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1 Harmonics

Let a tide process be denoted by

T = (M, ζ)

where M is the vertically integrated current vector (areal flow density or specific

mass transport vector) and ζ the surface elevation. They are functions of position

and time

T = Z(x, y, t)

The finite difference solution presents elevations and currents on two staggered

grids in space and at discrete steps in time.

We will stick to describing a harmonic solution of ζ. The currents are described

equivalently.

There might be a large number of tidal harmonics be represented in the exci-

tation of the model (boundary conditions, external tidal forces). If everything were

linear, the theorem of linear superposition would hold. If the forcing potential for

instance is

φ(x, y, t) =
∑

k

Φk(x, y)eiωkt

and the solution

ζ(x, y, t) =
∑

k

Zk(x, y)eiωkt

we could compute a partial solution for each k,

ζk(x, y, t) = Zk(x, y)eiωkt

by exciting the model with only one harmonic

φk(x, y, t) = Φk(x, y)eiωkt
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The complex field quantities Zk(x, y) and Φk(x, y) are instances of harmonic repre-

sentations of an oscillating process. They can be represented by either their real

and imaginary parts (Re, Im) or by amplitude and phase (A, δ)

A =
√
Re2 + Im2

δ = arctan
Im
Re

1.1 Amphidromes

The particle trajectory for a small tide (elevation negligible with respect to depth)

in a circular, flat-bottomed basin on a rotating earth (i.e. with Coriolis accelera-

tions present) during one tidal cycle is a small circle; all particles move in parallel.

The continuity equation will cause a surface elevation in the form of a uniform

slope with zero elevation in the centre. In the centre the elevation will be zero.

Imagine the gradient of the surface pointing from the highest point to the lowest.

This gradient is a straight line and the time delay of the elevation maximum with

respect to the maximum of the excitation force divided by the duration of a full

cycle is a measure for the phase of the oscillation.

Hence we can draw lines along the basin of equal phase, when the maximum

will be reached, and we relate this phase to the maximum of the excitation force at

an agreed-upon point on the earth (the astronomical tide at Greenwich meridian

for instance). We can accompany the phase lines by those that denote lines of

constant amplitude. By this we create a spider-web pattern, with the phase lines

like rays outward from the centre and the amplitude lines as concentric circles.

This is the generic case of an amphidrome.

An amphidromic point (the centre of the amphidrome, where amplitude is zero)

marks the centre of an oscillating subsystem. In a wide and shallow basin with

arbitrary land boundaries several amphidromes will be present. They line up off-

shore such that there is a continuosly progressive wave along the coast (so-called

Kelvin wave). Because of currents not being able to cross land boundaries, phase

lines will tend to assume a right-angle orientation with respect to the coast. At

capes the resulting pattern is as if there would be an amphidrome on land. This sit-

uation is sometimes called virtual amphidrome, perhaps reminding of the vritual

electric charges used in electrostatics to draw field lines. Also, there is a general

tendency of amplitude lines intersecting phase lines at right angles, a consequence

of the wave equation, the exactness being challenged by bottom topography and

complicated land boundaries.

At the equator the Coriolis forces become zero and the tendency of oscillating

systems to form amphidromes is very low.
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1.2 How harmonic tide solutions are computed in OTEQ/TTEQ

We mentioned above the principle of linear harmonic superposition. In the sim-

ple case of one-frequency excitation, the solution will contain, in addition to the

predominant harmonic solution, some transient behaviour from the stage when we

switched the model on, and there can be some numerical noises (round-off errors) ǫ

The sum

Z
(N)
k (x, y) + E

(N)
k =

2

N

N−1∑

n=0

(ζ(x, y, n∆t) + ǫn)e−iωkn∆t

will (hopefully) converge to a constant nonzero Z and a zero error E as N → inf.
This equation can be looked upon also as a frequency selective filter.

In a more realistic case involving nonlinearity (shallow water, nonlinear bottom

friction, advection), linear superposition will not hold. The model must therefore

be excited with a wide spectrum of tides simultaneously. Still we might like to ex-

tract the harmonic constituents of the solution. The nonliear processes will create

intermodulation products like upper harmonics (at double, triple etc. frequencies).

Since N will be finite, the capability of the sum to extract the result for one

frequency while ζ(x, y, t) is rich of frequencies is limited. It is largely described by

the Fourier theorem concerning the antagonism between frequency resolution and

time limitation.

The relative error when extracting a large harmonic process out of a pool of pre-

cesses with similar frequencies is smaller than extracting a small one. Thus, it is

only realistic to solve for dominating tides, the largest in each band (diurnal, semid-

iurnal) and the intermodulation by-products in the high-frequency bands (terdiur-

nal, quaterdiurnal, etc.). The minimum requirement to discern solar from lunar

tides is a time series of half a month, yet one month gives substantially better

results (since the half-month suggestion would ignore the presence of other tides

near M2 and S2.

So, finally, this is what is returned by subroutines OTEQ and TTEQ in array

ZSUM and put on disk by program otemt1 through file unit 41:

Zr =
N−1∑

n=N0

ζ
(n)
ij e−iωkn∆t

Zr is a packed array that avoids to store land points. Its Fortran precision is

COMPLEX*16, therefore it’s huge anyway. Thus, there is a unique mapping between

array index r and location (i, j).

Next to ZSUM in the subroutine parameter list is NRSUM. It returns the value

of N − N0 + 1, so that NRSUM/2 must be used to normalize ZRSUM. The harmonic

array is saved unnormalized because we want to be able to continue to accumulate

ZRSUM in successive calls of the tide equation solver.
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