 a=1.0 19

20 b= 2.0 20 WRITE(*,*) "Initial values from program
21 ci= 3.8 21 WRITE(*,*) "Multiplying them by 2.0 and ¢
22 WRITE(*,*) a,b,c 22 a = 2.0%a

23 PALUSE "Press enter after executina nroari|23 h = 2.0%h [
= n | ‘T_n = B3]

| v | Line: 1 Col: 1 [v| Line: 1 Col: 1

To switch back and forth between these two text editors, you can click on the desired text
editor or the tab that you want to open. You can also move the current file to the other
text editor by clicking on the tab and dragging it to the other text editor or by right

Using The Editor 21

clicking on the current tab and choose “Move to the other screen” action. To close this
second text editor, you can uncheck it under the view menu. You will be asked whether
you want to save the files before closing them.

Note: Dual Screen Display doesn’t keep record of its own previous state. Toggling it on
after toggling it off doesn’t mean that it will open all the files that it had opened last time.
This applies when you are working in the project mode as well.

Elements Display

Toggles the elements display. The elements display contains a hierarchal list of all
elements in the program. Clicking on a ‘+” will expand the element to show all its
children. Clicking on a ‘- will collapse an element. Clicking on an element will open
the file if it is not already open and move the text cursor to the element declaration or
implementation line. Clicking the refresh button will cause the project or editor file to be
re-parsed. Saving the file will also cause it to be reparsed. Clicking the Show Filter
Options will show a selection of item types to filter. To exclude variables from the
elements list, uncheck the Variable checkbox. To enable, check the Variable checkbox.

Elements Browser
Mairne Type | Line
=1 WinMain i function 58
LPCMOLINE local 749
MESSAGE local 85
i local 70
NCMDSH local 79
INITNSTANCE local 59
INITAPPLICATION local B9
HPREWVIMNST local 749
the_HINSTANCE local 748
Wirihain local (3]
= ABOUTPROC funiction 130
MESSAGE local 149
i local 138
WPRARAM local 148
iID_ ok local 136
HOLG local 148
ABOUTPROC local 135
LPA RS M local 149
MAINWNDPROC funiction 2m
INITAPPLICATION funiction 304
INIMNSTANCE funiction 361
Handle Paint subroutine 424
(<] I [+
[Refresh] [Show Fitter Options ...]

Fortran User Guide

22 Using The Editor

Bookmarks

Toggles the bookmark display. The bookmark display contains all the bookmarks that are
currently available sorted by file. (See Bookmarks description in the Edit menu for
additional information). Whenever a bookmark is added or removed, this list will be
updated. Clicking on a bookmark in this window will open the file if it is not already
open and move the text cursor to the bookmarked line. The name of the bookmark may
be edited by double clicking on the name and entering the text for the name.

Bookmaiks
| MNarme | Lire | File: Code |
= momefsriuntitled] 95
BookmarkO 1 urititled1 195 This is atest #1.
Bookmark 5 untitled 195 This is atest 43.
el untitied 95 |
Jir 1 Thisis atest #1.
2
3 Thisis atest #2.
4
;"’ 5 Thiziz atest #3.
(5]
7 Thisis atest #4|
- Line: ¥ Col: 18

Files

Toggles the files display for an open project. See project documentation for more details.
Note: this will not be selectable if you do not have a project open.

Build

Toggles the build display for an open project. See project documentation for more details
Note: this will not be selectable if you do not have a project open.

Find in Files
Toggles the Find in Files display for an open project. See project documentation for more

details. Note: this will not be selectable if you do not have a project open.

File Tool Bar
Toggles the visibility of the File tool bar.

Using The Editor 23

Build Tool Bar

Toggles the visibility of the Build tool bar. Note: this will not be selectable if you do not
have a project open.

Project Tool Bar
Toggles the visibility of the Project tool bar.

PROJECT MENU [Project |

Add File(s)...
Add Directory..

New Project o
Remove File in Project

This command opens a new project dialog to create a New File In Project '
new project. Your open files will not be closed or Frfial BB Ctri+P
added to the new project.] New Project Chrl+Shift£N
= Open Project Ctrl+Shift+0
Open Project @ Save Project Ctrl+Shift+5
Close Project Ctrl+Shift+W
This command opens a file browser to select a saved Recent Prajects ,

project file dialog to open. Your open files will not be
closed or added to the project.

Recent Projects

Up to 8 files will appear in this list. Each menu item represents the project file that has
been most recently opened or saved. They are listed as a convenience for quickly opening
projects. The ‘Clear Recent Projects’ menu item clears all recent projects without a
confirmation.

Fortran User Guide

CHAPTER 4

Developer Tools Interface

WORKING WITH PROJECTS

A project allows you to organize the entire source, object, include, library, and resource
files that constitute an application. It keeps track of which files are associated with the
application, which ones are dependent on other files, which ones have been recently
modified and need to be rebuilt. Also, it allows you to set specific options to be used with
the compilation tool associated with the various files in the project.

The first step in working with a project is to create a new one. Use the Project menu New
Project command to create a new project. The Project Options dialog will appear as
shown below:

(General |

Libraries Project Options

Target

FORTRAN) .

C/C++ Project Name project

Linker

;Zi‘;“rces Target Filename |project

Run
Project Directory | /home/cag E]
Scripts

Prebuild Script

a5

Posthuild Script

Ignore Debug and Optimize Options [@ Cancel l l @QK]

26 Developer Tools Interface

Project Name is the name that will be applied to the project. It will be shown whenever
the project is identified in Absoft Tools. Target Filename is the name of the executable
program or library to be created. Project Directory is the base directory of the project.
Clicking the “...” button will allow you to choose a directory from a standard file dialog.
This can only be set when creating a new project. Options Packages are libraries that are
included or purchased as add-ons to the Absoft product. Checking the boxes will add the
add-on to the project.

The left column contains groups of options for the general project or specific tools.
Options specified under General, Target, Run, Resources, and Make apply to the project
globally. FORTRAN, C/C++ and Linker apply to the specific tools used for compiling their
respective files. Clicking OK will create a project with the options specified.

DOCKED DISPLAYS

A dock is a movable, resizable, and detachable display window. Several project specific
docks will appear after you have created a new project. The default docks are the Files
dock, Find in Files dock and the Build dock.

Docks can be moved to customize the appearance of Absoft Tools. Docks can be moved
to the top, bottom, left, or right edged of the screen by clicking and dragging the name of
the dock to a new location. Dropping a dock on top of an existing dock will create a
tabbed set of docks. Selecting the name of the dock under the View menu will toggle the
visibility of the dock.

When a project is created or opened, the default docks Files, Find in Files, and Build will
be shown on the screen.

ADDING FILES TO THE PROJECT

Files can be added in two ways. The first is right clicking on the files window and
choosing Add File(s) from the context menu or select Add File(s) from the Project menu.
This will display a standard file dialog where you can select a single file by clicking or
multiple files by holding down the Control key as you select the files to add. The second
way is to select Add Directory from the Project menu or right click on the files display
and choose Add Directory from the menu. This will bring up the following dialog:

Developer Tools Interface 27

—

Files To Be Added

Add File...
Add Directory...

[] Add Subdirectories
[] Include Object Files

Adld File
Urkriown File Types To Be Ignored lgniore File

Cancel

Click the Add File button to add files through a standard file dialog. Click the Add
Directory button to add all files in a directory. Check Add Directories to add all files in the
subdirectories under the chosen directory. Check Include Object Files to add object files
to the project.

Once you finish with either the Add File or Add Directories selection and click OK, the
chosen files will be added to the Files to be Added list box if Absoft Tools has a tool to
compile the files. If a file is unknown, it will be added to the Unknown File Types To Be
Ignored list box. Selecting a file in the Files to be Added list box and clicking the Ignore
File button will move the file to the Unknown File Types To Be Ignored list box. Selecting
a file in the Unknown File Types To Be Ignored list box and clicking the Add File button
will move the file to the Files to be Added list box. All files in the Files to be Added list
box will be added to the project once Ok is clicked.

Fortran User Guide

28 Developer Tools Interface

FILES DOCK

Files that are in the project are located in the Files dock window. Files are organized by
file type. Each type can be expanded or collapsed by clicking the + or — next to the type
name.

Files

Mame Cptions |

5 iFo5
test.fos -mi4 -5 -g

Multiple files may be selected. Right-clicking on the file list will bring up a context
menu. The menu commands are listed below:

New File in Project

This menu allows you to choose the type of new file to add to the project. Selecting the
type of file will cause a standard file dialog to appear. Choose the name and directory to
save the file as, and the new file will be saved and opened in the active window for
editing.

Add File(s)

Opens a standard file dialog for adding files (see Adding Files To Project).

Add Directory

Opens a directory dialog for adding files (see Adding Files To Project).

Check Syntax

Compiles selected files using the options displayed in the files view. The results will
appear in the build view. This is used to check the syntax of a file without recompiling
the whole project.

Developer Tools Interface 29

Set Options for

Opens a option dialog to set options for the selected files only (see Setting Compiler
Options).

Use Default Options

2

Removes any file specific options set by “Set Options for.” The project options set in

Project Options from the Project menu will be used.

Remove File in Project

Removes files from project.

Show Full Paths
Adds another column to the file list that contains the full paths of each file.

Show Relative Paths

Adds another column to the file list that contains the relative paths of each file.

Fortran User Guide

30 Developer Tools Interface

BUILD CONFIGURATIONS

Absoft Tools has two built in build configurations, Release and Debug. The Release
build configuration is an optimized build. It uses the optimization options that are set in
the options dialog and builds object and module files in <project directory>/Release. The
Debug build configuration is a debug build. It uses the debug options that are set in the
options dialog and builds object and module files in <project directory>/Debug. You can
switch between build configurations by selecting Set Build from the Build menu or
selecting the build name from the Active Build combo box on the project tool bar.

Absoft Tools allows you to create your own build configurations. To create a new
configuration, select Create New Build from the Build menu. This will open a dialog that
will allow you to add custom builds.

Templates Current Build Configurations
Release
Debug
Add Remove
Create New Edit Remove Add To Project | "ﬂ OK |

Adding a New Build Configuration

To add a new build configuration, click the Add button below the Current Build
Configurations pane. A text cursor will appear in the list of current build configurations,
allowing you to enter the name of the new configuration. If the name you enter ends with
“debug”, the new configuration will be considered a Debug build when using the Project
Options dialog to modify build options. You can also add a build configuration to a
project using a previously defined configuration template by selecting the name of the
template in the Templates pane and clicking Add To Project.

Developer Tools Interface 31

After a new build configuration has been added to a project, you can make it the active
build using Set Build command the Build menu or selecting the build name from the
Active Build combo box on the project tool bar.

Creating A New Build Configuration Template

To create a new build configuration template, click Create New below the Templates
pane. Type in the name of the new build (case is significant) and press enter. If a template
name ends with the characters “debug”, it will be considered a Debug build when added
to a project. After template name has been entered, the Project Options dialog will open
and allow you set the various options for your new template. When you are finished,
click OK and the new template will be added to the list of available templates. You can
add the new template to the current project by clicking on Add To Project.

SETTING COMPILER OPTIONS

You can set options for tools or specific files. Options are described in the chapter Using
the Compilers. Options for tools will apply to all files that the tool can compile. For
example, setting the FORTRAN options will apply to all FORTRAN files (.f, .f90, 195,
etc.). To set tool options, select Project Options from the Project menu. This will bring up
the Project Options dialog:

(General |

Libraries Project Options

Target

FORTRAN i .

C/C++ Project Name project

Linker

a‘:‘{‘;“rces Target Filename |project

Run
Project Directory |/home/cag E]
Scripts
Prebuild Script E]
Postbuild Script E]

Ignore Debug and Optimize Options [!.gancel l l @QK]

Fortran User Guide

32 Developer Tools Interface

Selecting a tool name in the left list will show the corresponding options tabs in the right
display. For example, selecting FORTRAN will show the General, Warnings/Errors,
Format, Compatibility, Name Mangling and Optimize/Debug tabs.

By default, any changes apply only to the option set for the active build configuration
(shown in the Active Build combo box on the project tool bar). To apply the changes to
the option sets for multiple build configurations, select the desired build configurations
under Option Sets. If Ignore Debug and Optimize Options is checked, all options except
for debug and optimization options will be applied to the selected builds. If Ignore Debug
and Optimize Options is not checked, debug options will be applied to the selected debug
builds (builds with names that end case insensitively in “debug”), and optimization
options will be applied to the selected release builds.

When two or more build configurations are selected, the Ignore Debug and Optimize
Options is automatically checked. You must explicitly uncheck it to change the behavior.

() Project Options EE
General Target |
Libraries = Tl
Target Options Optimize/Debug &
FORTRAN
CC++ Target Type Debug: |standard % |
Linker | Terminal Application = . —_———
Resources Optimize: |N0rma| =
Make ¥| 64-bit Code —_—
RUN Speed Math |D s |

Large Memory (> 32 bits)
Position Independent Multi-Core / SMP

Enable Profiling T
Auto-Parallelization

Enable OpenMP 3.0

Exception Traceback

Speed OpenMP | Mone i

SSE Tuning

¥| Auto-detect Host Architecture

-
b4

S55E2 55E4.1
S55E3 55Eda
AVX &

-

Ignore Debug and Optimize Options ‘ @ Cancel ‘ l @QK]

Developer Tools Interface 33

Target Options
Target Type

Terminal Application

AWE Application
MPI Application

Static Library

Creates an application that will be run from the terminal. This
is the default.

Creates an application using the Absoft Window Environment.

Creates an application that will be built and executed with
MPL.

Creates a static library

MULTIPLE BUILD AND OPTIONS EXAMPLE

To make multiple builds and setting options easier to understand, let's go through an
example for editing the options for a single build:

Start a new project and add a file to it:

w =

Open the AbsoftTools application
Select New Project from the Project menu
Enter the directory (type the directory name or click the “...” button and select the

directory from the dialog)

i

menu.

a

Click Ok. You will now have a new project open
Right click in the Files window and select F95 File from the New File In Project

Type a name in the dialog to save the file as. The name should appear in the Files

list under F95. Options will be listed as -O2 and -m32 (or -m64 if you have a 64

bit processor)

7. Select “Debug” from the Active build combo box in the project tool bar. The Files
list options should change to -g and -m32 (or -m64 if you have a 64 bit

processor).

Create multiple builds:

8. From the Build menu, select Create New Build... An Add Builds dialog will appear.
9. Click Add under the Current Build Configurations list.

10. When the text cursor appears, type “Fast” and press enter.

11. Click Add again under the Current Build Configurations list.

12. When the text cursor appears, type “FullDebug” and press enter.

13. Click Ok.

Examine builds:

The Active Builds combo box will now contain “Release”, “Debug”, “Fast”, and
“FullDebug”. When you change active builds by selecting the build from the

Fortran User Guide

34 Developer Tools Interface

Active Build combo box, the Files list should contain -O2 for Release and Fast,
and -g for Debug and FullDebug.

Set Options for Fast and FullDebug build configurations:

15) Select “FullDebug” from the Active Build combo box.

16) From the Project menu, select Project Options. The option dialog will appear. We
are editing the FullDebug build, since FullDebug is selected as the Active build.

17) Select FORTRAN and click on the General tab.

18) Select Check Pointers

19) Click Ok. The options in the File list should read -g, -m32 (or -m64) and -Rp.

20) Select “Fast” from the Active Build combo box.

21) From the Project menu, select Project Options. The option dialog will appear. We
are editing the fast build, since fast is selected as the Active build.

22) Select FORTRAN and click on the Optimize/Debug tab.

23) Select Level 4 from the Optimize combo box.

24) Click Ok. The options in the File list should read -O4, -m32 (or -m64).

We now have 4 builds to choose from.

Fast sets -O4 for fast optimizations

Release sets -O2 for normal optimizations

Debug sets -g for debug

FullDebug sets -g standard debug and -Rp for pointer checking

Add the -s option to all four builds:

25) Select Project Options from the Project menu. The option dialog should appear.

26) Select FORTRAN, click on the Compatibility tab, and check Static Storage.

27) Select all four builds (Release, Debug, Fast, and FullDebug) under Option Sets.

28) Note that Ignore Debug and Optimize Options is checked when you have more
than one build checked.

29) Click Ok.

All the builds now have -s as an option. You can verify this by selecting the different
build configurations in the Active Builds combo box.

BUILDING

To build a project, click the build icon on the tool bar or select Build from the Build
menu. The build dock will display the output from the build. If an error occurs in a
FORTRAN compilation, the build tab will switch to the Errors/Warnings tab and a
summary of the FORTRAN error will be displayed. Clicking on the error in the
Errors/Warnings tab will open the file with the error and go to the line and column of the
error. Right-clicking on an error and clicking explain will cause a dialog to appear with a
detailed explanation of the error.

Developer Tools Interface 35

Selecting Clean from the Build menu will remove all files created during the build
process.

Selecting Rebuild from the Build menu will clean a project and then build from scratch.

Clicking the stop icon in the tool bar or selecting Stop from the Build menu may be used
to stop a build.

EXECUTE/DEBUG

Once an executable program is built, you may execute the program by selecting Execute
from the Build menu or clicking the execute icon in the tool bar. Clicking Debug from the
Build menu or clicking the debug icon will start Fx3 with the executable program.

A programs environment variables, arguments and current working directory are set in
the Project Options dialog under the Run item. If OpenMP is checked on the Target
options page, the environment variables will be populated with the OpenMP runtime
variables.

FIND IN FILES

The Find in Files dock can be hidden and shown by selecting Find in Files from the View
menu. Find in Files will search each file in the project for the text specified. To search for
text, make sure the Find in Files dock is visible, then enter the text to search for in the
Find in File text box and press enter. Checking Case Sensitive will make case significant.
Checking Whole Words will search for whole word references. A list of files will appear
above the text. Clicking on a reference will open the file and go to the line the reference
is in.

To replace, type the text to be replaced in the Find in File text box and the replacement
text in the Replace With text box then press enter. This will only replace one occurrence
in the current file; hitting the Replace button achieves the same result. If you hit the enter
key again, it will replace the next occurrence. Both the Case Sensitive and Whole Words
check boxes also apply when replacing. If you click Replace All button, it will replace
every occurrence in all the files in the project, including the ones that are not opened. All
the files that have been affected by this action are listed in the above text box. At the end,
a summary of how many replacements have been made in how many files is displayed.
Clicking on a reference will also open that file.

Note: if you want to replace every occurrence in one file only, use Find/Replace action
under the Edit menu.

SMP ANALYZER

When the Auto-Parallelization option (-apo) is checked, Optimize Level 3 (-03, auto-
vectorization) is selected, or Optimize Level 5 (-O5, auto-parallization and auto-

Fortran User Guide

36 Developer Tools Interface

vectorization) is selected, the Absoft SMP Analyzer is enabled. This tool provides
detailed feedback and analysis of where advanced optimizations were performed and
where they could not be performed. The analysis includes the line number of the code
considered for optimization, a brief report, and an expanded explanation. The analyzer is
selected by clicking on the SMP Analyzer tab in the Build window:

File Edit View Project Build Help

=N M j V@ H) i @ Iﬁ' ’ 'J@HActiveBuild:iM|

Files = = tﬂ’c.fQD‘
Name “ | Options 17 D=1 R |§|
< FO5 18 x(i) = 0 :
tft.... -05-m32 19 ENDDO [
20 poaT="T, 18
21 x(i) = 1
22 ENDDO
23 DOi=n-8,n
24 X(d) =1 [+
a5 L] T | 1]
| RFFT v | Line: 17 Col: 1
Build = RES]

Build Errars-\;fWa.rn ings | SMP Analyzer |

Line ~ | Message —{ | The loop with index variable | was parallelized.
< fhomefpaj/tfft.fao ‘ 4
() 17 Loop | was parallelized
) 17 This loop was vectorized
20 Internal Loop was not parallelized due
20 Internal Loop was not parallelized due
) 20 This loop was vectorized
23 Internal Loop was not parallelized due|[+]
[«] n | [2]

¥ Show Positive [Show Neutral & Show MNegative ¥ Show Highlighting

| Build ‘ Find In Files

When the SMP Analyzer is enabled, the source file is highlighted, indicating loops that
were considered for optimization. Three types of highlighting are displayed:

Positive indicates the loop was optimized
indicates the loop could be optimized, but was not
Negative indicates the loop could not be optimized

2N =

Unchecking its box can selectively disable each type of highlighting. Typically, loops that could
be optimized, but were not, have an iteration count too small to benefit from parallelization.
Loops that cannot be optimized at all typically contain constructs that cannot be parallelized such
as I/O statements and external function references with unknown side effects.

