

MAA-AMET Estonian Land Board

Estonian gravity network in 2009

Tõnis Oja Department of Geodesy Estonian Land Board Tonis.Oja@maaamet.ee

Reference system

- Estonian Geodetic System (since 2004 enforced by the Regulation of the Government):
 - geodetic reference system (X, Y, Z)
 - height system (H, N)
 - gravity system (g)

- Estonian gravity system (EGS):
 - based on the IAGBN* standards
 - realization is <u>network GV-EST95</u> (divided into I, II and III order)
 - epoch 1995.8
 - zero tidal system

*International Absolute Gravity Basestation Network

2009-03-11

2001-2004 LCR-G (Nr 4, 113, 115)

MAA-AMET

- reso: 1-10 µGal
- accuracy: 5...200 µGal
- 2003-... Scintrex CG-5 (Nr. 36, 10092)
 - reso: 1 µGal
 - accuracy: 2…?? µGal

GV-EST95 – Observations

- In 2003 the whole network was observed with 3 LCR-G meters (totally 71 points and 89 ties)
- Additional measurements in 2001-2002 and 2004-...
- High precision observations along the calibration lines in Estonia and in Finland
- In 2006 high precision ties between Latvian and Estonian gravity network points (coop.with the LGIA*)
- 2007-2008 two absolute gravity campaigns by IfE** and FGI*** (alltogether 9 point obs.)

*Latvian Geospatial Information Agency **Institut für Erdmessung, Leibniz Universität Hannover ***Finnish Geodetic Institute

MAA-AMET Estonian Land Board

Absolute measurements in Suurupi (SUUR): If E team in 2007; FGI team in 2008 2009-03-11

GV-EST95 – Observations

MAA-AMET Estonian Land Board

2009-03-11

GV-EST95 – Data process

- Calibration corrections: linear and nonlinear parts
- Tidal corrections: Tamura (1987) tidal potential development, local parameters for the wavegroups from the global grid (Wenzel,Timmen 1994)
- Atmospheric correction: local air pressure, normal pressure (DIN 5450) and the coefficient –0.3 µGal/hPa
- Sensor height reduction: for LGR-G h_{red} ~ 5-10 cm, for CG5 h_{red} ~ 25 cm (11 cm)
- PGR corrections from the uplift model

GV-EST95 – Functional model

MAA-AMFT

GV-EST95 – Network adjustment

- Optimal unbiased estimation for **x** by WLS: $\hat{\mathbf{x}} = (A^T W_{\mathbf{b}} A)^{-1} A^T W_{\mathbf{b}} \mathbf{b}$
- variance of a single reading \Rightarrow W
- Covariance matrices: $\Sigma_{\hat{\mathbf{x}}} = \hat{\sigma}^{2} \left(A^{\mathrm{T}} W_{\mathbf{b}} A \right)^{-1}, \quad \Sigma_{\hat{\mathbf{r}}} = \hat{\sigma}^{2} \left(W_{\mathbf{b}}^{-1} - A \left(A^{\mathrm{T}} W_{\mathbf{b}} A \right)^{-1} A^{\mathrm{T}} \right)$
 - Statistical tests: Student's *t*-test, χ^2 statistic, Pope's τ -test (at a 95% conf. level)

GV-EST95 – Results

correctional calibration function for LCR-G gravimeters:

