The measuring offset between the Hannover absolute gravimeters JILAG-3 and FG5-220

Copenhagen, April 22nd, 2008

L. Timmen, O. Gitlein & R. Falk, H. Wilmes

- 1. Motivation: Cooperation IfE with GI/KMS/DNSC
- 2. Offset Determination
- 3. JILAG-3 and FG5-220 in the Int. Gravimetry Comparisons
- 4. Conclusion

Motivation: Cooperation IfE with GI/KMS/DNSC

Fig. 7: The absolute gravity sites occupied by JILAg-3 and FG5-220 within the Danish-German cooperation since 1986

Station	Remarks/Purpose
Tebstrup	geodynamics: Fennoscandian land uplift
50.	line (east-west, 56°N); national grav. refer-
	ence; destroyed since 2005
Helsingør	geodynamics: Fennoscandian land uplift
	line (east-west, 56° N); nat. grav. reference
Copenhagen,	national grav. reference; former Danish
Gamlehave	Geodetic Institute; destroyed
Copenhagen,	national grav. reference; not any more
Buddinge	accessible
Copenhagen,	national gravity reference
University	
Copenhagen,	geodynamics: Fennoscandian land uplift
Vestvolden	net; national gravity reference
Smidstrup GPS	national grav. reference; outside station
	(tent)
Suldrup GPS	national grav. reference; outside station
	(tent)
Bornholm, Tejn	geodynamics: Fennoscandian land uplift
	net; nat. grav. reference; city hall
Nuuk, Godthåb	geodynamics: crustal deformation; absol.
(Greenland)	control: deglaciation due to climate
	change; nat. grav. ref; IAGBN
Ilulissat, Jakobshavn	geodynamics: crustal def.; absol. control:
(Greenland)	deglaciation; nat. grav. ref.
Thule/air base	geodynamics: crustal deformation; absol.
(Greenland)	control: deglaciation; nat. grav. ref.
Kollafjørdur	geodynamics: crustal deformation; absol.
(the Faeroe Islands)	control: tide gauge stability; nat. grav. ref.;
	agriculture station: old point destroyed,
	new point in same building

Station	Instr.	Date
Tebstrup	ЛLAg-3	22.08.1986
	FG5-220	1011.06.2003
Helsingør	ЛLAg-3	23.08.1986
	FG5-220	0708.06.2003
	FG5-220	1820.06.2005
Copenhagen,	ЛLAg-3	20.08.1986
Gamlehave		
Copenhagen,	FG5-220	0304.06.2003
Buddinge		
Copenhagen,	FG5-220	1718.10.2005
University		
Copenhagen,	FG5-220	0506.06.2003
Vestvolden	FG5-220	1719.10.2004
	FG5-220	1516.10.2005
	FG5-220	0305.05.2007
	FG5-220	0911.10.2007
Smidstrup GPS	FG5-220	1011.06.2005
Suldrup GPS	FG5-220	1517.06.2005
Bornholm, Tejn	FG5-220	2022.10.2004
Nuuk, Godthåb	ЛLAg-3	1415.05.1988
Ilulissat,	ЛLAg-3	1718.05.1988
Jakobshavn		
Thule, air base	ЛLAg-3	2022.05.1988
Kollafjørdur old	ЛLAg-3	2930.06.1987
new	FG5-220	0104.11.2004

Measuring Offset between JILAg-3 and FG5-101

Das Deutsche Schweregrundnetz 1994 (DSGN94): W. Torge, R. Falk, A. Franke, E. Reinhart, B. Richter, M. Sommer, H. Wilmes 1999

Instrument	Sèvres 1994 (Pfeiler A0) [μm s ⁻²]	Sèvres 1997 (Pfeiler A) [μm s ⁻²]	DSGN94 5 Stationen [µm s ⁻²]	Clausthal [µm s ⁻²]
JILAG 3	9 809 257.13	9 809 257.132		9 811 157.338
FG5-101	9 809 257.04 *	9 809 257.051		9 811 157.244
Differenz JILAG-3 - FO	G5-101			
	0.090	0.081	0.082	0.094
Differenz zum Mittelwe	ert in Sèvres		•	
JILAG 3	- 0.028	- 0.052		·
FG5-101	+ 0.062	+ 0.030		

Measuring Offset between JILAg-3 and FG5-220

Tab. 1: Mean gravity values for station Clausthal (Germany) derived with JILAg-3 (n=29 occupations, 1986-2000) and FG5-220 (n=4 in 2003). The given s_i are standard deviations for a single gravity determination.