CHAPTER §

Using the Compilers

This chapter describes how to use the Absoft Fortran 90/95 and FORTRAN 77 compilers
to create executable files on the Linux operating system for the Intel and AMD families
of processors. Beginning with an overview of the compilers, this chapter explains how to
compile a small number of Fortran source files into an executable application. File name
conventions and process control options are described first. The final sections of this
chapter describe the compiler options in detail.

COMPILING PROGRAMS

The Fortran 90/95 and the FORTRAN 77 compilers are invoked from the Linux
command line in the same manner:

£f95 [options] files..

£f77 [options] files..

FILE NAME CONVENTIONS

Compilation is controlled by the two compiler drivers: £77 and £95. These drivers take a
collection of files and, by default, produce an executable output file. Acceptable inputs to
£95 are:

File Type Default form

Free format Fortran 90/95 source files file.f90 or file.f95
Free format Fortran 90/95 preprocessor files file.F90 or file.F95
Fixed format Fortran 90/95 source files file.f

Fixed format Fortran 90/95 preprocessor files file.F

C language source files file.c

Assembly language source files file.s

Relocatable object files file.o

Acceptable inputs to £77 are:

File Type Default form
FORTRAN 77 source files file.f or file.for
FORTRAN 77 preprocessor files file.F or file.FOR
C language source files file.c

Assembly language source files file.s

Relocatable object files file.o

38 Using the Compilers

File names that do not have one of these default forms are passed to the linker. It is
assumed that the C compiler (cc), assembler (as), and linker (1d) are installed on the
system and use standard command line syntax.

Output file names take the form:

File Type Default form
Assembly language source files file.s
Relocatable object files file.o
Precompiled module file file.mod
Executable object files a.out

COMPILER PROCESS CONTROL

By default the £77 and £95 compiler drivers construct and execute the necessary
commands to produce an executable application. This process requires compilation,
assembly and linkage. As each of these processes finishes, all files that were created by
the preceding stage are deleted. In some cases it may be desirable to save these
intermediate files. Options controlling this are described here. These switches, in
conjunction with the input file names, can also be used to stop the compilation process at
any stage.

Generate Assembly Language (-S)

Specifying the —S option will cause the compilers to generate assembly language output
in a form suitable for the system assembler. The file created will have the suffix “.s”.
For example, compiling test.f with the —=S option will create test.s. If any C source
files are given as arguments to £77 or £95, this option will be passed to the C compiler. If
no other compiler process control options are specified and there are no relocatable
object files specified on the command line, the compilation process will halt after all
Fortran 90/95, FORTRAN 77, and any C source code files have been compiled to
assembly language source.

Generate Relocatable Object (-¢)

Specifying the —c option will cause the compilers to generate relocatable object files. In
the Linux environment, this option indicates that all source files (Fortran 90/95,
FORTRAN 77, C, and assembly) should be processed to relocatable object files. If no
linker options are present (see below), then the compilation process stops after all object
files have been created. If any C source files are given as arguments to £77 or £95, this
option will be passed to the C compiler.

Using the Compilers 39

Passing Options To The Linker

For ease of use within the Linux environment, many of the options that are available to
the system linker are also available to the £77 and £95 compiler drivers. Specifying any
of these options indicates that all files specified on the command line should be processed
through the linkage phase. Unless the =S or —c options are specified, all intermediate files
(relocatable objects and/or assembly source) will be deleted. See the system
documentation on /d for more information regarding these options. In brief, the options
are as follows:

Executable File Name (-o name)

Use of the —o name option will cause the linker to produce an executable file called
name. The default is to produce an executable file called a. out.

Library Specification (-1)
Specifying the —-Iname option will cause the linker to search the library file 1ibname. a.
Library Path Specification (-L)

The -Lpath option will cause the linker to search the specified directory named in path
for library files given with succeeding -l options.

Undefine A Symbol (-u)

Specifying the —usymbol name option will enter symbol name as an undefined symbol to
the linker.

Linker Options (-X)

Use the —Xoption switch to pass an option directly to the linker. The FORTRAN 77 or
Fortran 90/95 driver will pass option to the linker. If you want to pass an option that takes
an argument, use the —X option twice.

Preprocessor Options (-cpp and —no-cpp)

If a source file name has an upper case extension (F, FOR, F90, F95), the compiler first
passes it to the C preprocessor to handle C-style includes, macros, and conditional
directives. Use the —cpp option to force the compiler to invoke the C preprocessor
regardless of the source file extension. Use the —no-cpp option to force the compiler to
not invoke the C preprocessor regardless of the source file extension.

Fortran User Guide

40 Using the Compilers

Generate Debugging Information (-g)

Specifying the —g option will cause the compilers to include Dwarf2 symbol and line
information appropriate for debugging a compiled program with Fx3, the Absoft
debugger, or other source level debuggers which can read Dwarf2 symbol information.

Position Independent Code (-fpic, -fPIC)

The —fpic option is used to cause the compiler generate position independent code.

g77 Compatibility (-g77)

Use the —g77 option to enable compiler switches that produce g77 compatible object
code. These options are:

50 f77
-YEXT_NAMES=LCS -f

-S -S
-YCFRL=1 -N90
-B108 -B108

This option is useful when linking against libraries built with g77.

FPU CONTROL OPTIONS

These options provide control over several aspects of the operation of the Floating-Point
Unit of the processor including rounding mode, exception handling, control word state,
and FPU stack integrity.

FPU Rounding Mode (-OPT:roundoff=#)
Set the level of acceptable rounding (# can be 0,1,2, or 3)

0 - Turn off optimizations that may be harmful to floating point calculations.

1 - Allow simple optimization that may affect floating point accuracy.

2 - Allow more extensive optimization that may affect floating point accuracy.
3 - Allow all optimizations affecting floating point accuracy.

Enable Exception Traceback (-et)

The —et option causes the compilers to include symbol and line information, exception
handling initialization, and library to code to perform execution tracebacks. The
traceback includes file name and line number of the program units in the call tree to the
point of the exception. There is no program execution time overhead when enabling this
option, but all files that are incorporated in the executable must be compiled with this
option for the diagnostic output to be meaningful.

Using the Compilers 41

FPU Exception Handling

When a floating-point exception is produced, the default action of an application is to
supply an IEEE P754 defined value and continue. For undefined or illegal operations
(such as divide by zero or square root of a negative number) this value will usually be
either Infinity (INF) or Not A Number (NaN) depending on the floating-point operation.

Checking any of the exception boxes will cause the program to stop and produce a core
dump, rather than continue, if the exception is encountered. If the program is being
debugged, it will stop in the debugger at the statement line that caused the exception. The
syntax for using this option on the command line is:

-TENV:exception=off
where exception is one of:

simd_imask — Invalid operation exception.

simd dmask — Denormalized operand exception.
simd_zmask — Divide by zero exception.
simd_omask — Overflow exception.
simd_umask — Underflow exception.

simd pmask - Precision exception.

PROCESSOR SPECIFIC OPTIONS

The options described in this section are specific to the x86 family of processors.

CPU Specific Optimizations (-march=type)

Use the —march= option to target object code to a specific type of processor. Valid values
for type are:

anyx86 any processor using the x86 instruction set

pentium4 Intel Pentium 4

em64t Intel Pentium 4 with 64-bit extensions

core Intel Core and Core 2

opteron AMD Athlon 64/FX/X2 and AMD opteron

barcelona AMD Opteron and Phenom with K10 Barcelona architecture
wolfdale Intel Core 17 technology

host automatically establishes type based on the processor in the

machine that the program is compiled with. If the CPU type cannot
be determined, anyx86 is used.

Fortran User Guide

42 Using the Compilers

64-BIT AMD AND INTEL PROCESSOR SPECIFIC OPTIONS

The options described in this section are specific to the AMD and Intel 64-bit family of
processors.

Code Generation Model (-mcmodel={small | medium})

This option specifies the code generation model for 64-bit processors. The small code
model limits the combined code and data size to 2 gigabytes. The medium code model
allows data to be larger than 2 gigabytes. The default is the small model.

Generate 32-bit code (-m32)

Use the -m32 option to generate code that can be run on any X86 class processor.

Generate 64-bit code (-m64)

Use the —-m64 option to generate code that can only be run on AMD or Intel 64-bit
processors.

ABSOFT FORTRAN 90/95 OPTIONS

The compiler options detailed in this section give you a great deal of control over the
compilation and execution of Fortran 90/95 programs. The options fall into five general
categories: Compiler Control, Optimizations, Compatibility, Modules paths and file, and
Miscellaneous.

Each option is listed with the corresponding option letter(s) and a description. Options
that take arguments may optionally have a space to separate the option from its argument.
The only exceptions are the B and N options; they cannot have a space between the option
and its argument (e.g. -N33).

Compiler control

These options control various aspects of the compilation process such as warning level,
verbosity, code generation, where module files can be found, and the definition of
compiler directive variables. The generation of debugging information, for the symbolic
source-level debugger, Fx3, is also controlled by compiler control options.

Show progress (-v)

Enabling the -v option will cause the £95 command, described above, to display the
commands it is sending to the compiler, assembler, and linker.

Output Version number (-V, --version)

The -V and -version options will cause the £95 compiler to display its version number.
This option may be used with or without other arguments.

Using the Compilers 43

Suppress warnings (-w)

Suppresses the listing of warning messages. For example, unreachable code will generate
a warning message. Error diagnostics will still be displayed on standard error.

Warn of non-standard usage (-en)

Use of the -en option will cause the compiler to issue a warning whenever the source
code contains an extension to the Fortran 90/95 standard. This option is useful for
developing code that must be portable to other environments.

Warning level (-mnn)

Use the -mnn option to suppress messages by message level, where nn is a message level.
Diagnostics issued at the various levels are:

errors, warnings, cautions, notes, comments
errors, warnings, cautions, notes

errors, warnings, cautions

errors, warnings

errors

AW —O

The default level is -m3; the compiler will issue error and warning diagnostics, but not
cautions, notes, and comments. See also the -Mnn option.

Suppress Warning number(s) (-Mnn)

Use the -Mnn option to suppress messages by message number, where nn is a message
number. This option is useful if the source code generates a large number of messages
with the same message number, but you still want to see other messages. See also the
-mnn option.

Stop on error (-ea)

The -ea option will cause the £95 compiler to abort the compilation process on the first
error that it encounters.

Allow greater than 100 errors (-dq)
Normally, the Absoft Fortran 90/95 compiler will stop if more than 100 errors are
encountered. This many errors usually indicate a problem with the source file itself or the

inability to locate an 1ncLUDE file. If you want the compiler to continue in this
circumstance, select the -dq option.

Fortran User Guide

44 Using the Compilers

Default Recursion (-eR)

If you select the -eR option, all FuncTIONS and SUBROUTINES are given the RECURSIVE
attribute. Normally, if the compiler detects a recursive invocation of a procedure not
explicitly given the RECURSIVE attribute, a diagnostic message will be issued. The -eR
option disables this.

Append Underscore To Names (-B108)

Use of the -B108 option directs the compiler to append an underscore to SUBROUTINE and
FUNCTION definitions and references in a manner consistent with the g77 FORTRAN
compiler. A single underscore is appended unless the name contains an underscore in
which case two underscores are appended. This option can be used to avoid name
conflicts with the system libraries or other FORTRAN environments. See also the
-YEXT_SFX= option.

Generate Debugging Information (-g)

Specifying the —g option will cause the compilers to include symbol and line information
appropriate for debugging a compiled program with Fx3, the Absoft debugger, and other
source level debuggers which understand Dwarf2 symbol information.

The Absoft Fortran 90/95 and FORTRAN 77 compilers have the capability to output
special symbol information for use with the Fx3 debugger from Absoft. This information
allows Fx3 to display the contents of adjustable arrays, arrays with more than four

dimensions, arrays with lower bounds other than 1, and arrays with dimensions greater
than 32767.

Generate Profiler Information (-P)

Specifying the —P option will place information for profiling execution into a compiled
program. For information on using the Linux profiler, see the Linux manual page for

gprof.

Optimizations

These options control compile time optimizations to generate an application with code
that executes more quickly. Absoft Fortran 90/95 is a globally optimizing compiler, so
various optimizers can be turned on which affect single statements, groups of statements
or entire programs. There are pros and cons when choosing optimizations; the application
will execute much faster after compilation but the compilation speed itself will be slow.
Some of the optimizations described below will benefit almost any Fortran code, while
others should only be applied to specific situations.

Using the Compilers 45

Basic Optimizations (-O1)

The —01 option will cause most code to run faster and enables optimizations that do not
rearrange your program. The optimizations include common subexpression elimination,
constant propagation, and branch straightening. This option is generally usable with
debugging options. —cpu:host is implied with this option.

Normal Optimizations (-02)

The —02 option enables normal optimizers that can substantially rearrange the code
generated for a program. The optimizations include strength reduction, loop invariant
removal, code hoisting, and loop closure. This option is not usable with debugging
options. —cpu:host is implied with this option.

Advanced Optimizations (-O3)

The —03 option enables advanced optimizers that can significantly rearrange and modify
the code generated for a program. The optimizations include loop permutation (loop
reordering), loop tiling (improved cache performance), loop skewing, loop reversal,
unimodular transformations, forward substitution, and expression simplification. This
option is not usable with debugging options. —cpu:host is implied with this option.

Advanced Optimizations (-Ofast)

The -Ofast option enables advanced optimizers that can significantly rearrange and
modify the code generated for a program. The optimizations include all optimizations
that are included with —03 as well as turning on inter-procedural analysis.

Automatic Parallelization (-apo)

The —apo option enables automatic parallelization of your source program.

Dynamic AP (-05)

The -05 option enables auto parallelization and dynamic load scheduling. When your
program begins execution, the CPU load is measured and your program will

automatically only use those processors that are actually available (idle). The
optimizations include all optimizations that are included with —Ofast.

Fortran User Guide

46 Using the Compilers

Loop unrolling (-U and -hnn and -Hnn)

The Absoft Fortran 95 compiler has the ability to automatically unroll some of the loops
in your source code. Loops may be unrolled by any power of two. Generally it is
beneficial to unroll loops that execute a large number of iterations, while the benefit is
small for loops that iterate only a few times. Due to this, only innermost loops are
considered for unrolling. The -hnn option will cause the compiler to unroll your
innermost loops nn times, where nn is any power of two. The -Hnn option will cause the
compiler to consider loops containing nn or fewer operations for unrolling. When the —03
option is used, the default is to only consider loops of a forty operations and unroll them
four times. Using the -U option is equivalent to using -h4 -H40, causing innermost loops
of forty or fewer operations to be unrolled four times. Loop unrolling will provide a
speed increase in most cases, but will make your application larger and it will require
more memory to compile. Consider the following example:

Original code: Becomes:
SUBROUTINE SUB (A, N, X) SUBROUTINE SUB (A, N, X)
INTEGER A (100) INTEGER A (100)
DO i=1,N DO i=1,MOD (N, 4)
A(i) = X*A (1) A(i) = X*A (i)
END DO END DO
RETURN DO i=MOD (N, 4)+1,N, 4
END A(1) = X*A (1)
A(i+1l) = X*A(i+1)
A(i+2) = X*A(i+2)
A(i+3) = X*A(1+3)
END DO
RETURN
END

This is similar to the effect of loop unrolling. At least three comparisons and three branch
instructions are saved each time the second loop is executed. Note that if your code
contains extended range po loops, unrolling loops will invalidate your program.

SSE2 instructions (-msse2 and —mno-sse2)

The -msse2 and -mno-sse2 options enable and disable respectively the use of SSE2
instructions for floating-point operations. This -msse2 option is automatically enabled on
processors which support SSE2. It may be disabled with the -mno-sse2 option.

SSE3 instructions (-msse3)
The -msse3 option enables the use of SSE3 instructions for floating-point operations. This

option is automatically turned on when the -march=host option is specified and the host
supports SSE3 instructions.

Using the Compilers 47

SSE4a instructions (-msse4a)

The -msseda option enables the use of SSE4a instructions. This option is automatically
turned on when the -march=host option is specified and the host supports SSE4a
instructions.

SSSE4.1 instructions (-msse41)

The -msseda option enables the use of SSE4.1 instructions. This option is automatically
turned on when the -march=host option is specified and the host supports SSSE4.1
instructions.

Math Optimization Level (-speed_math=n)

The -speed_math=n option enables aggressive math optimizations that may improve
performance at the expense of accuracy. Valid arguments for n are 0-11. See Appendix E
for more information.

Enable OpenMP Directives (-openmp)

The -openmp option enables the recognition of OpenMP directives. OpenMP directives
begin in column one in the form of:

CSOMP for fixed source format
! SOMP for free source format

OpenMP optimization Level (-speed_openmp=n)

The —-speed_openmp= enables progressively more aggressive OpenMP optimizations on
the value of n as follows:

effect

allow code optimization and movement through OpenMP Barrier

enable loose memory equivalence algorithm during optimization

Enable MU generation in SSA generation for OpenMP pragma

Enable CHI generation in SSA generation for OpenMP pragma

Allow loop unrolling for loops with OpenMP chunksize directive

Use a risky but faster algorithm to handle thread private common blocks

g w N oIS

Each level includes all previous optimizations (e.g. 3 includes 0,1, and 2).

Safe Floating-Point (-safefp)

The -safefp option is used to disable optimizations that may produce inaccurate or
invalid floating point results in numerically sensitive codes. The effect of this option is to

preserve the FPU control word, enable NAN checks, disable caBs inlining, and disable
floating-point register variables.

Fortran User Guide

48 Using the Compilers

Report Parallelization Results (-LNO:verbose=on)

The -LNO:verbose=on option is used to display the results of the —apo option. It will
report which loops were parallelized and which were not and why not.

Report Vectorization Results (--LNO:simd_verbose=on)

The -LNO:simd_verbose=on option is used to display the results of vectorization of loops
which occurs at optimization levels greater than —03. It will report which loops were
vectorized and which were not and why not.

Compatibility

These options allow Absoft Fortran 90/95 to accept older or variant extensions of Fortran
source code from other computers such as mainframes. Many of these can be used for
increased compatibility with Fortran compilers on various mainframe computers.

Source Formats

For compatibility with other Fortran environments and to provide more flexibility, the
compiler can be directed to accept source code that has been written in a number of
different formats. The two basic formats are free-form and fixed-form.

Free-Form (-f free)

The -f free option instructs the compiler to accept source code written in the format for
the Fortran 90/95 Free Source Form. This is the default for file names with an extension
of “.£90” or ““. £95”.

Fixed-Form (-f fixed)

The -f fixed option instructs the compiler to accept source code written in the format for
the Fortran 90/95 Fixed Source Form that is the same as the standard FORTRAN 77
source form.