			,				60 -		A .,	1		A . A
Gravimeter	G-4		G-113		G-115		45 -	-	/ N			
F_{Pol}, Y_1	0.996228 (±49)		1.000164 (±26)		1.000038 (±23)		30 -	- - 		\	f	<u> </u>
$F_{\rm Per}$				-			ີ ເອັ ອີ 15 -	+ - 		• • • • • • • • • • • • • • • • • • •		•
P(C.U.)	E	arphi	E	φ	E	arphi	L (L	-		. N		
1.0000	4.4 ± 1.1	322 ± 14	2.6±0.6	235 ± 14	1.7 ± 0.5	69±17		↓	M ^a	- W		M
3.9412			2.3 ± 0.6	196 ± 13			ษั-15 - ศ				1	
7.8824	4.5 ± 1.0	166 ± 16	6.3±0.6	268 ± 5	3.7 ± 0.6	53 ± 9	-30 -	M . M		M	. Mul	
35.4706	6.0 ± 1.2	79±14	5.8±0.7	7 ±6	11.1 ± 0.6	212 ±3	-45 -	- ' W		"\	N	••••••
70.9412	4.3 ± 1.7	57±23	52.5 ±0.8	326 ± 1	8.7 ± 0.7	12 ± 6	-60 -		¹			
* Amplitudes (E) in u Cel							53	50	5400		5450	5500
·A	IIIIIIIII		$I \prod U U $	1 1					Raw read	ling of the ar	avimeter (C	,U)

 no significant calibration errors for Scintrex CG-5s (situation in 2006)

GV-EST95 – Results (preliminary)

- Adjustment with 3 fixed stations (2004-09-14)
- observed with the JILAg-5 of FGI in 1995

Estonian Land Board

RMS of the residuals ≤ ±10 µGal

GV-EST95 – Unsolved issues

- Test and calibration of Scintrex CG5's
- Inclusion of temporal gravity changes:
 - PGR: based on the NKG2005LU?
 - the effect of water mass distribution
- Epoch of the network (2008.?)
- Management of the observation data
- Reduction of absolute gravity values and nonlinear gradient problem (next talk)

22°

58°

GV-EST95

- Geodesists - EULS, TUT
- Geologists - GSE, IG UT
- Metrologists
 - AS Metrosert (Central Office of Metrology in Estonia)
- International community - EGM, EGGP, UEGN,...

Estonian gravity network – Past

Potsdami gravity system

MAA-AMFT Estonian Land Board

- -12.9 mGal - BGK realization (1930-1955)
- 955-1975) _15.4 -13.9
- SU realization
 I.G.S.N.7
 SU CENTRO
 - ation(s) (1975-1995) _0.08
- Estonian gravity system EGS
- since 1995
- Differences:

Jknr	Punk	ct	Pote	sdam	IGNS71		E	GS	Vahed (mGal)		
	Nimi	nr	а		Ь		с		a-b	a-c	b-c
1	Toompea	5703844	839,6	(1930) ¹	826,63	(1992) ⁶	826,690	(2007)	13,0	12,9	-0,06
			842,0	(1957) ²					15,4	15,3	
			-2,4								
2	Tartu LV *	367	796,73	(1955) ²			781,680	(2002)		15,05	
			795,4	(1958) ³						13,7	
			1,3								
3	Tallinna LV *	389	843,4	(1965) ³	829,81	(1983) ⁵	829,742	(1992/95)	13,6	13,7	0,07
							829,711	(2005) ⁵		13,7	0,10
							0,031				
4	Harku	80017 **	843,93	(1966)4	828,61	(1992) ⁶	828,534	(2003)	15,32	15,40	0,08
5	TTÜ	80910 **	848,64	$(?)^{5}$	834,742	(1975) ⁶	834,638	(2003)	13,90	13,99	0,104
			[834,706	(1986) ⁵			13,93	14,00	0,068
					0,036						
6	Tallinna LV	81691 **			830,466	(1986) ⁵	830,306	(2005)			0,160
			[830,384	(1993) ⁵					0,078
					0.082						

Great challenge

• Complete solution will (or should) be presented at the end of 2009

VG is constant!

NOT! (B. Sagdiyev)

Last year at WG meeting...

Vertical gravity gradient

- Is VGG constant?
- In Suurupi (probably) NO!

North-Estonian Klint (limestone cliff), 25...70 m high in Estonia, Suurupi pier 30 m away

23.04.2008

LUBJAKIN

1205-

Last year at WG meeting...