JILAg-3/FG5-220 Comparison	Remarks	Gravimeter	Period	Mean g-Result [μm/s²]
Clausthal (Harz Mountains)	IfE reference sta- tion for JILAg-3, ref.height 0.000m	ЛLAg-3	1986 to 2000	9811157.345 s _i =±0.049, n=29
		FG5-220	Jan. to Oct. 2003	9811157.251 s _i =±0.023, n=4
				$\Delta g = +0.094$

Fig. 5: Absolute gravity determinations with JILAg-3 and FG5-220 at stations Hannover (HAN103, trend -0.012 \pm 0.001 μ m/s² per year) and Clausthal (CLA522, trend -0.001 \pm 0.002 μ m/s² per year). An instrumental offset of -0.09 μ m/s² (\pm 0.01 μ m/s²) was applied to the JILAg-3 results.

Fig. 6: Groundwater table at the gravimetry laboratory in Hannover and absolute gravity determinations with FG5-220 since 2003. The transfer function from gravity to groundwater change, with the linear coefficient 0.17 μ m/s² per m, has been applied to the absolute gravity determinations to convert the *g*-values to groundwater readings.

JILAg-3 in the International Gravimetry Comparisons

Tab. 2: JILAg-3 absolute gravity meter controlled by external (international) and internal (repetition) comparisons to ensure consistent long-term measurement accuracy (n = number of observations)

JILAg-3 External Comparisons	Remarks	Gravimeter Group	Mean g-Result [µm/s²]	Std. Dev. of a Single Observ. [µm/s²]	∆g [µm/s²] (JILAg-3 minus Mean)
ICAG89, BIPM referred to site A, (Boulanger et al. ref. height 0.050 m, 1991, Tab. 7) 19 station deter-	referred to site A,	5 JILA	9809259.754	± 0.062 , n = 11	+0.018
	GABL, BIPM, IMGC, NIM, NAO	9.739	±0.092, n= 8	+0.033	
	minations with	all 10 meters	9.748	± 0.074 , n = 19	+0.024
	gravimeters	only JILAg-3	9.772	n= 2	
ICAG94, BIPM	referred to site A0,	4 JILA	9809257.103	±0.049, n= 4	+0.027
(Marson et al.	ref. height 0.900 m,	6 FG5	7.104	±0.028, n= 7	+0.026
1995, 1ab. 4)	12 observations with 11 absolute gravimeters	1 IMGC	7.090	n= 1	+0.040
		all 11 meters	7.102	±0.033, n=12	+0.028
		only JILAg-3	7.130	n= 1	
ICAG97, BIPM	occupied site A	4 JILA	9809257.081	±0.055, n= 4	+0.056
(Robertsson et al.	with 12 instru-	7 FG5	7.070	±0.037, n= 7	+0.066
2001, 1ab. 5)	ments, ref. height 0.900 m	1 GABL-E	7.144	n= 1	-0.008
		all 12 meters	7.081	± 0.045 , n = 12	+0.055
		only JILAg-3	7.136	n= 1	
ICAG97, BIPM	occupied site A2 with 13 instru- ments, ref. height 0.900 m	4 JILA	9809257.166	±0.035, n= 4	+0.035
(Robertsson et al.		6 FG5	7.137	±0.029, n= 6	+0.064
2001, 1ab. 5)		IMGC, NIM-2a, ZZB	7.139	±0.101, n= 3	+0.062
		all 13 meters	7.146	± 0.050 , n = 13	+0.055
		only JILAg-3	7.201	n = 1	