Alternate Fixed form (-f alt_fixed)

The - alt_fixed option instructs the compiler to accept source code written in following
form:

If a tab appears in columns 1 through 5, then the compiler examines the next character. If
the next character is not a letter (a-z, or A-Z) then it is considered a continuation
character and normal rules apply. If it is a zero, a blank, another tab, or a letter, the line is
not a continuation line.

Using the Compilers 49

Fixed line length (-W nn)

Use the -W option to set the line length of source statements accepted by the compiler in
Fixed-Form source format. The default value of nn is 72. The other legal values for nn
are 80 and 132 — any other value produces an error diagnostic.

Escape Sequences in Strings (-YCSLASH=1)

If the -YCSLASH=1 option is turned on, the compiler will transform the following escape
sequences marked with a ‘> embedded in character constants:

\a Audible Alarm (BEL, ASCII 07)
\b Backspace (BS, ASCII 8)

\f Form Feed (FF, ASCII 12)

\n Newline (LF, ASCII 10)

\r Carriage Return (CR, ASCII 13)
\t Horizontal Tab (HT, ASCII 09)
\v Vertical Tab (VT, ASCII 11)
\xh[h] Hexadecimal, up to 2 digits
\o[o[o]] Octal number, up to 3 digits
A\ Backslash

No Dot for Percent (-YNDFP=1)

This option instructs the compiler to disallow the use of a “.” (period) as a structure field
component dereference operator. The default is to allow both ‘%’ (percent), which is the
Fortran 90/95 standard, and a period which is typically used with DEC style RECORD
declarations. The use of a period may cause certain Fortran 90/95 conforming programs
to be misinterpreted (a period is used to delineate user defined operators and some
intrinsic operators). The default is <YNDFP=0. This switch implements Fortran 90/95
standard parsing for structure component referencing.

MS Fortran 77 Directives (-YMS7D)

The -YMS7D option causes the compiler to recognize Microsoft Fortran 77 style
directives in the form of $directive where the dollar-sign character is in column one of
the source file. directive must be from the set of supported MS directives.

Integer Sizes (-i2 and -i8)

Without an explicit length declaration, INTEGER data types default to thirty-two bits or
four bytes (k1nD=4). The —i2 option can be used to change this default length to sixteen
bits or two bytes (k1nD=2). The —i8 option can be used to change the default INTEGER size
to 64 bits or 8 bytes (kIND=8). However, an explicit length specification in a type
declaration statement always overrides the default data length.

Fortran User Guide

50 Using the Compilers

Demote Double Precision to Real (-dp)

The -dp option will cause variables declared in a DOUBLE PRECISION statement and
constants specified with the b exponent to be converted to the default real kind. Similarly,
variables declared in a DOUBLE COMPLEX statement and complex constants specified with

D exponents will be converted to the complex kind in which each part has the default real
kind.

Promote REAL to REAL(KIND=8) (-N113)

Without an explicit length declaration, single precision REAL and coMPLEX data types
default to thirty-two bits or four bytes (kIND=4) and sixty-four bits or eight bytes
(xk1nD=4), respectively. The -N113 option is used to promote these to their double
precision equivalents (k1ND=8). This option does not affect variables which appear in
type statements with explicit sizes (such as REAL (KIND=4) Or COMPLEX (KIND=4)).

One trip DO loops (-ej)

Fortran 90/95 requires that a Do loop not be executed if the iteration count, as established
from the po parameter list, is zero. The -ej option will cause all po loops to be executed at
least once, regardless of the initial value of the iteration count.

Static storage (-s)

The -s option is used to allocate local variables statically, even if saveE was not specified
as an attribute. In this way, they will retain their definition status on repeated references
to the procedure that declared them. Two types of variables are not allocated to static
storage: variables allocated in an ALLOCATE statement and local variables in recursive
procedures.

Structure alignment (-strict_align)

Use the —strict_align option to force alignment of structures and derived types on data
entity boundaries for compatibility with the C Programming Language. Normally, the
compiler pads structures to create the most efficient alignments for data transfers, but this
alignment may not be compatible with the alignment used by C/C++ compilers for 32-bit
compilations. This option is useful only for 32-bit applications.

Disable compiler directive (-xdirective)

The -x option is used to disable compiler directive in the source file. directive may be any
of the following:

ATTRIBUTES

FIXED
FIXEDFORMLINESIZE
FREE[FORM]

Using the Compilers 51

NAME
NOFREEFORM
STATIC

See the section Absoft Fortran 90/95 Compiler Directives for more information on
using compiler directives in your source code.

Max Internal Handle (-Tnn)

This option is used to change the number of handles used internally by the compiler.
Under most conditions, the default value of 100000 handles is sufficient to compile even
extremely large programs. However, under certain circumstances, this value may be
exceeded and the compiler will issue a diagnostic indicating that the value should be
increased.

The default value can be increased by powers of ten by specifying the -T nn, where nn is
a positive integer constant. When this option is specified, the number of handles will be
100000x10172 bytes.

Temporary string size (-tnn)

In certain cases the compiler is unable to determine the amount of temporary string space
that string operations will require. The compiler will assume that the operation in
question will require 1024 bytes of temporary string space. This default value can be
increased by powers of ten by specifying the -tnn, where nn is a positive integer constant.
When this option is specified, the default temporary string size will be 1024x1077 bytes.

Module File Path(s) (-ppath)

The Absoft Fortran 90/95 compiler will automatically search the current directory and
$ (ABSOFT) /f90includes for precompiled module files. If module files are maintained in
other directories, the —p path option can be used to specify additional paths to be
searched. If path specifies a directory name only, all module files in the directory will be
searched. If path specifies a filename, only the specified file will be searched.

Disable Default Module File Path (-nodefaultmod)

The Absoft Fortran 90/95 compiler will automatically search the directory
$ (ABSOFT) /£90includes for precompiled module files. Use the —nodefaultmod to
disable this.

Module File Output Path (-YMOD_OUT_DIR=path)

The Absoft Fortran 90/95 compiler will automatically create module files in the current

directory. If module files are to be maintained in another directory, the
-Y_MOD_OUT_DIR=path option can be used to specify target directory.

Fortran User Guide

52 Using the Compilers

Check Array Boundaries (-Rb)

When the —-Rb compiler option is turned on, code will be generated to check that array
indexes are within the bounds of an array. Assumed size arrays whose last dimension is *
cannot be checked. In addition, file names and source code line numbers will be
displayed with all run time error messages.

Check Array Conformance (-Rc)

The —Rc compiler option is used to check array conformance. When array shapes are not
known at compile time and where they must conform, runtime checks are created to
insure that two arrays have the same shape.

Check Substrings (-Rs)

When the -Rs compiler option is turned on, code will be generated to check that character
substring expressions do not specify a character index outside of the scope of the
character variable or character array element.

Check Pointers (-Rp)

Use —-Rp compiler option is used to generate additional program code to insure that
Fortran 90 style POIINTER references are not null.

Character Argument Parameters (-YCFRL={0|1})

Use the -YCFRL=1 option to force the compiler to pass CHARACTER arguments in a
manner that is compatible with g77 and f2c protocols. Use the ~=YCFRL=0 option (the
default) to pass CHARACTER arguments in a manner that is compatible with Absoft
Compilers on other platforms. Note: this option should be used consistently on all files
that will be linked together into the final application.

External Symbol Character Case (-YEXT_NAMES={ASIS | UCS | LCS})

The -YEXT_NAMES option is used to specify how the external name of globally visible
symbols, such as FUNCTION and SUBROUTINE names, are emitted. By default, names are
emitted entirely in lower case (-YEXT_NAMES=LCS). Set this option to UCS to emit
names entirely in upper case. Set this option to ASIS to force external names to be
emitted exactly as they appear in the source program. This option controls how external
names will appear to other object files.

External Symbol Prefix (-YEXT_PFX=string)

The -YEXT_PFX option can be used to prepend a user specified string to the external
representation of external procedure names.

Using the Compilers 53

External Symbol Suffix (-YEXT_SFX=string)

The -YEXT_SFX option can be used to append a user specified string to the external
representation of external procedure names.

COMMON Block Name Character Case (-YCOM_NAMES={ASIS | UCS | LCS})

The -YCOM_NAMES option is used to specify how the external names comMon blocks are
emitted. The default (-YCOM_NAMES=LCS) is to emit coMMoN block names entirely in
lower case. Set this option to UCS to emit names entirely in lower case. Set this option to
ASIS to force variable names to be processed exactly as they appear in the source
program.

COMMON Block Name Prefix (-YCOM_PFX=string)

The -YEXT_PFX option can be used to prepend a user specified string to the external
representation of coMmMoN block names.

COMMON Block Name Suffix (-YCOM_SFX=string)

The -YEXT_SFX option can be used to append a user specified string to the external
representation of coMmMon block names.

Module files only (-YMOD_ONLY)

The —YMOD_ONLY option can be used to prevent the compiler for searching archive
libraries for module files.

Variable Names Case Sensitivity ((-YVAR_NAMES={ASIS | UCS | LCS})

The -YVAR_NAMES option is used to specify how the case of variable names is treated.
By default, variable names are processed entirely in lower case (LCS), regardless of the
how they appear in the source code. Set this option to UCS to fold variable names to
upper case. Set this option to ASIS to force variable names to be processed exactly as
they appear in the source program.

Variable Names Case Sensitivity (-YALL NAMES={ASIS | UCS | LCS})

The -YALL_NAMES option is used to specify how the case of all symbolic names is
treated. By default, symbolic names are processed entirely in upper case (UCS),
regardless of the how they appear in the source code. Set this option to LCS to fold all
symbolic names to lower case. Set this option to ASIS to force symbolic names to be
processed exactly as they appear in the source program. This option is the same as using
the -YVAR_NAMES, -YCOM_NAMES, and -YEXT_NAMES options, which may appear after
the -YALL_NAMES option to control an individual symbolic name type.

Fortran User Guide

54 Using the Compilers

Ignore CDECS directives (-YNO_CDEC)

The compiler recognizes cpecs directives that contain conditional compilation directives.
Use this option disable them.

Pointers Equivalent to Integers (-YPEI={0|1})

This option controls whether or not the compiler will allow or accept a CRI style pointer
to be equivalent to an integer argument. By default the Absoft Fortran 90/95 compiler
allows this. Even with this relaxed error checking the compiler will correctly choose the
right interface for the following example:

interface generic
subroutine specificl (i)
integer i
end subroutine specificl
subroutine specific2 (p)
integer i
pointer (p,1i)
end subroutine specific2
end interface
call generic (i)
call generic(loc(i))
end

Regardless of the switch setting, this example will compile and the executable generated
will be equivalent to:

call specificl (i)
call specific2(loc(i))

Literal constants in DATA statements (-YDATA_REAL_CONV)

Use this option to force the compiler to treat DATA statement constants in BOZ format
(binary, octal, or hex) as literal constants. By default, the compiler will convert these
constants as integers. The ~-YDATA_REAL_CONV will cause the compiler to assign them
without conversion.

Don’t Mangle COMMON Block Name (-N110)

The -N110 option prevents the compiler from mangling (changing) the global names for
commoN blocks. The default is to prepend the characters “ c” to the common block name
so that it does not conflict with other global names such as external procedure names.
This option causes the compiler to emit the common block name exactly as it appears in
source.

Absoft Fortran 90/95 Compiler Directives

Compiler directives are lines inserted into source code that specify actions to be
performed by the compiler. They are not Fortran 90/95 statements. If you specify a

Using the Compilers 55

compiler directive while running on a system that does not support that particular
directive, the compiler ignores the directive and continues with compilation.

A compiler directive line begins with the characters cpIrRS or !DIRS. How you specify
compiler directives depends on the source form you are using.

If you are using fixed source form, indicate a compiler directive line by placing the
characters cDIRS or !DIRS in columns 1 through 5. If the compiler encounters a nonblank
character in column 6, the line is assumed to be a compiler directive continuation line.
Columns 7 and beyond can contain one or more compiler directives. If you are using the
default 72 column width, characters beyond column 72 are ignored. If you have specified
80 column lines, characters beyond column 80 are ignored.

If you are using free source form, indicate a compiler directive line by placing the
characters !DIrR$ followed by a space, and then one or more compiler directives. If the
position following the !DIR$ contains a character other than a blank, tab, or newline
character, the line is assumed to be a compiler directive continuation line.

If you want to specify more than one compiler directive on a line, separate each directive
with a comma.

NAME Directive

The navE directive allows you to specify a case-sensitive external name in a Fortran
program. You can use this directive, for example, when writing calls to C routines. The
case-sensitive external name is specified on the NaME directive, in the following format:

IDIRS NAME (fortran=“external” [, fortran=“external”]...)

where: fortran is the name used for the object throughout the Fortran
program whenever the external name is referenced.

external is the external name.
FREE[FORM] Directive

The FrREE or FREEFORM directive specifies that the source code in the program unit is
written in the free source form. The FrREE directive may appear anywhere within your
source code. The format of the FREE directive is:

IDIR$ FREE
You can change source form within an 1nCLUDE file. After the tncLuDE file has been

processed, the source form reverts back to the source form that was being used prior to
processing the INCLUDE file.

Fortran User Guide

56 Using the Compilers

FIXED Directive

The rF1xeD directive specifies that the source code in the program unit is written in the
fixed source form. The FIxED directive may appear anywhere within your source code.
The format of the FIxED directive is:

!DIRS FIXED

You can change source form within an 1NcLUDE file. After the 1ncLUDE file has been
processed, the source form reverts back to the source form that was being used prior to
processing the INCLUDE file.

NOFREEFROM Directive

The norFreeFORM directive is the same as the FIxeD directive (see above) and specifies
that the source code in the program unit is written in the fixed source form.

FIXEDFORMLINESIZE Directive

The FIXEDFORMLINESTIZE directive specifies the line length for fixed-form source code.
The format of the FIXEDFORMLINESIZE directive is:

!DIRS FIXEDFORMLINESIZE:{72]80|132}
ATTRIBUTES Directive

The aTTTRIBUTES directive can be used to apply special attributes to simplify passing
variables between Fortran 90/95 and other languages. The format of the ATTTRIBUTES
directive is:

!DIRS ATTTRIBUTES attr-list::sym-list

where: attr-1ist is a comma separated list of attributes from the
following set.

ALIAS
C
REFERENCE

STDCALL
VALUE

sym-1ist is a comma separated list of symbols.

The a1.1a5 attribute takes the form of

ALI AS: ext er nal

where: external is the is the external name of the procedure.

Using the Compilers 57

STACK Directive

The stack directive causes the default storage allocation to be the stack in the program
unit that contains the directive. This directive overrides the -s command line option in
specific program units of a compilation unit. The format for this compiler directive is:

IDIRS STACK
UNROLL Directive

The unroLL directive is used to control loop unrolling by the compiler. Loop unrolling is
automatically enabled with the -03 option. Use this directive to control loop unrolling
independent of the —03 option. The format for this compiler directive is:

!DIRS UNROLL N

where N is the count of the number of times to unroll the loop. If N is 0, the count is
automatic. If N is 1, loop unrolling is disabled.

NOUNROLL Directive

The nounroLL directive is used to disable loop unrolling by the compiler. Loop unrolling
is automatically enabled with the -03 option. Use this directive to disable loop unrolling
in all circumstances. The format for this compiler directive is:

!DIRS NOUNROLL

ABSOFT FORTRAN 77 OPTIONS

The compiler options detailed in this section are provided for compatibility with the
Absoft legacy FORTRAN 77 compiler. This compiler is no longer supplied as all of its
capabilities have been incorporated into the Fortran 95 compiler. These options are
deprecated and will eventually no longer be supported. It is suggested that the equivalent
Fortran 95 options be used instead.

Each option is listed with the corresponding option letter(s) and a short description.
Options that take arguments (e.g. -h 4 or -o file) must have a space to separate the
option from the argument. The only exceptions are the B and N options; they do not have
a space between the option and the argument (e.g. -N33).

Compiler control

These options control various aspects of the compilation process such warnings,
verbosity, and definition of compiler directive variables. The generation of debugging
information, for the symbolic source-level debugger, Fx3, is also controlled by compiler
control options.

Fortran User Guide

58 Using the Compilers

Show progress (-v)

Enabling the -v option will cause the £77 compiler driver, described earlier in this
chapter, to display the commands it is sending to the compiler, assembler, and linker.

Suppress warnings (-w)

Suppresses the listing of warning messages. For example, unreachable code and a
missing label on a FORMAT statement generate warning messages. Compile time
diagnostic messages are divided into two categories: errors and warnings. Error messages
indicate that the compiler was unable to generate an output file. Warning messages
indicate that some syntactic element was not appropriate, but the compiler was able to
produce an output file.

Warn of non-ANSI usage (-N32)

Use of the -N32 option will cause the compiler to issue a warning whenever the source
code contains an extension to the ANSI FORTRAN 77 standard (American National
Standard Programming Language FORTRAN, X3.9-1978). This option is useful for
developing code that must be portable to other environments. The equivalent Fortran 95
option is —en.

Check Syntax Only (-dB)

The —dB option runs only the front end of the compiler. No object or executable files are
created.

Append Underscore To Names (-N15)

Use of the -N15 option will cause the compiler to define SUBROUTINE and FUNCTION
names with a single trailing underscore. This option can be used to avoid name conflicts
with the system libraries or to interface with other FORTRAN environments and
libraries. See the -B108 option below. The equivalent Fortran 95 option is ~-YEXT_SFX=_.

Append Underscore To Names (-B108)

Use of the —-B108 option directs the compiler to append an underscore to SUBROUTINE and
FUNCTION definitions and references in a manner consistent with the g77 FORTRAN
compiler. A single underscore is appended unless the name contains an underscore in
which case two underscores are appended. This option can be used to avoid name
conflicts with the system libraries or other FORTRAN environments. See the -N15 option
above.

Using the Compilers 59

Character Argument Parameters (-N90)

Use the —N90 option to force the compiler to pass CHARACTER arguments in a manner that
is compatible with g77 and f2c protocols. The default is to pass CHARACTER arguments in
a manner that is compatible with Absoft Compilers on other platforms.

Check array boundaries (-C)

When the -C compiler option is turned on, code will be generated to check that array
indexes are within the bounds of an array. Exceptions: arrays whose last dimension is *
and dummy arguments whose last dimension is 1 cannot be checked. In addition, file
names and source code line numbers will be displayed with all run time error messages.
The equivalent Fortran 95 option is —Rb.

Generate Debugging Information (-g)

Specifying the —g option will cause the compilers to include symbol and line information
appropriate for debugging a compiled program with Fx3, the Absoft debugger, and other
source level debugger which support Dwarf2 symbol information.

The Absoft Fortran 90/95 and FORTRAN 77 compilers have the capability to output
special symbol information for use with the Fx3 debugger from Absoft. This information
allows Fx3 to display the contents of adjustable arrays, arrays with more than four
dimensions, arrays with lower bounds other than 1, and arrays with dimensions greater
than 32767.

Generate Profiler Information (-P)

Specifying the —P option will place information for profiling execution into a compiled
program. For information on using the Linux profiler, see the Linux manual page for

gprof.
Conditional compilation (-x)

Statements containing an X or a D in column one are treated as comments by the
compiler unless the -x compiler option is selected. This option allows a restricted form of
conditional compilation designed primarily as a means for easily removing debugging
code from the final program. When the -x option is selected, a blank character replaces
any occurrence of an X or a D in column one. The only source formats for which
conditional compilation is valid are standard FORTRAN 77, VAX Tab-Format, and wide
format. The compiler also incorporates a complete set of statements for conditional
compilation which are described in the Conditional Compilation Statements section of
the FORTRAN 77 Program chapter in the FORTRAN 77 Language Reference Manual.
The equivalent Fortran 95 option is -YX.