• Fitting the function (by WLSQ) $g(h) = \sum_{i=0}^{m} c_i h^i \approx g_0 + c_1 h + c_2 h^2 \implies g(h_2) - g(h_1) = c_1(h_2 - h_1) + c_2(h_2^2 - h_1^2)$

	90 –	301023330.0	uGai		
	c1=	0.3563	uGal/mm		
FIT	c2=	-1.084E-05			
	g(h_i)=g_0 +	c1*h_i + c2*(h	_i)**2		
Weight P	dg(dh)=c1*(h2	-h1^2)			
		v			
0.44	263.86	1.8	ei ole sobitan		
0.44	346.59	-3.5			
1.00	339.85	-2.0			
1.00	339.41	-0.6			
1.00	358.94	-1.0			
1.00	254.76	-0.2			
0.44	412.95	0.5			
1.00	253.73	1.4			
0.44	412.27	-0.4			
1.78	260.16	1.3			
1.00	391.57	0.0			
1.78	260.17	-2.1			
1.78	391.59	0.0			
1.78	246.11	0.9			
1.78	417.50	0.1			
1.78	255.49	0.9			
1.78	427.11	1.1			
1.78	255.81	0.3			
1.78	427.41	1.1			
1.00	981823518.0	0.0			
	LSQsum	RMS			
	30.01	1 29			

001000000 0 UCAL

 $\sim 0 -$

Proposal by Jaakko Mäkinen:

- remove the theoretical influence of local masses (massive pier)
- fit the constant VG or polynomial function
- restore the theoretically calculated attraction

so called "remove-restore" (rmr) method

Functional model

Observed gravity difference dg between heights h_1 , h_2 and modeled attraction of the pier M(h):

$$dg - (M(h_2) - M(h_1)) = \sum_{i=1}^{l} c_i (h_2^i - h_1^i)$$

Functional model

Modification: let pier's density *rho* be also unknown parameter*. Then...

observed gravity differences at h_1 , h_2 : $dg = \sum_{i=1}^{l} c_i (h_2^i - h_1^i) + rho * (M'(h_2) - M'(h_1))$

Introduce also fixed (absolute) gravity at obs height: $g(h_{obs}) = g(h_0) + \sum_{i=1}^{l} c_i (h_{obs}^i - h_0^i) + rho * (M'(h_{obs}) - M'(h_0))$

* Refers to Nettleton's method

M' – so called modelled pseudo-gravity

Test data (Suurupi):

Jknr	Asutus	Mõõtja	Gravimeeter	Kuupäev	Mõõtmis	skõrgus	Sensori	kõrgus	Kõrguskasv,määran		äram g juurdekasv.	
					h1	h2	sh1	sh2	dh	dh_err	dg	dg_err
							mm				μ(Gal
1	FGI	JM	LCR-G600	1995-09-30	201	938	42	779	737	1	258.7	1.0
2	FGI	JM	LCR-G600	1995-10-01	201	938	42	779	737	1	258.3	0.9
3	ELB	ТО	CG5-36	2004-11-12	313	1323	102	1112	1010	2	341.3	1.0
4	ELB	ТО	CG5-36	2004-12-17	317	1307	106	1096	990	2	337.9	0.4
5	ELB	ТО	CG5-10092	2004-12-17	322	1311	111	1100	989	2	338.8	0.6
6	lfE	LT	CG3-4492	2007-07-09	427	1483	229	1285	1056	1	357.9	0.7
7	ELB	ТО	CG5-36	2007-09-26	312	1048	101	837	736	2	254.6	0.6
8	ELB	ТО	CG5-36	2007-09-26	312	1523	101	1312	1211	2	413.7	0.6
9	ELB	ТО	CG5-10092	2007-09-26	313	1046	102	835	733	2	255.1	0.5
10	ELB	ТО	CG5-10092	2007-09-26	313	1522	102	1311	1209	2	411.7	0.5
11	ELB	ТО	CG5-36	2007-11-15	313	1065	102	854	752	2	261.1	0.4
12	ELB	ТО	CG5-36	2007-11-15	313	1459	102	1248	1146	2	391.6	0.5
13	ELB	ТО	CG5-10092	2007-11-15	312	1064	101	853	752	2	258.6	0.3
14	ELB	ТО	CG5-10092	2007-11-15	312	1458	101	1247	1146	2	391.6	0.4
15	ELB	ТО	CG5-10092	2008-02-05	314	1024	103	813	711	2	246.8	0.4
16	ELB	ТО	CG5-10092	2008-02-05	314	1539	103	1328	1225	2	417.6	0.4
17	ELB	ТО	CG5-36	2008-02-21	309	1047	98	836	738	2	256.2	0.4
18	ELB	ТО	CG5-36	2008-02-21	309	1563	98	1352	1254	2	427.9	0.4
19	ELB	ТО	CG5-10092	2008-02-21	310	1049	99	838	739	2	256.0	0.4
20	ELB	ТО	CG5-10092	2008-02-21	310	1565	99	1354	1255	2	428.2	0.5
21	FGI	MBK	CG5-10052	2008-07-17			121	1288	1167	1	396.9	0.9
22	FGI	MBK	CG5-10052	2008-07-17			121	789	668	1	231.8	1.0