JILAg-3 Internal Comparisons	Remarks	Observation Periode	Mean g-Result [µm/s²]	Std. Dev. of a Single Observ.	∆g [µm/s²]
Clausthal/Harz IfE ref. stat	IfE ref. station for	period 1986 to 2000	9811157.345	± 0.047 , n = 29	
	JILAg-3, 29 obs. over 15 years, floor level	only 1986 to 1996	7.341	± 0.048 , n = 20	-0.004
		only 1997 to 2000	7.354	± 0.046 , n = 9	+0.009
Yunnan Earth- JILA quake Area, China at 4 (Torge et al. and 1999b, Tab. 3) iden	JILAg-3 observ. at 4 (1990/1992) and 5 (1992/1995) identical stations	epoch 1992 minus 1990	-0.038	± 0.073 , n = 4	
		epoch 1995 minus 1992	-0.008	±0.050, n= 5	

Conclusions:

- JILAg-3 was well embedded in the international absolute gravity definition.
- A larger discrepancy to other instrument groups did not really become obvious.
- But a bias to the international standard, here defined as the average of all participating gravimeters at BIPM, of up to +0.05 µm/s² can not be excluded.
- From the ICAG94 and ICAG97 comparisons, a measurement offset of +0.09 μm/s² becomes visible when just comparing JILAg-3 with FG5-101.
- The offset correction for JILAg-3 has mainly to be considered as a bias with respect to the FG5-220 and the FG5-101 gravimeters.
- Interpreting the results of the international comparisons in Sèvres with respect to the instrument groups, a systematic error, inherent in the instrumental design of the JILAg or FG5 gravimeters, does not exist or is within the 0.02 μ m/s² level.

FG5-220 in the International Gravimetry Comparisons

Tab. 3: FG5–220 absolute gravimeter controlled by external (international) and internal (repetition) comparisons to ensure consistent long-term measurement accuracy

FG5-220 External Comparison	Remarks	Epoch	∆g [µm/s²] (FG5-220 – Mean g)
ICAG2003, ECGS (Francis et al. 2006, Tab. 16)	13 abs. meters, 14 points, 52 determinations	Nov. 2003	-0.019 std. dev. (Mean of 13 meters) ±0.018
FG5-220 Internal Comparison	Remarks	Epoch	∆g (FG5-220) [µm/s²] (Single – Mean g)
Bad Homburg (gravimetry lab. of BKG, Wilmes and Falk 2006)	IfE reference station for FG5-220 since 2003	Feb. 2003	+0.017
		Nov. 2003	-0.014
		Apr. 2005	-0.002
		Apr. 2006	+0.003
		Nov. 2007	-0.004

Tab. 6: Gravity measurements performed by JILAg-3 compared with FG5-220 determinations within the Danish-German cooperation since 1986. The JILAg-3 offset correction of $-0.09 \ \mu m/s^2$ has been applied.

Statio n	Gravime- ter/year	Comparison height [m]	ðg/ðh (mean) [μms ^{-2/} m]	g [µm/s²]	Δg. [μm/s²]
Helsingør	JILAg-3/1986	1.000	2.64	9815801.35	
	FG5-220/2003		A 1010224-045	9815801.26	-0.09
	FG5-220/2005			9815801.30	-0.05
Tebstrup	JILAg-3/1986	1.000	2.38	9815802.49	
	FG5-220/2003			9815802.36	-0.13
Copenhagen,	JILAg-3/1986	0.000	(abs. points Gamlehave,	9815430.16	
Buddinge 102	FG5-220/2003		Buddinge centred to base	9815430.14	-0.02
			net point 102)		
Kollafiørdur,	JILAg-3/1987	0.000	(new centred to old	9820866.82	
Faeroes	FG5-220/2004		+0.30 μm/s²)	9820866.86	+0.04

- 3 Denmark stations: average gravity decrease of 0.07 µm/s² during 17 years.
- Interpreting this as a secular land uplift signal, the gravity rate of -0.004 µm/s² per year implies an possible uplift rate of 2 mm per year.
- The good agreement between the two determinations on the Faeroe Islands reveals a stable situation for that location for the period 1987 to 2004.

Conclusion :

The accuracy of long-term time series of absolute gravimetric measurements depends, among others, on possible instrumental offsets between present and future developments.

That should be controlled carefully by performing gravity determinations at common national and international reference stations with the available state-of-the-art gravimeters.

This creates time histories for the stations and might reveal biases caused by different instrumental designs and technological developments.

From the German point of view, especially the station Bad Homburg is an appropriate site. It is equipped with continuous GPS and superconducting gravimetry.