Fortran User Guide

60 Using the Compilers

Max Internal Handle (-Tnn)

This option is used to change the number of handles used internally by the compiler.
Under most conditions, the default value of 20000 handles is sufficient to compile even
extremely large programs. However, under certain circumstances, this value may be
exceeded and the compiler will issue a diagnostic indicating that the value should be
increased.

Define Compiler Directive (-Dname[=value])

The -D option is used to define conditional compilation variables from the command line.
value can only be an integer constant. If value is not present, the variable is given the
value of 1. Conditional compilation is described in the Conditional Compilation
Statements section in the FORTRAN 77 Program chapter of the FORTRAN 77
Language Reference Manual.

Set Include Paths (1)

Use this command to select additional directory paths to be searched for include and
header files. The -l option is used to supply a comma separated list of directory paths
which are prepended to file names used with the Fortran | NCLUDE statement or the C/C++
#i ncl ude directive.

-l path[, path.]

The paths are prepended in the order presented with the -l option when the include file is
not first found in the local directory and when it is not itself an absolute path (a full file
specification).

Optimizations

Absoft Fortran 77 is a globally optimizing compiler, so various optimizers can be turned
on which affect single statements, groups of statements or entire programs. There are
pros and cons when choosing optimizations; the application will execute much faster
after compilation but the compilation speed itself will be slow. Some of the optimizations
described below will benefit almost any FORTRAN code, while others should only be
applied to specific situations.

You may want to ignore optimizations during program development or for compilations
of FORTRAN source code ported to the Linux to save time. When a FORTRAN program
is executing correctly and has been debugged, turn on optimizations for improved run-
time performance. In general, all optimizations should be selected carefully.

Using the Compilers 61

Basic Optimizations (-O1)

The —01 option will cause most code to run faster and enables optimizations that do not
rearrange your program. The optimizations include common subexpression elimination,
constant propagation, and branch straightening. This option is generally usable with
debugging options. —cpu:host is implied with this option.

Advanced Optimizations (-02)

The —02 option enables advanced optimizers that can substantially rearrange the code
generated for a program. The optimizations include strength reduction, loop invariant
removal, code hoisting, and loop closure. This option is not usable with debugging
options. —cpu:host is implied with this option.

Advanced Optimizations (-O3)

The —03 option enables advanced optimizers that can significantly rearrange and modify
the code generated for a program. The optimizations include loop permutation (loop
reordering), loop tiling (improved cache performance), loop skewing, loop reversal,
unimodular transformations, forward substitution, and expression simplification. This
option is not usable with debugging options. —cpu:host is implied with this option.

Advanced Optimizations (-Ofast)

The -Ofast option enables advanced optimizers that can significantly rearrange and
modify the code generated for a program. The optimizations include the —O3
optimizations as well as turning on inter-procedural analysis.

Loop unrolling (-U and -hnn and -Hnn)

The Absoft Fortran 77 compiler has the ability to automatically unroll some of the loops
in your source code. Loops may be unrolled by any power of two. Generally it is
beneficial to unroll loops that execute a large number of iterations, while the benefit is
small for loops that iterate only a few times. Due to this, only innermost loops are
considered for unrolling. The -hnn option will cause the compiler to unroll your
innermost loops nn times, where nn is any power of two. The -Hnn option will cause the
compiler to consider loops containing nn or fewer operatings for unrolling. When the —03
option is used, the default is to only consider loops of a two lines and unroll them ten
operatins. Using the -U option is equivalent to using -h2 -H10, causing innermost loops of
ten or fewer operations to be unrolled twice. Loop unrolling will provide a speed increase
in most cases, but will make your application larger and it will require more memory to
compile. Consider the following example:

Fortran User Guide

62 Using the Compilers

Original code: Becomes:
SUBROUTINE SUB (A, N, X) SUBROUTINE SUB (A, N, X)
INTEGER A (100) INTEGER A (100)
DO i=1,N DO i=1,MOD(N, 4)
A(i) = X*A (1) A(i) = X*A (1)
END DO END DO
RETURN DO i=MOD (N, 4)+1,N, 4
END A(1) = X*A (1)
A(i+1l) = X*A(i+1)
A(i+2) = X*A(i+2)
A(i+3) = X*A(i+3)
END DO
RETURN
END

This is similar to the effect of loop unrolling. At least three comparisons and three branch
instructions are saved each time the second loop is executed. Note that if your code
contains extended range po loops, unrolling loops will invalidate your program.

Compatibility

These options allow Absoft Fortran 77 to accept older or variant extensions of
FORTRAN 77 source code from other computers such as mainframes. Many of these can
be used for increased compatibility with FORTRAN 77 compilers on various mainframe
computers.

Folding to lower case (-f)

The -f option will force all symbolic names to be folded to lower case. By default, the
compiler considers upper and lowercase characters to be unique, an extension to
FORTRAN 77. If you do not require case sensitivity for your compilations or specifically
require that the compiler not distinguish between case use this option. This option should
be used for compatibility with VAX and other FORTRAN environments. The following
Fortran 95 options -YEXT_NAMES=LCS, -YVAR_NAMES=UCS, and -YCOM_NAMES=LCS
are equivalent.

Folding to upper case (-N109)

By default, the compiler considers upper and lowercase characters to be unique, an
extension to FORTRAN 77. If you do not require case sensitivity for your compilations
or specifically require that the compiler not distinguish between case, as in FORTRAN
77, including the -N109 option on the compiler invocation command line will force all
symbolic names to be folded to upper case. The equivalent Fortran 95 option is
-ALL_NAMES=UCS.

Using the Compilers 63

Static storage (-s)

In FORTRAN 66, all storage was static. If you called a subroutine, defined local
variables, and returned, the variables would retain their values the next time you called
the subroutine. FORTRAN 77 establishes both static and dynamic storage. Storage local
to an external procedure is dynamic and will become undefined with the execution of a
RETURN statement. The save statement is normally used to prevent this, but the -s
compiler option will force all program storage to be treated as static and initialized to
zero. This option should be used for compatibility with VAX and other FORTRAN
environments.

One-trip DO loops (-d)

FORTRAN 66 did not specify the execution path if the iteration count of a po loop, as
established from the po parameter list, was zero. Many processors would execute this
loop once, testing the iteration count at the bottom of the loop. FORTRAN 77 requires
that such a po loop not be executed. The -d option will cause all po loops to be executed
at least once, regardless of the initial value of the iteration count. The equivalent Fortran
95 option is -ej.

Integer Sizes (-i2 and -i8)

Without an explicit length declaration, INTEGER and 1L.oGICAL data types default to thirty-
two bits (four bytes). The —i2 option can be used to change this default length to sixteen
bits (two bytes) for both INTEGER and LocIcaL. The —i8 option can be used to change the
default INTEGER size to 64 bits (8 bytes). However, an explicit length specification in a
type declaration statement always overrides the default data length.

Set Big-Endian (-N26)

Use this option to force the compiler to consider the byte ordering of all unformatted files
to be big-endian by default . The convERT specifier in the OPEN statement may be used to
override this setting for individual files.

Set Little-Endian (-N27)

Use this option to force the compiler to consider the byte ordering of all unformatted files
to be little-endian by default . The conveRT specifier in the OPEN statement may be used
to override this setting for individual files.

Set COMMON block name (-N22)
The -N22 option is used to change the scheme the compiler employs for generating global
names for comMon blocks. The default is to prepend the characters “ c” to the common

block name. This option cause the compiler to append a single underscore () instead.
The equivalent Fortran 95 option is -YCOM_PFX=_.

Fortran User Guide

64 Using the Compilers

Promote REAL and COMPLEX (-N113)

Without an explicit length declaration, single precision REAL and COMPLEX data types
default to thirty-two bits (four bytes) and sixty-four bits (eight bytes), respectively. The
-N113 option is used to promote these to their double precision equivalents: DOUBLE
PRECISION and DOUBLE COMPLEX. This option does not affect variables that appear
in type statements with explicit sizes (such as REAL*4 or COMPLEX* 8).

Escape sequences in strings (-K)

If the -K option is turned on, the compiler will transform certain escape sequences marked
with a “\” embedded in character constants. For example ‘\n’ will be transformed into a
newline character for your system. Refer to the FORTRAN 77 Program chapter
FORTRAN 77 Language Reference Manual for more information on the escape
sequences that are supported. The equivalent Fortran 95 option is -YCSLASH=1.

Align COMMON variables (-N34)

If a COMMON block is defined in a manner that causes a misaligned storage location,
the -N34 option can be used to insert space to eliminate the misalignment. This option
may invalidate your code if the same common block is defined differently in different
program units.

Temporary string size (-tnn)

In certain cases the compiler is unable to determine the amount of temporary string space
that string operations will require. This undetermined length occurs when the REPEAT
function is used or when a CHARACTER* (*) variable is declared in a subroutine or
function. In these cases, the compiler will assume that the operation in question will
require 1024 bytes of temporary string space. This default value can be changed by
specifying the -tnn, where nn is a positive integer constant. When this option is specified,
the default temporary string size will be nn bytes. The equivalent Fortran 95 option is
-YCLEN=nn.

Source Formats

For compatibility with other FORTRAN environments and to provide more flexibility,
the compiler can be directed to accept source code that has been written in a variety of
different formats. The default setting is to accept only ANSI standard FORTRAN source
code format. See the FORTRAN 77 Program chapter of the FORTRAN 77 Language
Reference Manual for more information on alternative source code formats.

Fortran 90/95 Free-Form (-8)

Use of the -8 option instructs the compiler to accept source code written in the format for
the FORTRAN 90/95 Free Source Form. The equivalent Fortran 95 option is —f free.

Using the Compilers 65

Wide format (-W)

Use of the -W option causes the compiler to accept statements that extend beyond column
72 up to column 132. The equivalent Fortran 95 option is ~-W132.

Fortran User Guide

CHAPTER 6

Porting Code

This chapter describes issues involved in porting legacy FORTRAN 77 code from other
platforms. One of the major design goals for Absoft Pro Fortran is to permit easy porting
of source code from mainframe computers such as VAX and IBM, and from workstations
such as Sun. The result is the rich set of statements and intrinsic functions accepted by
the Absoft Fortran 77 compiler.

The Absoft Fortran 77 compiler is recommended for porting most legacy codes because
of the number extensions and features it supports. Consequently, FORTRAN 77 options
and language features will be described in this chapter. However, in most cases, the
Fortran 90/95 compiler has equivalent options and can also be used. Refer to the Using
the Compilers chapter for information on Fortran 90/95 compile time options.

The last section of this chapter describes Linux specific issues about porting code.
As a general rule when porting code, use the following compiler option:
-s Force all program storage to be treated as static and initialized to zero.

Ported programs that have incorrect runs or invalid results are usually caused by the
differences between Linux and other environments such as floating point math precision
or stack-size issues. See the section Other Porting Issues later in this chapter for special
considerations when porting code to Linux. In addition, you may want to use this option:

-C Check array boundaries and generate better runtime errors. Using this
option makes programs slightly larger and they will execute slower.

If you want to use the Absoft debugger, Fx3, add the -g option to generate debugging
information.

PORTING CODE FROM VAX

Absoft Fortran 77 automatically supports most of the VAX FORTRAN language
extensions. Below are a list of key VAX FORTRAN extensions that are supported and a
list of those that are not supported. Using various options, the compiler can also accept
VAX Tab-Format source lines and/or 132-column lines. Otherwise, only ANSI
FORTRAN 77 fixed format lines are accepted.

68 Porting Code

Key Supported VAX FORTRAN Extensions

(132

NAMELIST—the NAMELIST terminator may be either “$” or “s
STRUCTURE, RECORD, UNION, MAP, $FILL statements

DO WHILE loops

INCLUDE statement

ENCODE, DECODE, ACCEPT, TYPE, and most OPEN I/O specifiers
Hollerith and hexadecimal constant formats

o

17 comments
Variable Format Descriptors ([<w>.<d> where w and d are variables)

Key Unsupported VAX FORTRAN Extensions

.

Absoft Pro Fortran uses IEEE floating point representation
I/O statements DELETE, DEFINE FILE, and REWRITE
Data dictionaries

Compile Time Options and Issues

Absoft Fortran 77 can be made even more compatible with VAX FORTRAN by using a

group of compiler options collectively referred to as the “VAX compatibility options”.

VAX-compatible time, date, and random number routines are available by linking with
the library file libv77.a in the Absoft 1ib and 1ibé64 directories. The routine names
may be referenced as all upper case, all upper case with an underscore appended, or all

lower case with an underscore appended. The routine names are:

DATE subroutine returns current date as CHARACTER* 9
IDATE subroutine returns current date as 3 INTEGER* 4

TIME subroutine returns current time as CHARACTER* 8
SECNDS subroutine returns seconds since midnight

RAN function returns random number

The following list of VAX FORTRAN “qualifiers” shows the equivalent Absoft Fortran

77 options or procedures:

/ANALYSIS DATA no equivalent
/CHECK BOUNDS -C to check array boundaries

/CHECK NONE

do not use the -C option

/CHECK OVERFLOW no equivalent
/CHECK UNDERFLOW nho equivalent
/CONTINUATIONS ho equivalent
/CROSS_REFERENCE no equivalent

/DEBUG
/D_LINES

-g to generate debugging information
-x to compile lines with a “D” or “X” in column 1

Porting Code 69

/DIAGNOSTICS append > filename to the f77 command line to create a file
containing compiler warning and error messages.

/DML no equivalent

/EXTEND SOURCE -W to permit source lines up to column 132 instead of 72

/F77 do not use the -d option

/NOF77 -d for FORTRAN 66 compatible po loops

/G_FLOATING see the section Numeric Precision later in this chapter

/14 do not use the -i option

/NOT4 -i for interpreting INTEGER and LOGICAL as INTEGER*2 and
LOGICAL*2

/LIBRARY no equivalent

/LIST a symbol table dump may be generated with the -D option

/MACHINE CODE -S to generate an assembly source file that can be assembled

/OBJECT no equivalent—you can use the cp command to copy an object file
to another name

/OPTIMIZE -0 to use basic optimizations

/PARALLEL no equivalent

/ SHOW no equivalent

/ STANDARD -N32 to generate warnings for non-ANSI FORTRAN 77 usage

/WARNINGS DECLARATIONS

/WARNINGS NONE

the TMPLICIT NONE statement may be used to generate warnings for
untyped data items

-w to suppress compiler warnings

The tab size on Linux may be different than the VAX. You can set the tab size for the
compiler with the environment variable TaBs1zE. For more information about tab size,
see the Tab Character Size section later in this chapter.

PORTING CODE FROM IBM VS FORTRAN

Absoft Fortran 77 automatically supports most of the IBM VS FORTRAN language
extensions. Below is a list of key VS FORTRAN extensions that are supported and not
supported. Using a compiler option, Absoft Fortran 77 can also accept VS FORTRAN
Free-Form source lines which use 80 columns, otherwise, only ANSI FORTRAN 77
fixed format lines are accepted.

Key Supported VS FORTRAN Extensions
“*” comments in column 1

Can mix CHARACTER and non-CHARACTER data types in coMMON blocks
« The NAMELTST terminator may be an ampersand “s”

Hollerith constants

Fortran User Guide

70 Porting Code

Key Unsupported VS FORTRAN Extensions

+ Absoft Fortran 77 uses IEEE floating point representation (more accurate)
Debug statements

I/O statements DELETE, REWRITE, and WAIT

« INCLUDE statement syntax is different

Compile-time Options and Issues

Absoft Fortran 77 can be made even more compatible with VS FORTRAN by using the
compiler option:

-s Force all program storage to be treated as static and initialized to zero

PORTING CODE FROM MICROSOFT FORTRAN (PC VERSION)

Absoft Fortran 77 automatically supports many of the Microsoft FORTRAN language
extensions. Below is a list of key Microsoft FORTRAN extensions that are supported and
not supported. Absoft Fortran 77 does not have the code size restrictions found in the
segmented Microsoft FORTRAN models.

Key Supported Microsoft FORTRAN Extensions

+ The NAMELIST terminator may be an ampersand “s”

+ The Free-Form Source Code is very similar to VS FORTRAN (-V option)
+ AUTOMATIC statement

+ STRUCTURE, RECORD, UNION, MAP statements

+ SELECT CASE statements

+ DO WHILE loops

+ INCLUDE Statement

» Conditional compilation statements

Key Unsupported Microsoft FORTRAN Extensions

« Metacommands

+ MS-DOS specific intrinsic functions

+ INTERFACE TO statement

+ OPEN statement displays standard file dialog when using FILE=""

Compile-time Options and Issues

Absoft Fortran 77 can be made even more compatible with Microsoft FORTRAN by
using the compiler option:

-s Force all program storage to be treated as static and initialized to zero

Porting Code 71

The following list of Microsoft FORTRAN metacommands shows the equivalent Absoft
Fortran 77 options or procedures:

$SDEBUG
SDECLARE

$D066
$FLOATCALLS

SFREEFORM
SINCLUDE
SLARGE

SLINESIZE
SLIST
SLOOPOPT
SMESSAGE
SPAGE
SPAGESIZE
SSTORAGE: 2

$STORAGE: 4
SSTRICT
SSUBTITLE
STITLE
$TRUNCATE

-C to check array boundaries and other run-time checks

the TMPLICIT NONE statement may be used to generate warnings for
untyped data items

-d for FORTRAN 66 compatible po loops

all floating point is calculated inline or with a threaded math library in
Absoft Fortran 77

-V for IBM VS FORTRAN Free-Form source code
use the INCLUDE statement

not necessary — Absoft Fortran 77 does not have the data size
restrictions found in the segmented Microsoft FORTRAN models
not applicable

no equivalent
-U for loop unrolling optimization; -R for loop invariant removal
no equivalent
not applicable
not applicable

-i for interpreting INTEGER and LOGICAL as INTEGER*2 and
LOGICAL*2

do not use the -i option

-N32 to generate warnings for non-ANSI FORTRAN 77 usage
not applicable

not applicable

no equivalent

PORTING CODE FROM SUN WORKSTATIONS

Absoft Fortran 77 automatically supports most of the Sun FORTRAN language
extensions. Below is a list of key Sun FORTRAN extensions that are supported and not
supported. The Sun FORTRAN compiler appends an underscore to all external names to
prevent collisions with the C library. Absoft Fortran 77, by default, does not append an
underscore to maintain compatibility with Linux functions and other development

languages.

Fortran User Guide

72 Porting Code

Key Supported Sun FORTRAN Extensions

+ NAMELIST; the NAMELIST terminator may be either “$” or “s

7

+ STRUCTURE, RECORD, POINTER, UNION, MAP, $FILL Sstatements
+ DO WHILE loops

« INCLUDE statement

+ ENCODE, DECODE, ACCEPT, TYPE, and most 0PEN I/O specifiers
« Hollerith and hexadecimal constant formats

(1R

. |

comments in column 1

PORTING CODE FROM MACINTOSH SYSTEMS

Other Absoft Macintosh Compilers

Over the past 20 years, Absoft has offered several different compilers for a number of
Macintosh environments. This section outlines some of the differences between these

products.

MacFortran

MacFortran/020

MacFortran 11

This 68000 compiler supported ANSI FORTRAN 77 and compiled
programs directly from the Finder without using MPW. Although
it lacked optimizations and support for many of the extensions in
Absoft Pro Fortran for Macintosh with PowerPC, it compiled very
fast and was easy to use.

This 68000 compiler was the same as MacFortran but it could also
produce faster code for 68020 and 68030 systems that incorporated
a floating point unit.