IfE abs.meas. in 2007

Test data (SUUR):

	g 🔪 h	1	h2	M1	M2	
1	981823518	0.0000	1.2000	0.02367	0.00451	Tsentrimärk
2	-258.7	0.0420	0.7790	0.02206	0.00722	
3	-258.3	0.0420	0.7790	0.02206	0.00722	B
5	-337.9	0.1060	1.0960	0.01979	0.00502	arti Du
6	-338.8	0.1110	1.1000	0.01963	0.00500	X THE STITULG
7	-357.9	0.2290	1.2850	0.01611	0.00415	
8	-254.6	0.1010	0.8370	0.01996	0.00672	
9	-413.7	0.1010	1.3120	0.01996	0.00405	Con S S
10	-255.1	0.1020	0.8350	0.01993	0.00674	A DVIHOA
11	-411.7	0.1020	1.3110	0.01993	0.00405	1200X1200
12	-261.1	0.1020	0.8540	0.01993	0.00659	120
13	-391.6	0.1020	1.2480	0.01993	0.00430	20
14	-258.6	0.1010	0.8530	0.01996	0.00659	1200X500
15	-391.6	0.1010	1.2470	0.01996	0.00431	
16	-246.8	0.1025	0.8130	0.01991	0.00692	
17	-417.6	0.1025	1.3275	0.01991	0.00399	
18	-256.2	0.0980	0.8360	0.02006	0.00673	190
19	-427.9	0.0980	1.3520	0.02006	0.00390	
20	-256	0.0990	0.8380	0.02003	0.00671	700X300
21	-428.2	0.0990	1.3540	0.02003	0.00389	
22	-396.9	0.1210	1.2880	0.01930	0.00414	
23	-231.8	0.1210	0.7890	0.01930	0.00713	300 M 1:20
	2009-03-11					M 1:2 TUUp 6501.

AS PLANSERK 2001

Results, source Wzz.f (SUUR)

- Constant VG: RMS=2.95 uGal, g(0)=981 823 929.3 uGal
- 2nd order polynomial: RMS=1.01, g(0)= ... 930.3
- Const VG + rmr (const. rho=2 t/m3): RMS=1.99, g(0)=... 932.5 (M = rectangular 1.2x1.2x2.05)
- 2nd ord.pol + rmr (const. rho=2 t/m3): RMS=0.70, g(0)=... 931.9
- Const VG + rmr (rho param.):RMS=0.79, g(0)=... 931.3 (adj. rho~1.22 t/m3)
- 2^{nd} ord.pol + rmr (rho param.):RMS=0.67, $_{2009-03-}$ g(0)=... 932.4 (adj. rho~2.71)