This 68000 compiler is very similar to Absoft Pro Fortran for
Macintosh with PowerPC. It supports many of the same
optimizations and extensions, but is designed for 68000 based
Macintoshes.

DISTRIBUTION ISSUES

If you plan to distribute executable programs generated with Absoft Fortran 77, you must
obtain a copy of the Absoft “Redistribution License Agreement”, complete it, and return
it to Absoft. There is no charge for this license or the redistribution of programs created
with Absoft Pro Fortran. To obtain the Absoft “Redistribution License Agreement”, visit
the Absoft Corporation web site at http://www.absoft.com, or write to:

Absoft Corporation
2781 Bond Street
Rochester Hills, MI 48309

Porting Code 73

OTHER PORTING ISSUES

Not all porting and compatibility issues can be solved automatically by Absoft Pro
Fortran or by using various option combinations. There are six issues that must be
addressed on a program-by-program basis for the Linux computer:

Memory Management Tab Character Size
Naming Conventions Numeric Precision
File and Path Names Floating Point Math Control

Memory Management

Local variables and temporary values are stored in the ESP stack frame. All other storage
is allocated statically in the data and/or bss sections.

Dynamic Storage

Storage for variables local to a function or a subroutine is allocated in the stack frame. As
a result, local variables are undefined when execution of a function or subroutine begins
and become undefined again when execution terminates. This can cause difficulties in
two areas.

First, problems may arise when porting Fortran applications from environments that
statically allocate all memory; the application may except variables to retain their
definition status across procedure references. However, it produces applications that
make more effective use of memory and provides the ability to call functions and
subroutines recursively. The next section describes how to declare static storage space.

Second, the Linux stack is limited to 8 MB and large arrays allocated in the stack frame
may overflow the stack. You can increase the stack size with the ulimit command
(ulimit 1s a bash command - the csh equivalent to ulimit -siS limit stack) to raise
the stack size limit:

ulimit -s

8192

ulimit -s 32768
ulimit -s

32768

The Linux stack limit is defined by the following around line 293 in sched.h:
#define STK LIM (8%1024*1024)
Static Storage

There are three ways to define static storage in Fortran. The first two allow static
variables to be defined selectively and are either placing them in comMon blocks or using
the save statement. The third method, using the —s compiler option, forces all program
storage to be treated as static. Static memory is allocated out of the data and/or bss

Fortran User Guide

74 Porting Code

sections and remains defined for as long as the application runs. In addition, all static
storage will be initialized to zero when the application begins execution.

Naming Conventions

Global names in Fortran include all procedure names and comvon block names, both of
which are significant to 31 characters. All global procedure names are folded to lower
case and have a single underscore (“) appended unless the compiler character case and
symbol decoration options are used. All common block names are folded to lower case and
have the characters “ C” prepended unless the compiler character case and symbol
decoration options are used. All other symbols are manipulated as addresses or offsets
from local labels and are invisible to the linker.

Procedure Names

Names of functions and subroutines in Fortran programs will appear in the assembly
language source output or object file records with their names folded to lower case and
with a single underscore (“) appended.

If a FORTRAN 77 subroutine is defined as:

SUBROUTINE SUB(...)

RETURN
END

It will be defined in assembly language as:

.globl sub
sub_:
ret
COMMON Block Names

The convention in Absoft Pro Fortran is to use the name given in the COMMON
statement folded to lower case and preceded with the characters “ c”. BLANK common
uses the name BINK .

For example, the common block declaration:
COMMON /the block/ a, b, c
will produce the following assembler directive:

.comm Cthe block, 0x0000000c

Porting Code 75

File and Path Names

When the compiler encounters the Fortran INCLUDE statement, it takes the CHARACTER
constant immediately following as a file name, searches for the file, and, if the file is
found, copies its contents into the source file. If an absolute or relative path name is
specified, the compiler will search only that path. If only a file name is given, the
compiler will first look for the file in the current directory. It will then search any
directory defined by the environment variable F771NCcLUDES. Additional search paths
may be specified with the —I compiler option.

Tab Character Size

The compiler assumes a standard tab size of eight spaces. This is the default for most
editors. When the compiler encounters a tab character (ASCII 9) during compilation, it is
replaced with the appropriate number of spaces for alignment to the next tab stop. By
setting the environment variable TABSI ZE, the tab size used by the compiler can be
changed. The following command line for the Bourne shell will set the tab size for the
compiler to four spaces:

TABSI ZE=4
export TABSI ZE

Runtime Environment

A number of the aspects of the runtime environment can be controlled with the
ABSOFT RT FLAGS environment variable. This variable can be a combination of any of
the following switches (the leading minus sign is required for each switch and multiple
switches must be separated by one or more spaces):

-defaultcarriage

Causes the units preconnected to standard output to interpret carriage
control characters as if they had been connected with AcTION="PRINT'.

-fileprompt
Causes the library to prompt the user for a filename when it implicitly
opens a file as the result of I/O to an unconnected unit number. By default,
the library creates a filename based on the unit number.

-vaxnames

Causes the library to use 'vax style' names (FORnnn.DAT) when creating
a filename as the result of I/O to an unconnected unit number.

Fortran User Guide

76 Porting Code

-unixnames

Causes the library to use 'unix style' names (fort.nnn) when creating a
filename as the result of I/O to an unconnected unit number.

-bigendian

Causes the library to interpret all unformatted files using big endian byte
ordering.

-littleendian

Causes the library to interpret all unformatted files using little endian byte
ordering.

-noleadzero
Causes the library to surpress the printing of leading zeroes when
processing an Fw.d edit descriptor. This only affects the limited number of
cases where the ANSI standard makes printing of a leading zero
implementation defined.

-reclen32

Causes the library to interpret the value specified for RECL= in an OPEN
statement as 32-bit words instead of bytes.

-f90nlexts

Allows f90 namelist reads to accept non-standard syntax for array
elements. Without this flag, the following input results in a runtime error:

$ONE
A(1)=1,2,3,4
$END

When -f90nlexts is set, the values are assigned to the first four elements of
A.

-nounit9
Causes UNIT 9 not to be preconnected to standard input and output.
-maceol

Formatted sequential files are in Classic Macintosh format where each
record ends with a carriage return,

Porting Code 77

-doseol

Formatted sequential files are in Windows format where each record ends
with a carriage return followed by a line feed.

-unixeol

Formatted sequential files are in Unix format where each record ends with
a line feed.

-hex_uppercase

Data written with the Z edit descriptor will use upper case characters for
A-F.

Floating Point Math Control

This section describes the basic information needed to control the floating-point unit
(FPU) built into Intel. The FPU provides a hardware implementation of the IEEE
Standard For Binary Floating Point Arithmetic (ANSI/IEEE Std 754-1985). As a result it
allows a large degree of program control over operating modes. There are two aspects of
FPU operation that can affect the performance of a FORTRAN program:

Rounding direction

Exception handling

A single subroutine is provided with the compiler that is used to retrieve the current state
of the floating-point unit or establish new control conditions:

CALL fpcontrol (cnd, arg)

where: cnd is an | NTEGER variable that is set to 0 to retrieve the state of
the floating point unit and 1 to set it to a new state.

arg 1s an | NTEGER variable that receives the current state of the

floating point unit if cnd is 0 and contains the new state if cnd is
1.

Rounding Direction
The first aspect of FPU operation that may affect a FORTRAN program is rounding
direction. This refers to the way floating-point values are rounded after completion of a

floating-point operation such as addition or multiplication. The four possibilities as
defined in the fenv.inc include file are:

Fortran User Guide

78 Porting Code

FE_TONEAREST round to nearest

FE_TOWARDZERO round toward zero

FE_UPWARD round toward +infinity

FE_DOANWARD round toward - infinity
Exception Handling

The second aspect of FPU operation that affects FORTRAN programs is the action taken
when the FPU detects an error condition. These error conditions are called exceptions,
and when one occurs the default action of the FPU is to supply an error value (either
Infinity or NaN) and continue program execution. Alternatively, the FPU can be
instructed to generate a floating point exception and a run time error when an exception
takes place. This is known as enabling the exception. The five exceptions that can occur
in a FORTRAN program are:

FE_I NEXACT inexact operation
FE_DI VBYZERO divide-by-zero
FE_UNDERFLOW underflow
FE_OVERFLOW overflow

FE_I NVALI D invalid argument

FSPLIT - SOURCE CODE SPLITTING UTILITY

When you need to manage large files, work on small portions of Fortran code, or port
code from other environments, you may want to split large, cumbersome source files into
one procedure per file. This can be done using the Fsplit tool. The command syntax for
the tool is shown below.

fsplit [option.] [file.]

Fsplit splits FORTRAN source files into separate files with one procedure per file. The
following command line will generate individual files for each procedure:

fsplit largefile.f

A procedure includes block data, function, main, program, and subroutine program
declarations. The procedure, proc, is put into file pr oc. f with the following exceptions:

* Anunnamed main program is placed in MAI N. f .

* An unnamed block data subprogram is placed in a file named
bl ockdat aNNN. f, where NNN is a unique integer value for that file. An
existing block data file with the same name will not be overwritten.

* Newly created procedures (non-block data) will replace files of the
same name.

» File names are truncated to 14 characters.

Output files are placed into the directory in which the fsplit command was executed.
The tab size is pulled from the environment variable TABSI ZE if it exists, otherwise, a tab
size of 8 is used. Options for the command are:

Porting Code 79

Verbose progress of f spl it is displayed on standard diagnostic.
Source files are in VAX FORTRAN Tab-Format.

Source files are in IBM VS FORTRAN Free-Form.

Source files are in Fortran 90/95 Free Source Form.

Source files are in wide format.

Fortran User Guide

CHAPTER 7

Absoft Window Environment

This chapter describes AWE, the Absoft Window Environment. AWE provides an
alternate executable format to a simple terminal application. AWE supplies a windowed
application for program input and output with the ability to save and print the output. In
addition, you can open new windows and communicate with them through normal

Fortran READ and WRITE statements.

An Absoft Window Environment application is selected by choosing a Target Type of
AWE Application from the Target pane of the Options dialog. An AWE application can

also be selected from the command line with —awe option.

Generai
Libraries
FORTRAN
C/C++
Linker
Resources
Make

Run

ot |
t

L
Target Options
Target Type

[?AWE Application ‘v

¥ 64-bit Code
Large Memory (> 32 bits)
Position Independent
Enable Profiling

Exception Traceback

Ignore Debug and Optimize Options

Optimize/Debug

Debug: Standard ¥
Optimize: Normal =

Multi-Core | SMP

Auto-Parallelization
Enable OpenMP 3.0
Speed OpenMP

SSE Tuning

¥| Auto-detect Host Architecture

-
-

S5E2 55E4.1
S5E3 S55E4a
BVX

82 Absoft Window Environment

AWE PREFERENCES

When an AWE application is selected, AbsoftTools automatically adds the file
AWE Prefences.£95 to the project. This file contains functions and subroutines that set
the default settings for the behavior of the AWE application. You can alter the default
behavior by simply editing this file. The procedures are:

logical function AWE getMdiMode ()

This function controls whether windows opened in AWE will appear inside a single
"frame" window or whether they open as individual windows. The default is to open
windows inside the frame.

logical function AWE getShowMaximized()

This function can be used to open the AWE window already maximized. The default is
.false..

logical function AWE promptSaveOnExit ()

This function controls whether AWE prompts to save the output window(s) at program
exit. If this prompt is disabled, the contents of the window(s) will be lost if not explicitly
saved. The default is to display a prompt to save the output.

integer function AWE getMainWindowWidth ()

This function controls the initial width of the window. The default is 1024.

integer function AWE getMainWindowHeight ()

This function controls the initial height of the window. The default is 768.

integer function AWE defaultFontSize()

This function controls the height of the font use in the window. The default is 10.
subroutine AWE defaultFontFamily(family)

This subroutne controls the family of the font use in the window. The default is “sans”.

logical function AWE autoSave ()

This function controls whether the window text is automatically saved when the program
exits. If this function returns . true., the content of any windows will be automatically
saved to files with the names of the windows. The default is . false..

Absoft Window Environment 83

OPENING ADDITIONAL TEXT WINDOWS

Additional text windows can be created with the Fortran oPEN statement setting the
ACCESS= specifier to:

"window [, height, width]"

The optional arguments, height and width, are integers which specify the dimensions
of the window in pixels. The window title will be the argument of the F1LE= specifier of
the opEN statement. For example:

OPEN (15, FILE="my window”, ACCESS="window, 800, 400”)

AWE MENUS

You can add your own menus and callback subroutines to an AWE application. After
adding all of your menu commands and connecting them to callback subroutines, you
exit your program normally. Then, when a menu command is chosen, your callback
subroutine is entered. This section describes the functionality that is available. The
interfaces indicate these are integer functions. They do not return any useful information
and the result can be discarded.

interface
integer function AWEaddMenu (unit, title, text, callback)
integer (kind=any) :: unit
character (len=*) :: title, text
external :: callback

end function AWEaddMenu
end interface

unit is Fortran unit number used to open the window. The unit number of the default
input/output window is -2. title is the name of the menu and text is the name of the
menu command. callback is the name of a subroutine in your program that is called
when the menu command is selected.

interface
integer function AWEsetItemCheckable (unit, title, text, flag)
integer (kind=any) :: unit
character (len=*) :: title, text
logical (kind=4) :: flag

end function AWEsetMenultemCheckable
end interface

unit is Fortran unit number used to open the window. The unit number of the default
input/output window is -2. title is the name of a previously added menu and text is the
name of a previously added menu command. The menu command will be checkable if
flagis.true..

Fortran User Guide

84 Absoft Window Environment

interface
integer function AWEsetItemCheck (unit, title, text, flag)
integer (kind=any) :: unit
character (len=*) :: title, text
logical (kind=4) :: flag

end function AWEsetItemCheck
end interface

unit is Fortran unit number used to open the window. The unit number of the default
input/output window is -2. title is the name of a previously added menu and text is the
name of a previously added menu command. The menu command must also have been
specified in a previous AWEsetMenuItemCheckable reference. The menu command will
be checked if flag is .true.. The menu command will be unchecked if flag is
.false..

interface
integer function AWEsetItemEnable (unit, title, text, flag)
integer (kind=any) :: unit
character (len=*) :: title, text
logical (kind=4) :: flag

end function AWEsetItemEnable
end interface

unit is Fortran unit number used to open the window. The unit number of the default
input/output window is -2. title is the name of a previously added menu and text is the
name of a previously added menu command. The menu command will be enabled if £1ag
1S . true.. The menu command will be disabled if f1agis .false..

ALERT BOXES
An alert box can be displayed with the following function:

interface
integer function AWEalertBox (title, text)
character (len=*) :: title, text

end function AWE alertBox
end interface

title is used as the title of the alert box text is the text that will be displayed in it.

CHAPTER 8

Interfacing With Other Languages

This chapter discusses interfacing Absoft Pro Fortran with the C Programming Language
and assembly language, debugging programs, and profiling executables. Although
Fortran programs can call C functions easily with just a cALL statement, the sections
below should be read carefully to understand the differences between argument and data

types.

INTERFACING WITH C

Absoft Pro Fortran is designed to be fully compatible with the implementation of the
standard C Programming Language provided on Linux. The linker can be used to freely
link C modules with Fortran main programs and vice versa. However, some precautions
must be taken to ensure proper interfacing. Data types in arguments and results must be
equivalent. The case of global symbols C is significant. The symbolic names of external
procedure must match in case.

86 Interfacing With Other Languages

Fortran Data Types in C

Declarations for Fortran data types and the equivalent declarations in C are as follows:

Fortran C
LOGICAL*1 1 unsigned char 1;
LOGICAL*2 m unsigned short m;
LOGICAL*4 n unsigned long n;
CHARACTER*n c char c[n];
INTEGER*1 1 orBYTE i char 1i;
INTEGER*2 short 7;
INTEGER*4 k int k;
long k%
INTEGER*8 1 long long 1;
REAL*4 a float a;
REAL*8 d double d;
COMPLEX*8 c struct complx {
float x;
float y;
}i
struct complx c;
COMPLEX*16 d struct dcomp {
double x;
double y;
}i
struct dcomp d;

1. On 64-bit systems, long is equivalent to INTEGER*8.

The storage allocated by the C language declarations will be identical to the storage
allocated by the corresponding Fortran declaration.

There are additional precautions when passing Fortran strings to C routines. See the
section Passing Strings to C later in this chapter for more information.

Required Compiler Options
FORTRAN 77 code should be compiled with the following options:
-f fold symbols to lower case

-s use static storage
-N90 use g77 CHARACTER argument protocols

Interfacing With Other Languages 87

Fortran 90 code should be compiled with the following options:

-YEXT_NAMES=LCS fold symbols to lower case
-s use static storage
-YCFRL=1 use g77 CHARACTER argument protocols

C code does not have to be compiled with any special options for the C compiler.

Rules for Linking

When linking Fortran and C programs, the £77 or £90 compiler driver should be used so
that the appropriate Fortran and C libraries are included in the final application. The
following command will compile the file £1. £ with the FORTRAN 77 compiler and the
file c1.c with the C compiler. It will then link the two resulting object files along with
ol.o and the appropriate libraries to generate an executable application named exec:

£f77 —o exec fl.f cl.c ol.o

If object files or libraries that have been built with g77 are used, the g77 runtime library
should be specified as either: -1f2c or -1g2c depending on your version of Linux.
Further, current information can be obtained in the technical support section at the Absoft
web site: www.absoft.com.

Passing Parameters Between C and Fortran

The Absoft Pro Fortran compilers use the same calling conventions as the C
programming language. Therefore, a Fortran routine may be called from C without being
declared in the C program and vice versa, if the routine returns all results in parameters.
Otherwise, the function must be typed compatibly in both program units. In addition, care
must be taken to pass compatible parameter types between the languages. Refer to the
table earlier in this chapter.

Reference parameters

By default, all Fortran arguments to routines are passed by reference, which means
pointers to the data are passed, not the actual data. Therefore, when calling a Fortran
procedure from C, pointers to arguments must be passed rather than values. Both integer
and floating point values may be passed by reference. Consider the following example:

SUBROUTINE SUB(a_ dummy, i dummy)
REAL*4 a_ dummy
INTEGER*4 1 dummy

WRITE (*,*) 'The arguments are ',a dummy, ' and ', i dummy

RETURN
END

Fortran User Guide

88 Interfacing With Other Languages

The above subroutine is called from Fortran using the caLL statement:

a_actual = 3.3

i actual = 9

CALL SUB(a_actual, i actual)
END

However, to call the subroutine from C, the function reference must explicitly pass
pointers to the actual parameters as follows:

int main ()

{
float a actual;
int i actual;

void SUB();
a_actual = 3.3;
i actual = 9;

SUB (&a_actual, &i_actual) ;
return O;

Note that the values of the actual parameters may then be changed in the Fortran
subroutine with an assignment statement or an I/O statement.

When calling a C function from Fortran with a reference parameter, the C parameters are
declared as pointers to the data type and the Fortran parameters are passed normally:

PROGRAM convert to radians

WRITE (*,*) 'Enter degrees:'

READ (*,*) c

CALL C_RAD(C)

WRITE (*,*) 'Equal to ',c,' radians'
END

void C_RAD(c)

float *c;

{
float deg to rad = 3.14159/180.0;
*c = *c * deg to rad;

Interfacing With Other Languages 89

Value parameters

Absoft Pro Fortran provides the intrinsic function %vaL () for passing value parameters.
Function interfaces may also be used to specify which arguments to pass by value.
Although it is generally pointless to pass a value directly to a Fortran procedure, these
functions may be used to pass a value to a C function. The following is an example of
passing a 4-byte integer:

WRITE (*,*) 'Enter an integer:'
READ (*,*) 1

CALL C_FUN(VAL(i))

END

void C_FUN (i)

int 1i;
{
printf ("%d is ",1i);
if (1 % 2 == 0)
printf ("even.\n");
else

printf ("odd.\n");
}

The value of i will be passed directly to c_run, and will be left unaltered upon return.
Value parameters can be passed from C to Fortran with use of the vALUE statement. The
arguments that are passed by value are simply declared as VALUE.

void C_FUN ()

{
void FORTRAN_SUB();
int 1i;

FORTRAN_SUB (1) ;

SUBROUTINE FORTRAN SUB (i)
VALUE 1

END

Note that C will pass all floating-point data as double precision by default, and that the
only Fortran data type that cannot be passed by value is CHARACTER.

Fortran User Guide

90 Interfacing With Other Languages

Array Parameters

One-dimensional arrays can be passed freely back and forth as both language
implementations pass arrays by reference. However, since C and Fortran use different
row/column ordering, multi-dimensional arrays cannot be easily passed and indexed
between the languages.

INTEGER ia(10)

CALL C FUN(ia)

WRITE (*,*) ia

END

void C_FUN (1)
int 1i[];
{
int j;
for (i=0; 3<10; Jj++)
il31=3s
}

Function Results

In order to obtain function results in Fortran from C language functions and vice versa,
the functions must be typed equivalently in both languages: either INTEGER, REAL, or
DOUBLE PRECSION. All other data types must be returned in reference parameters. The
following are examples of the passing of function results between Fortran and C. The
names are case-sensitive, so trying to call cmax, for example, will result in an error at link
time.

A call to C from Fortran

PROGRAM callc
INTEGER*4 CMAX, A, B

WRITE (*,*) 'Enter two numbers:'

READ (*,*) A, B

WRITE (*,*) 'The largest of', A, ' and', B, ' is ', CMAX(A,B)
END

Interfacing With Other Languages 91

A call to Fortran from C

main ()

{
float QT TO LITERS(), gt;

printf ("Enter number of quarts:\n");
scanf ("%f",&qt);
printf ("$f quarts = %f liters.\n", gt, QT TO LITERS(&qt));

REAL*4 FUNCTION QT TO LITERS (q)
REAL*4 q;

QT TO LITERS = g * 0.9461;
END

Passing Strings to C

Fortran strings are a sequence of characters padded with blanks out to their full fixed
length, while strings in C are a sequence of characters terminated by a null character.
Therefore, when passing Fortran strings to C routines, you should terminate them with a
null character. The following Fortran expression will properly pass the Fortran string
string to the C routine CPRINT:

PROGRAM cstringcall
character*255 string

string = 'Moscow on the Hudson'
CALL CPRINT (TRIM(string)//CHAR(0))
END

void CPRINT (anystring)
char *anystring;
{
printf ("%s\n",anystring);

}

This example will neatly output “Moscow on the Hudson”. If the TRIM function were
not used, the same string would be printed, but followed by 235 blanks. If the cHAR (0)
function was omitted, C would print characters until a null character was encountered,
whenever that might be.

Fortran User Guide

92 Interfacing With Other Languages

You can also take advantage of the string length arguments that Fortran passes. After the
end of the formal argument list, Fortran passes (and expects) the length of each
CHARACTER argument as a 32-bit integer value parameter. For example:

SUBROUTINE FPRINT (string)
character* (*) string
print *, string

END

#include <string.h>

int main ()

{

char string[] = {”Moscow on the Hudson”};
void FPRINT (char *, int):;

FPRINT (string, strlen(string));
return 0;

Calling Fortran math routines

All of the Fortran intrinsic math functions which return values recognized by the C
Programming Language can be called directly from C as long as the Fortran run time
library, 1ibf77math.a, is linked to the application.

Taking the intrinsic function names in lower case and adding two underscores to the
beginning forms the names of the functions that can be called.

The following example calls the Fortran intrinsic function s1n directly from C:

main ()

{

float sin of a, a, _ sin();

a = 3.1415926/6;
sin of a = sin(a);

Naming Conventions

Global names in Fortran include all procedure names and comvon block names, both of
which are significant to 31 characters. All global procedure names are folded to lower
case and have a single underscore (“) appended unless the compiler character case and
symbol decoration options are used. All common block names are folded to lower case and
have the characters “ C” prepended unless the compiler character case and symbol
decoration options are used. All other symbols are manipulated as addresses or offsets
from local labels and are invisible to the linker.

Interfacing With Other Languages 93

Procedure Names

Names of functions and subroutines in Fortran programs will appear in the assembly
language source output or object file records with their names folded to lower case and
with a single underscore (“ ”) appended. Symbolic names in the C language are case
sensitive, distinguishing between upper and lower case characters. To make FORTRAN
code compatible with C, use the -YEXT NAMES=ASIS and -YEXT SFX="" options,
the 'DIR$S NAME directive, or the BIND attribute.

Accessing COMMON blocks from C

comMoN block names are global symbols formed in Absoft Pro Fortran folding the name
of the common block to lower case and then prepending the characters “ ¢ to the name
of the common block. The elements of the common block can be accessed from C by
declaring an external structure using this name. For example, the common block

COMMON /comm/ a,b,c

can be accessed with the C declaration:

extern struct {
float a;
float b;
float c;

} _Ccomm;

Declaring C Structures in Absoft Pro Fortran

If there are equivalent data types in FORTRAN for all elements of a C structure, a
RECORD can be declared in FORTRAN to match the structure in C:

C FORTRAN

struct str { STRUCTURE /st r/

char c; CHARACTER c

long |; | NTEGER* 4 |

float f; REAL* 4 f

doubl e d; REAL*8 d

}; END STRUCTURE

struct str ny_struct; RECORD /str/ ny_struct

By default, the alignment of the C structure should be identical to the FORTRAN
RECORD. Refer to the Specification and DATA Statements chapter of the FORTRAN 77
Language Reference Manual for more information on the FORTRAN RECORD type.

Fortran User Guide

94 Interfacing With Other Languages

INTERFACING WITH ASSEMBLY LANGUAGE

This section discusses how arguments and results are passed on the stack and in registers.

The Fortran Stack Frame

The addresses of arguments to a Fortran procedure are passed in a right to left order on
the ESP the stack. The lengths of character arguments are passed as 32 bit integers above
these addresses. On entry to a Fortran procedure, the stack frame is defined as follows:

Subroutine declaration: SUBROUTINE sub(arg 1, ... ,arg n)
4+ ((n*4)+(4*(n-1))+(esp)) | length of character arg n |
44+ ((n*4)+ (esp)) length of character arg 1
4+ (((4*(n-1))+ (esp)) address of arg n
4+ (esp) | address of arg 1

argument position =
length position =

4+ ((m-1) * 4)
44+ (n* 4+ 4+ (m-1) * 4)
where: m= argument number

n = total arguments

The Fortran Stack Frame

Value arguments for all data types are passed in the stack frame beginning at the
argument position described above and extending as far as they need to. Value arguments
that are less than four bytes in length are extended to four bytes before they are passed.
The stack is always aligned to a sixteen byte boundary.

Space for CHARACTER and derived type function results is passed as if it were an extra
argument at the beginning of the argument list. For example, the following two calls are
equivalent in respect to how arguments are passed to the external function or subroutine:

CHARACTER*10 funct, arg, result
EXTERNAL sub

result = funct (argument)
CALL sub (result,argument)

Interfacing With Other Languages 95

Function Results

Absoft Pro Fortran returns all numeric and logical function registers. Floating point
results are returned in st (0) or st (0) and st (1). Integer and logical results are returned
in EAX. POINTER results are also returned in EAX.

CHARACTER and derived type results cannot be returned in registers. Since space for the
result is passed in as the first argument, no result need be returned. RECORD results are
returned in the same fashion except that Eax is set to point the returned structure.

DEBUGGING

Debugging a Fortran program is accomplished with the Absoft source-level debugger,
Fx3™. This is a multi-language, windowed debugger designed especially for Linux
based computers. The operation of the debugger is detailed in the document, Fx3
Debugger User Guide. The following paragraphs describe the compiler options and
resources necessary to prepare a program for debugging.

Compiler Options

The -g compiler option directs the compiler to add symbol and line number information
to the object file. This option should be enabled for each source file that you will want to
have source code displayed while debugging. It is not required for files that you are not
interested in.

It is recommended that all optimization options be disabled while debugging. This is
because the optimizers can greatly distort the appearance and order of execution of the
individual statements in your program. Code can be removed or added (for loop
unrolling), variables may be removed or allocated to registers (making it impossible to
examine or modify them), and statements may be executed out of order.

PROFILING

The Linux operating system includes the libraries and tools necessary to obtain procedure
level profiles of your application. You simply create an instrumented version of your
application (see Compiler Options below) and then execute it. The file gmon.out will
automatically be created. Use gprof'to display and analyze the results.

Compiler Options

The -P compiler option directs the compiler to add the symbol information to the object
file necessary to profile an application. Enabling this option will allow the application to
report the number of times a particular subroutine is called or a function is referenced.

All other options that you would normally use should be enabled, including optimization.

Fortran User Guide

Appendix A

Absoft Compiler Option Guide

This appendix summarizes general options for Absoft Fortran compilers and specific
options for the Absoft Fortran 90/95 and FORTRAN 77 compilers. Refer to the chapter,
Using the Compilers for detailed descriptions of the options

ABSOFT FORTRAN COMPILER OPTIONS

Option
-#HHE

-C

-Cpp
-no-cpp
-9
-Lpath

-lname

-0
-0 name

-fPIC

-P

-S

-S

-u

-V
--version
-v

-w
-Xoption

-static

Effect

Show what would be done, but do not actually execute anything.

suppresses creation of an executable file — leaves compiled files in
object code format.

always run C pre-processor regardless of file extension

never run C pre-processor

generates symbol information for Fx3™".
library file search path specification.

library file specification.

basic optimization. equivalent of —O2.

directs the compiler to produce an executable file called name
where name is a file name.

generate position independent code.

instrument executable for profiling.

generates an assembly language output file.

allocate local variables statically.

undefine a symbol to the linker.

causes the £77 compiler to display its version number.

causes the £77 compiler to display its version number.

directs the compiler to print status information as the compilation
process proceeds.

suppresses listing of all compile-time warning messages.

linker option.

disable dynamic linking of executable

98 Exceptions and IEEE Arithmetic

FPU CONTROL OPTIONS
-OPT:roundoff=# Set the level of acceptable rounding (# can be 0,1,2, or 3)

-TENV:simd._...

0 - Turn off optimizations that may be harmful to floating point
calculations.

1 - Allow simple optimization that may affect floating point
accuracy.

2 - Allow more extensive optimization that may affect floating point
accuracy.

3 - Allow all optimizations affecting floating point accuracy.

Controls floating point exception traps. Valid options are:

simd_imask — Invalid operation exception.

simd dmask — Denormalized operand exception.
simd_zmask — Divide by zero exception.

simd omask — Overflow exception.

simd umask — Underflow exception.

simd pmask - Precision exception.

PROCESSOR SPECIFIC OPTIONS

-cpu:type

-march=type
-mtune=type
-mcpu=type

This option is deprecated, please use —march, -mtune or -mcpu
instead.

Processor specific optimization. Valid values for type are:

anyx86 — Intel Pentium, Pentium II, or Pentium III

athlon — AMD Athlon or Duron

pentium4 — Intel Pentium 4

xeon — Intel Xeon

em64t — Intel Pentium 4 with EM64T

opteron, athlon64fx — AMD Opteron or Athlon 64 Fx

athlon64 — AMD Athlon 64

host - automatically establishes type based on the processor in the
machine that the program is compiled with. If host cannot be
determined anyx86 is used.

AMD AND INTEL 64-BIT PROCESSOR SPECIFIC OPTIONS

-mcmodel=type code generation memory size model. Valid types are small or

-m32
-m64

medium
generate 32-bit code.
generate 64-bit code.

FORTRAN 90/95 CONTROL OPTIONS

Exceptions and IEEE Arithmetic 99

-OPT:alias=...

--version
-V

-w
-msse2
-msse3
-mx87-precision=

Specify pointer aliasing model to be used. Valid arguments are:

typed — Assumes that pointers of different types cannot point to
the same memory location.

restrict — Distinct pointers are assumed to point to non-
overlapping memory locations.

disjoint — Assume that any two pointer expressions point to
disctint, non-overlapping objects.

append trailing underscores to procedure names.
Allow more than 100 error diagnostics.

Causes the £95 compiler to abort the compilation process on the
first error that it encounters.

Causes the compiler to issue a warning whenever the source code
contains an extension to the Fortran 90/95 standard.

Default recursion

Generates symbol information for Fx' ™.

Suppresses messages by message number.

Suppresses messages by message level.

Instrument executable for profiling.

Causes the £95 compiler to display its version number.
Causes the £95 compiler to display its version number.
Directs the compiler to print status information as the
compilation process proceeds

Suppresses listing of all compile-time warning messages.
Enable SSE2 extension.

Enable SSE3 extension.

Specify the precision of x87 floating-point calculations. Value
can be 32,64 or 80.

FORTRAN OPTIMIZATION OPTIONS

-Hnn set loop unrolling limit.

-hnn set loop unrolling factor.

-U enable default loop optimization.

-ipa turn on inter-procedural analysis (IPA).

-fl[no-]fast-math turn on fast math.

-01 enables basic optimization.
-02 enables block level optimization.
-03 enables advanced optimization.

Fortran User Guide

100 Exceptions and IEEE Arithmetic

-Ofast enables advanced optimization and IPA linking.
-speed_math=# enables math optimizations which may improve performance at the
expense of accuracy. valid arguments are 0-11.

FORTRAN 90/95 SOURCE FORMAT OPTIONS

-fform sets the form of the source file to free, fixed, or alt_fixed.
-Wn sets the line length of source statements accepted by the compiler in
Fixed-Form source format.

FORTRAN 90/95 COMPATIBILITY OPTIONS

-dp causes variables declared in a DOUBLE PRECISION statement and
constants specified with the b exponent to be converted to the default
real kind.

-ej causes all po loops to be executed at least once, regardless of the
initial value of the iteration count.

-in set default integer size to n (2 or 8) bytes.

-N113 set default real size to 8 bytes (kIND=8).

-ppath specify module search path

-S allocate local variables statically

-Rb generate code to check array boundaries.

-Rc generate code to validate substring indexes.

-Rp generate code to check for null pointers.

-Rs generate code check array conformance.

-tn this option increases the default temporary string size to 1024x102
bytes.

-xdirective disable compiler directive in the source file.

-YCFRL forces the compiler to pass g77/f2c compatible CHARACTER
arguments.

-YCOM_NAMES specify common block names externally in upper or lower case.

-YCOM_PFX specify common block external name prefix.

-YCOM_SFX specify common block external name suffix.

-YCSLASH directs the compiler to transform certain escape sequences marked
with a °\” embedded in character constants.

-YEXT_NAMES Specify procedure names externally in upper, lower, or mixed case.

-YEXT_PFX Specify procedure external name prefix.

-YEXT_SFX Specify procedure external name suffix.

-YMS7D Recognize Microsoft style compiler directives beginning with a ‘$’
in column 1.

-YNDFP disallow the use of a ‘.’ as a structure field separator.

-YPEI pointers are Equivalent to Integers allows a Cray-style pointer to be

manipulated as an integer.
-trapuv trap uninitialized variables.

Exceptions and IEEE Arithmetic 101

=Zerouv

set uninitialized variables to zero.

FORTRAN 77 CONTROL OPTIONS

-OPT:alias=...

-B108

-N90

-P
-Tnn

-tnn

Specify pointer aliasing model to be used. Valid arguments are:

typed — Assumes that pointers of different types cannot point to the

same memory location.

restrict — Distinct pointers are assumed to point to non-overlapping

memory locations.

disjoint — Assume that any two pointer expressions point to disctint,
non-overlapping objects.

add one trailing underscore to symbol names without an underscore
and two trailing underscores to symbol names that already contain
an underscore.

generates code to check that array indexes are within array bounds -
file names and source code line numbers will be displayed with all
run time error messages

used to define conditional compilation variables from the command
line (-D name[=value]) — if value is not present, the variable
is assigned the value of 1

generates symbol information for Fx' ™.

specify path to search for tncLUDE files.

directs the compiler to issue a warning whenever the source code
contains an extension to the ANSI FORTRAN 77 standard
check syntax only.

forces the compiler to pass g77/£2c compatible CHARACTER
arguments.

instrument executable for profiling.

used to change the number of handles used internally by the
compiler.

modifies the default temporary string size to nn bytes from the
default of 1024 bytes

directs the compiler to print status information as the compilation
process proceeds

suppresses listing of all compile-time warning messages

replaces any occurrence of X or D in column one with a blank
character: allows a restricted form of conditional compilation

Fortran User Guide

102

Exceptions and IEEE Arithmetic

FORTRAN 77 SOURCE FORMAT OPTIONS

-8

-W

directs the compiler to accept source code written in Fortran 90/95
Free Source Form

directs the compiler to accept statements which extend beyond
column 72 up to column 132

FORTRAN 77 COMPATIBILITY OPTIONS

-B108

-cpp
-no-cpp
-d

-N22

-N26

-N27

-N109
-N113

add one trailing underscore to symbol names without an underscore
and two trailing underscores to symbol names that already contain
an underscore.

always run C pre-processor regardless of file extension

never run C pre-processor

causes all DO loops to be executed at least once, regardless of the
initial value of the iteration count (FORTRAN 66 convention)
folds all symbolic names to lower case

changes the default storage length of INTEGER from 4 bytes to n
(2 or 8).

directs the compiler to transform certain escape sequences marked
with a °\” embedded in character constants

don’t mangle common block names with leading ““ ¢”

force the compiler to consider the byte ordering of all unformatted
files to be big-endian by default

force the compiler to consider the byte ordering of all unformatted
files to be little-endian by default

folds all symbolic names to UPPER CASE

changes REAL and COMPLEX data types without explicit length
declara-tion to DOUBLE PRECISION and DOUBLE COMPLEX
forces all program storage to be treated as static: see -N1 also

Appendix B

ASCII Table

103

ASCII codes 0 through 31 are control codes that may or may not have meaning on Linux.
They are listed for historical reasons and may aid when porting code from other systems.
Codes 128 through 255 are extensions to the 7-bit ASCII standard and the symbol
displayed depends on the font being used; the symbols shown below are from the Times
New Roman font. The Dec, Oct, and Hex columns refer to the decimal, octal, and
hexadecimal numerical representations.