Test data (TORA):

Results (TORA):

- Wzz_constVG_rho-0.out: RMS=2.32 uGal, g(0)= 981 759 666.6 uGal
- Wzz_2nd_rho-0.out: RMS= 1.33, 667.0
- Wzz_constVG_rho-fix.out: 3.14 (rho=2000 kg/m3), 669.0
- Wzz_2nd_rho-fix.out: 1.16 (rho=2000 kg/m3), 668.3
- Wzz_constVG_rho-adj.out: 1.25, 667.6 (rho=809 ± 143)
- Wzz_2nd_rho-adj.out: <u>1.11,</u> 669.4 (rho=3699 ± 1610)

Results (TORA):

•	Wzz_	_constVG_	_rho-0.out:
---	------	-----------	-------------

• Wzz_2nd_rho-adj.out:

					dof• 12						
dof: 14					- solution A	K max	loss of	dinits: 3.8			
- solution O	K, max	loss of	digits: 0.0		Solution:	n, mun	1055 01	argres. o.o			
Solution:					981759285.0	6.666	1.200	981759285_0	A . A		
981759285.0	0.000	1.200	981759285.0	0.0	-239.8	0.040	0.780	-239.2	0.6		
-239.8	0.040	0.780	-235.3	4.5	-241.0	0.040	0.780	-239.2	1.8		
-241.0	0.040	0.780	-235.3	5.7	-326.4	0.236	1.266	-323.8	2.6		
-326.4	0.236	1.266	-327.6	-1.2	-370.4	0.121	1.290	-370.5	-0.1		
-370.4	0.121	1.290	-371.8	-1.4	-213.5	0.121	0.791	-214.2	-0.7		
-213.5	0.121	0.791	-213.1	0.4	-327.4	0.107	1.140	-327.6	-0.2		
-327.4	0.107	1.140	-328.5	-1.1	-328.7	0.110	1.145	-328.1	0.6		
-328.7	0.110	1.145	-329.1	-0.4	-199.1	0.108	0.727	-199.0	0.1		
-199.1	0.108	0.727	-196.9	2.2	-349.6	0.108	1.219	-352.3	-2.7		
-349.6	0.108	1.219	-353.3	-3.7	-198.5	0.108	0.726	-198.7	-0.2		
-198.5	0.108	Ø.726	-196.5	2.0	-352.2	0.108	1.219	-352.3	-0.1		
-352 2	0 108	1 210	-353 3	-1 1	-218.7	0.104	0.786	-218.6	0.1		
-218 7	0.100 0.105	0 786	-216 0	1.0	-376.8	0.104	1.291	-376.7	0.1		
-976 9	0.104 0.105	1 201	-977 5	-0.7	-218.1	0.106	0.790	-219.1	-1.0		
-210.0	0.104	0 700	-917 5	0.7	-376.6	0.106	1.294	-377.0	-0.4		
-210.1	0.100 0.402	0.790 4 906	-217.5	U.U 4 0	RMS= 1.1086	9842					
-3/0.0	0.100 7017	1.294	-377.8	-1.2	SIGMA= 1.28	021466					
RMS= 2.3238	/84/										
51GMH= 2.48	433058				g(0) and its	stdev=	981759	9669. 1.71348266			
					c(1),stdev=	-214.9	96062	49.8682065			
g(0) and its	stdev=	98175	9667. 2.6173454		c(2),stdev= -34.0247221 18.9000793						
c(1),stdev= -318.017912					rho= 3698.54987						
rho= 0.					and its s	tdev=	1610.44	362			

Conclusions:

- Results presented here are very preliminary (aim is to just present idea)
- RMS values show better performance with "rmr"
- Overfit danger: unrealistic results (*rho*)
- Absolute gravity value at BM level may differ several uGal and depends on how to model local gravity field
- Always test nonlinearity of VG. Avoid to use constant VG!