Character Dec Oct Hex Description
NULL 0 000 00 null

SOH 1 001 01 start of heading
STX 2 002 02 start of text
ETX 3 003 03 end of text
ECT 4 004 04 end of trans
ENQ 5 005 05 enquiry

ACK 6 006 06 acknowledge
BEL 7 007 07 bell code

BS 8 010 08 back space

HT 9 011 09 horizontal tab
LF 10 012 0A line feed

VT 11 013 0B vertical tab

FF 12 014 0C form feed

CR 13 015 0D carriage return
SO 14 016 OE shift out

SI 15 017 OF shift in

DLE 16 020 10 data link escape
DC1 17 021 11 device control 1
DC2 18 022 12 device control 2
DC3 19 023 13 device control 3
DC4 20 024 14 device control 4
NAK 21 025 15 negative ack
SYN 22 026 16 synch idle

ETB 23 027 17 end of trans blk
CAN 24 030 18 cancel

EM 25 031 19 end of medium
SS 26 032 1A special sequence
ESC 27 033 1B escape

FS 28 034 1C file separator
GS 29 035 1D group separator
RS 30 036 1E record separator
UsS 31 037 IF unit separator

Character Dec Oct Hex Description
32 040 20 space

! 33 041 21 exclamation

" 34 042 22 quotation mark

35 043 23 number sign

$ 36 044 24 dollar sign

% 37 045 25 percent sign

& 38 046 26 ampersand

! 39 047 27 apostrophe

(40 050 28 opening paren

) 41 051 29 closing paren

* 42 052 2A asterisk

+ 43 053 2B plus

s 44 054 2C comma

- 45 055 2D minus

. 46 056 2E period

/ 47 057 2F slash

0 48 060 30 Zero

1 49 061 31 one

2 50 062 32 two

3 51 063 33 three

4 52 064 34 four

5 53 065 35 five

6 54 066 36 six

7 55 067 37 seven

8 56 070 38 eight

9 57 071 39 nine

: 58 072 3A colon

; 59 073 3B semicolon

< 60 074 3C less than

= 61 075 3D equal

> 62 076 3E greater than

? 63 077 3F question mark

Fortran User Guide

104 ASCII Table

Character Dec Oct Hex Description Character Dec Oct Hex
@ 64 100 40 commercial at ~ 126 176 7E
A 65 101 41 upper case letter 127 177 7F
B 66 102 42 upper case letter a 128 200 80
C 67 103 43 upper case letter O 129 201 81
D 68 104 44 upper case letter , 130 202 82
E 69 105 45 upper case letter f 131 203 83
F 70 106 46 upper case letter » 132 204 84
G 71 107 47 upper case letter 133 205 85
H 72 110 48 upper case letter T 134 206 86
I 73 111 49 upper case letter iy 135 207 87
J 74 112 4A upper case letter " 136 210 88
K 75 113 4B upper case letter %0 137 211 89
L 76 114 4C upper case letter S 138 212 8A
M 77 115 4D upper case letter < 139 213 8B
N 78 116 4E upper case letter E 140 214 8C
(0] 79 117 4F upper case letter O 141 215 8D
P 80 120 50 upper case letter a 142 216 8E
Q 81 121 51 upper case letter O 143 217 8F
R 82 122 52 upper case letter a 144 220 90
S 83 123 53 upper case letter ¢ 145 221 91
T 84 124 54 upper case letter ’ 146 222 92
U 85 125 55 upper case letter «“ 147 223 93
\% 86 126 56 upper case letter ” 148 224 94
w 87 127 57 upper case letter . 149 225 95
X 88 130 58 upper case letter - 150 226 96
Y 89 131 59 upper case letter — 151 227 97
Z 90 132 S5A upper case letter 152 230 98
[91 133 5B opening bracket ™ 153 231 99
\ 92 134 5C back slash § 154 232 9A
] 93 135 5D closing bracket > 155 233 9B
~ 94 136 SE circumflex o« 156 234 9C
_ 95 137 SF underscore O 157 235 9D
’ 96 140 60 grave accent a 158 236 9E
a 97 141 61 lower case letter Y 159 237 9F
b 98 142 62 lower case letter 160 240 A0
c 99 143 63 lower case letter i 161 241 Al
d 100 144 64 lower case letter ¢ 162 242 A2
e 101 145 65 lower case letter £ 163 243 A3
f 102 146 66 lower case letter o 164 244 A4
g 103 147 67 lower case letter ¥ 165 245 A5
h 104 140 68 lower case letter | 166 246 A6
i 105 151 69 lower case letter § 167 247 A7
j 106 152 6A lower case letter N 168 250 A8
k 107 153 6B lower case letter © 169 251 A9
1 108 154 6C lower case letter N 170 252 AA
m 109 155 6D lower case letter « 171 253 AB
n 110 156 6E lower case letter - 172 254 AC
0 11 157 6F lower case letter - 173 255 AD
p 112 160 70 lower case letter ® 174 256 AE
q 113 161 71 lower case letter h 175 257 AF
r 114 162 72 lower case letter ° 176 260 BO
] 115 163 73 lower case letter + 177 261 Bl
t 116 164 74 lower case letter 2 178 262 B2
u 117 165 75 lower case letter 3 179 263 B3
v 118 166 76 lower case letter ’ 180 264 B4
w 119 167 77 lower case letter u 181 265 B5
X 120 170 78 lower case letter bl 182 266 B6
y 121 171 79 lower case letter : 183 267 B7
z 122 172 TA lower case letter s 184 270 B8
{ 123 173 7B opening brace ! 185 271 B9
| 124 174 7C vertical bar ° 186 272 BA
} 125 175 7D closing brace » 187 273 BB

tilde
delete

Fortran User Guide

ASCII Table 105

Character Dec Oct Hex
Vi 188 274 BC
Vs 189 275 BD
% 190 276 BE
i 191 277 BF
A 192 300 Co
A 193 301 Cl
A 194 302 C2
A 195 303 C3
A 196 304 C4
A 197 305 C5
&£ 198 306 C6
C 199 307 Cc7
E 200 310 C8
E 201 311 C9
B 202 312 CA
B 203 313 CB
i 204 314 CcC
i 205 315 CD
i 206 316 CE
| 207 317 CF
$5) 208 320 DO
N 209 321 D1
6) 210 322 D2
o) 211 323 D3
0] 212 324 D4
o) 213 325 D5
o) 214 326 D6
x 215 327 D7
1] 216 330 D8
U 217 331 D9
U 218 332 DA
U 219 333 DB
U 220 334 DC
Y 221 335 DD
Character Dec Oct Hex
b 222 336 DE
B 223 337 DF
a 224 340 EO
a 225 341 El
a 226 342 E2
a 227 343 E3
i 228 344 E4
a 229 345 E5
@ 230 346 E6
¢ 231 347 E7
¢ 232 350 ES8
é 233 351 E9
8 234 352 EA
g 235 353 EB
i 236 354 EC
i 237 355 ED
i 238 356 EE
i 239 357 EF
3 240 360 FO
fi 241 361 F1
o 242 362 F2
6 243 363 F3
o 244 364 F4
3 245 365 F5
& 246 366 F6
- 247 367 E7
2 248 370 F8

At o ni S et N = -

249
250
251
252
253
254
255

371
372
373
374
375
376
377

F9

FA
FB
FC
FD
FE
FF

Fortran User Guide

107

Appendix C

Bibliography

FORTRAN 90/95

These books and manuals are useful references for the Fortran 90/95 programming
language and the floating point math format used by Absoft Pro Fortran on Linux.

Michael Metcalf and John Reid, FORTRAN 90/95 explained, Oxford University Press
(1996)

Walter S. Brainerd, Charles H. Goldberg, and Jeanne C. Adams, Programmer’s Guide to
Fortran90, Unicomp, Inc (1994)

Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, and Brian T. Smith, Fortran Top
90, Unicomp, Inc (1994)

James F. Kerrigan, Fortran 90, O’Reilly & Associates, Inc (1993)

American National Standard Programming Language Fortran 90, X3.198-1991, ANSI,
1430 Broadway, New York, N.Y. 10018

COMPUTER, 4 Proposed Standard for Binary Floating-Point Arithmetic, Draft 8.0 of
IEEE Task P754, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720 (1981)

FORTRAN 77

These books and manuals are useful references for the FORTRAN language and the
floating point math format used by Absoft Pro Fortran on Linux.

Page, Didday, and Alpert, FORTRAN 77 for Humans, West Publishing Company (1983)
Kruger, Anton, Efficient FORTRAN Programming, John Wiley & Sons, Inc. (1990)

Loren P. Meissner and Elliot 1. Organick, FORTRAN 77, Addison-Wesley Publishing
Company (1980)

Harry Katzan, Jr., FORTRAN 77, Van Nostrand Reinhold Company (1978)

JN.P. Hume and R.C. Holt, Programming FORTRAN 77, Reston Publishing Company,
Inc. (1979)

Fortran User Guide

108 ASCII Table

Harice L. Seeds, FORTRAN 1V, John Wiley & Sons (1975)

Jehosua Friedmann, Philip Greenberg, and Alan M. Hoftberg, FORTRAN 1V, A Self-
Teaching Guide, John Wiley & Sons, Inc. (1975)

James S. Coan, Basic FORTRAN, Hayden Book Company (1980)

American National Standard Programming Language FORTRAN, X3.9-1978, ANSI,
1430 Broadway, New York, N.Y. 10018

COMPUTER, 4 Proposed Standard for Binary Floating-Point Arithmetic, Draft 8.0 of
IEEE Task P754, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720 (1981)

M. Abramowitz and L.E. Stegun, Handbook of Mathematical Functions, U.S. Department
of Commerce, National Bureau of Standards (1972)

Fortran User Guide

109

Appendix D

speed math option

The -speed_math=n option enables aggressive math optimizations that may improve
performance at the expense of accuracy. Valid arguments for n are 0-11. The
following table describes the effect of each level:

effect

enable wrap around optimization

allow relational operator folding; may cause signed integer overflow
enable partial redundancy elimination for loads and stores

enable memory optimization for functions without aliased arrays
inline NINT and related intrinsics with limited-domain algorithm

use fast powf in libm instead of powf

use multiplication and square root for exp() where faster

allow optimizations that reassociate floating point operators

see notes below

allow use of reciprocal instruction; convert a/b to a*(1/b)

use fast algorithms with limited domains for complex norm and divide
use x*rsqrt(x) for sqrt(x) on machines where faster

dead casgn function elimination

10 use AMD ACML library if applicable

11 allow relational operator folding; may cause unsigned integer overflow
use IEEE rounding instead of Fortran rounding for NINT intrinsics
use IEEE rounding instead of Fortran rounding for ANINT intrinsics

A W= OIS

O 0 3 O\ n

NOTES:

A. Departure from strict rounding is applied at 3 levels: level 1 is applied at n=5,
level 2 is applied at n=7, and level 3 is applied at n=10.

B. Conformance to IEEE-754 arithmetic rules is relaxed at 2 levels: level 1 is
applied at n=6, level 2 is applied at n=10

C. At n=10, the loop unrolling constraints are modified: loop size is increased to
7000, limit is increased to 9, minimum iteration is decreased to 200.

Fortran User Guide

111

Appendix E

Technical Support

The Absoft Technical Support Group will provide technical assistance to all registered
users of current products. They will not answer general questions about operating
systems, operating system interfaces, graphical user interfaces, or teach programming.
For further help on these subjects, please consult this manual and any of the books and
manuals listed in the bibliography.

Before contacting Technical Support, please study this manual and the language
reference manuals to be sure your problem is not covered here. Specifically, refer to the
chapter Using the Compilers in this manual. To help Technical Support provide a quick
and accurate solution to your problem, please include the following information in any
correspondence or have it available when calling.

Product Information:

Name of product, version number, and serial number
Version number of the operating system

System Configuration:

Hardware configuration (processor, memory, etc.)
System software release (i.e. 4.0, 3.5, etc)
Any software or hardware modifications to your system

Problem Description:

What happens?
When does it occur?
Provide a small (20 line) step-by-step example if possible.

Contacting Technical Support:

Address: Absoft Corporation
Attn: Technical Support
2781 Bond Street
Rochester Hills, MI 48309

telephone: (248) 853-0095 9am - 3pm EST
FAX (248) 853-0108 24 Hours

email support@absoft.com 24 Hours
World Wide Web http://www.absoft.com

Fortran User Guide

Index

132 column source code.........ccovvvevvevevneeeenne.. 49, 65
64-bit AMD OPHONS.....ovvereieiiriieienieeienieeie e 42
Absoft address.........cccveevieeriieiieciiceeeeeee e, 111
ADbSOft EQItOr.......eeiiviiiiciiiicieeeeeeecee e 13

Absoft ToOISocovevveieeieieennee. ... 13,25
Absoft Window Environmentccccceceeveneennen. 81
ABSOFT RT FLAGSccoieieeene, 75
advanced optimizations...........cccceevveeververrennenne 45, 61
alignment
automatically align COMMONc.c....... 64
AMD OPLIONS ..ottt 41
array
boundary checking.........ccccoveeveniniencnnne.
ASCITADIE ..o
assembly 1anguageccoecevevieninienenieeeee
interfacing with FORTRAN ...
ATTRIBUTES directiveccceevereenienieesienieniennene
AWE Lo
basic optimizations
bookmarks...................
build configurations....
build example.............. .
building programs..........c.cceveveevieneenieneesienenienaens
function resultscccoeeeeverieneniieninieeeeene, 90
interfacing with FORTRAN (see interfacing
FORTRAN and C)
C PIEPIOCESSOT «.eneeeneieeieeeiieeneeeeeesneeeneesneeeeeesneens 39
check array boundaries59
comment SOUICEcc..cn..... 17
COMMON blocks from C93
COMMON, aligning data64
compiler directives.................... .54
ATTRIBUTES directive...... .56
FIXED directiveccccevueevenuennenne. .56
FIXEDFORMLINESIZE directive... ...56
FREE[FORM] directive.................... .55
NAME directive55
NOFREEFORM directive.... ...56
NOUNROLL directive57
STACK directive.............. .57
UNROLL directive.... .57
COMPILET OPLIONS ..ottt 97
-LNO
simd_verbose=on, vectorization results........ 48
- m64, 64-bit code generation.............ccceeuvennene. 42
-8, Fortran 90/95 .
-apo, automatic parallelization............c.ccccvennee.. 45
-awe, Absoft Window Environment 81
-B108, append underscore
-C, check boundariescccccoevveeeeinieeeciieeenns
-c, relocatable object.......ccvvveririeniieiereeienne,
-cpp, run C preprocessor .
-cpu, CPU specific optimization........................ 41
-D, define compiler variable...........ccccoereennenne. 60
-d, one trip DO loops .
-8 , SEOP OMN EITOT .. veueeeeeuieeetesieieieneeeeeteseeaeenene
-¢j, one trip DO 100PS ...veovveverierieiieieieeieenenne.
-en, non-standard usage .
-ep, demote Double Precision...........cccceeuenennee. 50
-eq, allow greater than 100 errors..........cccceueee. 43

-eR, default recursion..........ccccceoeeviveeveeeenneeenns 44
-et, exception tracebackc..coccevviiiininiinenn 40
-f, case fold
-f, case foldingcoceevverieneniiiiniiiccece 93
-f, fixed source form...........cocevvveevviiveecnreennenne. 48
-f, free source formccooeeieiiiiiiiiiieies 48
-fpic, position independent............c.cooevveeeennne 40
-g, debugging information..... ...40, 44, 59
-g, Fx debug@ingcccevvevierieiiniiieeeiee 67
-g77, 77 compatibilityccccoceeviriiniiniiiinnn 40
-H, operations to unroll .. .
-h, unroll count............... .46, 61
-1, integer Sizes
-1, set INCLUDE paths.......cccccceviniinieneniennenne. 60
-K, escape sequences.........cooeevveerieerieenieenneenne 64
-L, library path specification........c..ccccceceevuennnne 39
-1, library specification..........cccceevecvereeeeerreennnne 39
-LNO

verbose=on, parallelization results................ 48
-m, suppress messages
-M, suppress warning number...............ceevennene.
-m32, 32-bit code generationcoceeeevueneene
-mcmodel, code generation model
-mnosse2, disable SSE2 instructions.................. 46
-MS7D, Microsoft directivescccoeevuveennn.
-msse2, enable SSE2 instructions....
-msse3, enable SSE3 instructions......................
-msse41, enable SSE4.1 instructions.................. 47
-msse4a, enable SSE4a instructions....
-N1, Static StOTaZe ...ccvevvereeeierieeienieeierieeeieae
-N109, case fold.......c.ooovvviiivniieiiieeeeeeeeeeee
-N110, no Common mangling
-N113, floating point SiZes..........ccccouecerennene
-N15, append underscoreccceeveevvereeeeennenne
-N22, set Common name....
-N26, set big-endian..........ccceveevienienenenniennenne.
-N26, set little-endian............c..cccocvvveeeereennneennns
-N32, non-ANSI
-N34, align COMMONc.cccoeonimiminiinennenn
-N52, check syntax onlyc.cceceeveeveneeniennennee
-N90, CHARACTER argument parameters....... 59
-no-cpp, do not run C preprocessor............c....... 39
-nodefaultmod, MODULE path. 51
-0, executable file name
-O1, basic optimizationscceeceeevevennenn 45, 61
-02, advanced optimizations...........cccceeveeeenenne. 61
-02, normal optimizations
-03, advanced optimizations...........c..ccc...... 45, 61
-05, dynamic APcccvvivieiieieeeeeee 45
-openmp, enable OpenMP directives ..
-p, MODULE path
-P, profiling informationcc.ccccceeeuenee.
-Rb, check array conformance
-Rb, check boundaries...........c..ccoveieeiiieeiinens
-round=, FPU rounding mode
-Rp, check pointersccoeeuene
-Rs, check substrings......
-S, assembly language....
-8, static Storage............cuo... .
-safefp, safe floating-point..........ceceevevereenenne.
-speed_math=n, math optimizations 47,109

Fortran User Guide

Index

-strict_align, structure alignment....................... 50
-T, max internal handle
-t, teMPOrary Stringscocceceeereeeeeeeruennes
-trap=, FPU exception handling......................... 41
-U, loop unrolling .
-u, undefine symbol..........ccccevieiiininiininieee
-V, ShOW Progress.......cocevvvereerieneeeneneneenns
-V, show version
--version , ShOw VErsionccccceeevveeevveeneann.
-W, line length........cooeviiviiniinieiiicieieee

-w, suppress compiler warnings
-W, wide formatcocoveieiiiiiiiiieeeeeeenee,
-x , disable compiler directivecccceeerennneee
-X, conditional compilation
=X, linker OptionsS........ccceereirenienieieeecreeee
-YALL NAMES, symbolic names 53
-YCFRL=1, CHARACTER argument parameters
... 52
-YCOM_NAMES, COMMON block case........ 53
-YCOM_PFX, COMMON block prefix............ 53
-YCOM_SFX, COMMON block suffix............. 53
-YCSLASH=1, escape Sequences.............c........ 49
--YDATA REAL CONYV, do not convert BOZ54
-YEXT _NAMES, external symbol case............ 52
-YEXT PFX, external symbol prefix................ 52
-YEXT_SFX, external symbol suffix................ 53
-YMOD_OUT=DIR, MODULE output path 51
-YNDFP, type elements.........ccccocceveererenennennee 49
--YNO_CDEC, ignore CDECS directives......... 54
-YPEI, pointers equivalent to integers............... 54
-YVAR NAMES, variable names..................... 53
compiler version

compiling FORTRAN source code
complex data types

equivalent declarations in Cccceeeeerennnnee 86
conditional compilationc.ccecevveevecinininennenne. 59
conditional compilation variables..........c..c.cceeeenee. 60
continuation lines..........ccccccevervennen.68

conventions used in the manual.............c...cceeevrennee. 2

data initialization to zero 63
DATE subroutine.............. ... 68
debuggingccccceveruennee ...95

array bounds checking........ ...59

conditional compilation.........c..coceeveveeverinennennee 59
debugging information............. ..40, 44,59
default MODULE path......... ... 51
Developer Tools Interface25
divide by zero eXceptionsccccoeevevererenennennee 78
DO loops

ONE TTIP cevevienieiienteieeiete ettt et e teeee et enee e 63
DO Loops 50
dOCKS .o 26
documentation coONVentionsc.eceeeeveeerverereerenenn 2

escape sequences in strings......64

EXCEPHIONS ...vevveeieieieieieeneas40
divide by zero.... .. 78
operand error78
overflow 78

executable file name ..
extensions
key Microsoft FORTRAN........ccccoevnivinieinene 70

key Sun FORTRAN 0neS.....ccoccevirienienieinenncne.

key VAX FORTRAN ones

key VS FORTRAN 0neS......ccoeervirieieieirenncnen
extensions to FORTRAN 77cccceveviiienenieiie
external procedure name

ile OPLIONS ..o
Find in Filesocoooiiiniiieeececee
FIXED directive
FIXEDFORMLINESIZE directiveccecvervenenn. 56
floating point
U+ 79
floating point unit
exception handling..........cccceeeeenininenennnncn. 78
rounding direction
fold t0 1OWeT CaSEcvveveeiiiieieeeecseeeeee
FORM="BINARY" specifier........c.ccccecerereruerrrenncns 71
Fortran 77
TNEEOAUCHION. ..uvieieieiieiceieeteeeee e 1
OPLIONS .vvenvieeieieeireteeeiesteeereteeeesee e ebeeseessesanens 57
FORTRAN 77 extensions............ 2,59, 62, 63, 64, 65
COMPLEX SIZ€coveveienieiieiinieniesieieeeeeie e 64
conditional compilationccceceeveerieieniennnnne 59
escape sequences
Fortran 90/95 Free Source Form..........c.ccccueuee. 64
TOWET CASE ..ttt 62
one trip DO ...
REAL SIZ€....oouiiiiiiiiiieeieeeeeeeeeeee e 64
REPEAT
FUNCHION. ...t 64
UPPET CASE .veevvenvienrenreeieeneeeneensesstenseeseenseseeensesseas 62
wide source format.........c.cooeeevieniiineneicne. 65
Fortran 90/95
OPLIONS .vveevieeieieeiresteeeiesieeereteeetesseeeeesseeseessesneens 42
Fortran 90/95 Fixed Source Formcccccecuennennen. 48
Fortran 90/95 Free Source Form
Fortran coding formcccceeveviiieninieninieenee,
FORTRAN math routines
calling from C.......ccoeveviiiiniiiieeeeceeee
FPU exception handling;.
FPU rounding mode;
FREE[FORM] directive......
Fsplit utility tool.......cccovoieviinieiiniiieneeeeeeeen
function
call to C from FORTRAN.......cccccevvieninieiene 90
call to FORTRAN from C........ccocooenineincnncnnn. 91
[A TR86, 87
77 compatibilityc..cceevreririieieeeeeeeee 40
CCuiiiieieniieieeienee86, 87
raying of teXt.....cooeveerieririnireee e 2
highlight ..o 19
IDATE SUDIOULING......c.covirieiiieiieieeienicieeeeeceieine 68
1AENTE SOUICE ..ottt 17
IEEE floating point mathccccceveceneineennnnee. 79
Intel OPtIONS ..o.veeuveiieieriieieieeeeeee e 41
interfacing FORTRAN and C
calling FORTRAN math routinesc..c...... 92
compatible type declarationscceeeververnne 86
function call to C from FORTRAN 90
function call to FORTRAN from C 91
function results.........oocevereeninienenieieseeieene 90
LOC function.........ccceeueeveeeeneneneneececeesees 90
PASSING AN AITAY ...eeveeneeeieiieieeieneeeienieeeeeneeenees 90
PASSING POINLETS ..vvevreereeieerenreererreesiesseeseenseennes 88

Fortran User Guide

PASSING SIIINGS.c.eeuvevieeereieierieieieeeeeieeie e 91

passing values .

reference parameters...........coceeerveeeeeeereesenenns

Passing t0 C..oooveuvviirieniniciceeieeecreeeen
passing to FORTRAN

VAL function........cccceeevenineneiecinicnencneneenee

Value Parameterscceeeerveruenieienereereneenneens 89
intrinsic functions

LOC .. 90

MAth .o 92

VAL .o
italicized text, defined
library path specificationcccoeeveierinicninennne 39
library specification .
LOC, intrinsic functioncccceeeeeevveeeeecreeeeeeneens 90
1oop UNrolling..........coecveveeveevienieieneneieeeene 46, 61
MacFortran
MacFortran IT.........ccoceviiiniiiiiiieiceceeeee 72
MacFortran/020ccccoceeeievernieninieneneeneneenee 72
math routines

FORTRANooiiiiiieeeeeee e 92
metacommands, Microsoft FORTRAN 71
Microsoft FORTRAN

MEtacomMMANScc.eeveeerereerieeienieeieie e 71

POrting from.......cccoeeeriiiiieeeeeec e 70
MODULE output path
MODULE pathcoeoveiiiiiienieeeeeeseeene 51
MS-DOS, porting fromccocevveeveererenienenennene 70
NAME directive .
NAMING CONVENTIONSevvnreireiiniiniereneeieeeceeneeneeneens 92
NOFREEFORM directive.......ccccocerereeieieenienieane 56

non ANSI warnings
normal optimizations

NOUNROLL directive.......cceeeevereeeueneeeienienneeens 57
one trip DO ..o 63
OpenMP
-speed_openmp, enable aggressive OpenMP
OPHIMIZALION. ...cvevireeieiieiiriieeiereceescsieee

operand error exceptions....
OPHIMIZALION ...t

optimizations

1oop UNrollingcccecevverenvenvecnineneneenne. 46, 61
OPHIONS.....eeiieieeeieiceierieeenee .97
options, manual CONVeNtionc..ceeeveveeeervennennes 2
other porting iSSUes73
overflow exceptions.... .18
pop-up menus.............. .. 15
POIINE COAE ..oneiiiiiiiciceecciteteeeee e 67

from Microsoft FORTRAN.........ccccoeuivreinnene. 70
from MS-DOS
from SpParc........coeeeeeeiriieneeee
from Sun FORTRANccooiiiiiiieiee
from VAX FORTRAN...
from VS FORTRANcccoiiiiiiiieeeee
procedure naming CONVeNtions.........c.eeerveeerreennene 93
profiling .
Project MenU.........coeveeieineniinieecee e
PIOJECES ittt sttt ettt seeens
qualifiers, VAX FORTRAN
RAN fUNCHON ..o
relocatable ObJectccovvirerieieinireeeeeee
road maps
running compiled applicationsccceeceveeiecnnennn. 5
SECNDS SUBIOULINE.....cc.cevvirieeeriieieneieieseeeeeieenes 68
setting file options
show compiler progress..........ceceeveruervereereeennes
source line lengthccocoveviiineiiiiinececen
Sparc, Absoft compiler for ..
Sparc, porting fromcccoeeveveinineneeeeee
square brackets, definedcccooceviriininienincnne
STACK directive
StAtIC STOTAZE ...euvieurerienieiieiieieeeeete et see e naeas
string length........ocooeveiiniiiniee
strings
passing FORTRAN t0 Cocoevvveiiiniiiiieienne
stucture alignmentcoceveeviereesienieienieeieee
Sun FORTRAN, porting from....
SUPPOIT...ooiiiiiiiiiiiiii
suppress list of compiler warning messages......43, 58
syntax highlight.........c.coocoeviniiiiiniiieee,
TABSIZE variable.......c.c.cocccveineinncinecnneenen
technical SUPPOTtcc.evvveriiriieiiiieieieeeeeeeeeen
TIME subroutine
trACEDACK ..ot

undefine symbol..........coceoiviriiiiininiee
underlined text, defined...............ccooeeiiiiiiiiiiii, 2
UNROLL directive......cceeeruereirieieieieienieieeeiceieee 57
VALUE statement.........c.cccovceerieenienieenecnieeneenne 89
VAX FORTRAN

POTtING frOM ..ccveiiiiiiiiiiieieeecee e 67

QUALITIETS ot 68
VS FORTRAN, porting from........c..coceeveeveeeencnnene 69
warn of non-ANSI uSage.........cccecvvvrerenenecnenenn 58
wide Source format..........oceeveeruereesienerieneeieeneene 65
X8O OPLIONS ..vvierenvieeieieeieeiecetete e eee e ese e eaeseeens 41
Y 2K DUG ittt 3

Fortran User Guide

	Absoft Pro Fortran User Guide
	Contents
	Chapter 1 Introduction
	INTRODUCTION TO ABSOFT PRO FORTRAN
	Absoft Fortran 90/95
	Absoft FORTRAN 77

	CONVENTIONS USED IN THIS MANUAL
	ROAD MAPS
	Fortran Road Maps

	YEAR 2000 PROBLEM
	Fortran 90/95 DATE_AND_TIME Subroutine
	Unix Compatibility Library

	Chapter 2 Getting Started
	COMPILING BASICS
	APPLICATION BASICS

	Chapter 3 Using The Editor
	TEXT SELECTION
	FILE MENU
	New…\(Ctrl+N\)
	Open…\(Ctrl+O\)
	Save (Ctrl+S)
	Save As…
	Save All
	Close (Ctrl+W)
	Close All
	Close Others
	Recent Files
	Check For Updates
	Preferences

	EDIT MENU AND POP-UP MENUS
	Find
	Find/Replace (Ctrl+F)
	Text in File
	Replace With
	Replace
	Find and Replace
	Replace and Find
	Replace All
	Match Case
	Find Previous
	Whole Words

	Find/Replace Again (Ctrl+G)
	Go to Line (Ctrl+L)
	Undo (Ctrl+Z)
	Redo (Ctrl+Y)
	Cut (Ctrl+X)
	Copy (Ctrl+C)
	Paste (Ctrl+V)
	Delete
	Select All
	Comment (Ctrl+D)
	Uncomment (Ctrl+Shift+D)
	Indent (Tab or Ctrl+I)
	Unindent (Shift+Tab or Ctrl+Shift+I)
	To Uppercase (Ctrl+U)
	To Lowercase (Ctrl+Shift+U)
	Back (Ctrl+J)
	Forward (Ctrl+Shift+J)
	Bookmarks
	Bookmarks Menu
	Toggle Bookmark (Alt+K)
	Previous Bookmark (Ctrl+Shift+K)
	Next Bookmark (Ctrl+K)
	Clear File Bookmarks
	Clear All Bookmarks

	CODE COMPLETION (CTRL+E)
	SYNTAX HIGHLIGHT (CONTEXT MENU ONLY)
	VIEW MENU AND POP-UP MENUS
	Line Numbers
	F77 Coding Form
	Dual Screen Display
	Elements Display
	Bookmarks
	Files
	Build
	Find in Files
	File Tool Bar
	Build Tool Bar
	Project Tool Bar

	PROJECT MENU
	New Project
	Open Project
	Recent Projects

	Chapter 4 Developer Tools Interface
	WORKING WITH PROJECTS
	DOCKED DISPLAYS
	ADDING FILES TO THE PROJECT
	FILES DOCK
	New File in Project
	Add File(s)
	Add Directory
	Check Syntax
	Set Options for
	Use Default Options
	Remove File in Project
	Show Full Paths
	Show Relative Paths

	BUILD CONFIGURATIONS
	Adding a New Build Configuration
	Creating A New Build Configuration Template

	SETTING COMPILER OPTIONS
	Target Options
	Target Type

	MULTIPLE BUILD AND OPTIONS EXAMPLE
	BUILDING
	EXECUTE/DEBUG
	FIND IN FILES
	SMP ANALYZER

	Chapter 5 Using the Compilers
	COMPILING PROGRAMS
	FILE NAME CONVENTIONS
	COMPILER PROCESS CONTROL
	Generate Assembly Language (-S)
	Generate Relocatable Object (-c)
	Passing Options To The Linker
	Executable File Name (-o name)
	Library Specification (-l)
	Library Path Specification (-L)
	Undefine A Symbol (-u)
	Linker Options (-X)

	Preprocessor Options \(-cpp and –no-cpp\)
	Generate Debugging Information (-g)
	Position Independent Code (-fpic, -fPIC)
	g77 Compatibility (-g77)

	FPU CONTROL OPTIONS
	FPU Rounding Mode (-OPT:roundoff=#)
	Enable Exception Traceback (-et)
	FPU Exception Handling

	PROCESSOR SPECIFIC OPTIONS
	CPU Specific Optimizations (-march=type)
	64-BIT AMD AND INTEL PROCESSOR SPECIFIC OPTIONS
	Code Generation Model (-mcmodel={small | medium})
	Generate 32-bit code (-m32)
	Generate 64-bit code (-m64)

	ABSOFT FORTRAN 90/95 OPTIONS
	Compiler control
	Show progress (-v)
	Output Version number (-V, --version)
	Suppress warnings (-w)
	Warn of non-standard usage (-en)
	Warning level (-mnn)
	Suppress Warning number(s) (-Mnn)
	Stop on error (-ea)
	Allow greater than 100 errors (-dq)
	Default Recursion (-eR)
	Append Underscore To Names (-B108)
	Generate Debugging Information (-g)
	Generate Profiler Information (-P)

	Optimizations
	Basic Optimizations (-O1)
	Normal Optimizations (-O2)
	Advanced Optimizations (-O3)
	Advanced Optimizations (-Ofast)
	Automatic Parallelization (-apo)
	Dynamic AP (-O5)
	Loop unrolling (-U and -hnn and -Hnn)
	SSE2 instructions \(�msse2 and –mno-sse2\)
	SSE3 instructions (-msse3)
	SSE4a instructions (-msse4a)
	SSSE4.1 instructions (-msse41)
	Math Optimization Level (-speed_math=n)
	Enable OpenMP Directives (-openmp)
	OpenMP optimization Level (-speed_openmp=n)
	Safe Floating-Point (-safefp)
	Report Parallelization Results (-LNO:verbose=on)
	Report Vectorization Results (--LNO:simd_verbose=on)

	Compatibility
	Source Formats
	Free-Form (-f free)
	Fixed-Form (-f fixed)
	Alternate Fixed form (-f alt_fixed)
	Fixed line length (-W nn)

	Escape Sequences in Strings (-YCSLASH=1)
	No Dot for Percent (-YNDFP=1)
	MS Fortran 77 Directives (-YMS7D)
	Integer Sizes (-i2 and -i8)
	Demote Double Precision to Real (-dp)
	Promote REAL to REAL(KIND=8) (-N113)
	One trip DO loops (-ej)
	Static storage (-s)
	Structure alignment (-strict_align)
	Disable compiler directive (-xdirective)
	Max Internal Handle (-Tnn)
	Temporary string size (-tnn)
	Module File Path(s) (-ppath)
	Disable Default Module File Path (-nodefaultmod)
	Module File Output Path (-YMOD_OUT_DIR=path)
	Check Array Boundaries (-Rb)
	Check Array Conformance (-Rc)
	Check Substrings (-Rs)
	Check Pointers (-Rp)
	Character Argument Parameters (-YCFRL={0|1})
	External Symbol Character Case (-YEXT_NAMES={ASIS | UCS | LCS})
	External Symbol Prefix (-YEXT_PFX=string)
	External Symbol Suffix (-YEXT_SFX=string)
	COMMON Block Name Character Case (-YCOM_NAMES={ASIS | UCS | LCS})
	COMMON Block Name Prefix (-YCOM_PFX=string)
	COMMON Block Name Suffix (-YCOM_SFX=string)
	Module files only (-YMOD_ONLY)
	Variable Names Case Sensitivity (-YVAR_NAMES={ASIS | UCS | LCS})
	Variable Names Case Sensitivity (-YALL_NAMES={ASIS | UCS | LCS})
	Ignore CDEC$ directives (-YNO_CDEC)
	Pointers Equivalent to Integers (-YPEI={0|1})
	Literal constants in DATA statements (-YDATA_REAL_CONV)
	Don’t Mangle COMMON Block Name \(-N110\)

	Absoft Fortran 90/95 Compiler Directives
	NAME Directive
	FREE[FORM] Directive
	FIXED Directive
	NOFREEFROM Directive
	FIXEDFORMLINESIZE Directive
	ATTRIBUTES Directive
	STACK Directive
	UNROLL Directive
	NOUNROLL Directive

	ABSOFT FORTRAN 77 OPTIONS
	Compiler control
	Show progress (-v)
	Suppress warnings (-w)
	Warn of non-ANSI usage (-N32)
	Check Syntax Only (-dB)
	Append Underscore To Names (-N15)
	Append Underscore To Names (-B108)
	Character Argument Parameters (-N90)
	Check array boundaries (-C)
	Generate Debugging Information (-g)
	Generate Profiler Information (-P)
	Conditional compilation (-x)
	Max Internal Handle (-Tnn)
	Define Compiler Directive (-Dname[=value])
	Set Include Paths (-I)

	Optimizations
	Basic Optimizations (-O1)
	Advanced Optimizations (-O2)
	Advanced Optimizations (-O3)
	Advanced Optimizations (-Ofast)
	Loop unrolling (-U and -hnn and -Hnn)

	Compatibility
	Folding to lower case (-f)
	Folding to upper case (-N109)
	Static storage (-s)
	One-trip DO loops (-d)
	Integer Sizes (-i2 and -i8)
	Set Big-Endian (-N26)
	Set Little-Endian (-N27)
	Set COMMON block name (-N22)
	Promote REAL and COMPLEX (-N113)
	Escape sequences in strings (-K)
	Align COMMON variables (-N34)
	Temporary string size (-tnn)
	Source Formats
	Fortran 90/95 Free-Form (-8)
	Wide format (-W)

	Chapter 6 Porting Code
	PORTING CODE FROM VAX
	Compile Time Options and Issues

	PORTING CODE FROM IBM VS FORTRAN
	Compile-time Options and Issues

	PORTING CODE FROM MICROSOFT FORTRAN (PC VERSION)
	Compile-time Options and Issues

	PORTING CODE FROM SUN WORKSTATIONS
	PORTING CODE FROM MACINTOSH SYSTEMS
	Other Absoft Macintosh Compilers

	DISTRIBUTION ISSUES
	OTHER PORTING ISSUES
	Memory Management
	Dynamic Storage
	Static Storage

	Naming Conventions
	Procedure Names
	COMMON Block Names

	File and Path Names
	Tab Character Size
	Runtime Environment
	Floating Point Math Control
	Rounding Direction
	Exception Handling

	FSPLIT - SOURCE CODE SPLITTING UTILITY

	Chapter 7 Absoft Window Environment
	AWE PREFERENCES
	OPENING ADDITIONAL TEXT WINDOWS
	AWE MENUS
	ALERT BOXES

	Chapter 8 Interfacing With Other Languages
	INTERFACING WITH C
	Fortran Data Types in C
	Required Compiler Options
	Rules for Linking
	Passing Parameters Between C and Fortran
	Reference parameters
	Value parameters
	Array Parameters
	Function Results
	Passing Strings to C

	Calling Fortran math routines
	Naming Conventions
	Procedure Names

	Accessing COMMON blocks from C
	Declaring C Structures in Absoft Pro Fortran

	INTERFACING WITH ASSEMBLY LANGUAGE
	The Fortran Stack Frame
	Function Results

	DEBUGGING
	Compiler Options

	PROFILING
	Compiler Options

	Appendix A Absoft Compiler Option Guide
	ABSOFT FORTRAN COMPILER OPTIONS
	FPU CONTROL OPTIONS
	PROCESSOR SPECIFIC OPTIONS
	AMD AND INTEL 64-BIT PROCESSOR SPECIFIC OPTIONS
	FORTRAN 90/95 CONTROL OPTIONS
	FORTRAN OPTIMIZATION OPTIONS
	FORTRAN 90/95 SOURCE FORMAT OPTIONS
	FORTRAN 90/95 COMPATIBILITY OPTIONS
	FORTRAN 77 CONTROL OPTIONS
	FORTRAN 77 SOURCE FORMAT OPTIONS
	FORTRAN 77 COMPATIBILITY OPTIONS

	Appendix B ASCII Table
	Appendix C Bibliography
	FORTRAN 90/95
	FORTRAN 77

	Appendix D speed_math option
	Appendix E Technical Support
	Index

