
User contribution to ATLAS

R. Clint Whaley ∗

July 10, 2014

Abstract

This paper describes the method by which users can speed up ATLAS for themselves,
as well as contribute any such speedup to the ATLAS project. It’s written to get you
started, in a highly informal (read sloppy) fashion. There’s a lot of material that
optimally should be covered in detail, which is only hinted at in this document. Since
no real attempt has been made to make the document sheerly backward referential,
it is recommended that the user at least skim the entire section before attempting to
understand and/or apply information from a given subsection.

∗Dept. of Computer Sciences, Univ. of TN, Knoxville, TN 37996, rwhaley@cs.utk.edu

1

Contents

1 Introduction 3
1.1 Contributing your improvement to ATLAS 3

1.1.1 Signing up for the ATLAS mailing list 3
1.1.2 License issues . 3
1.1.3 Due Credit . 4
1.1.4 Inclusion in the ATLAS tarfile . 4

1.2 Directory terminology . 4
1.3 Coding conventions for contributed code . 5
1.4 A note about ATLAS kernels . 5

2 Speeding up the Level 3 BLAS 5
2.1 Building the General Matrix Multiply From gemmK 6
2.2 The Main GEMM Kernel, gemmK . 7

2.2.1 gemmK macro definitions . 7
2.2.2 gemmK API . 8
2.2.3 gemmK description file . 8
2.2.4 Index filenames . 10

2.3 Putting it together with some examples . 10
2.4 More timing info . 14
2.5 Complex gemmK . 15
2.6 What to do if you are writing in assembler 16
2.7 Providing ATLAS with kernel cleanup code 17

2.7.1 ATLAS and cleanup . 17
2.7.2 User supplied cleanup . 18
2.7.3 Indicating cleanup in the index file 18
2.7.4 Testing and timing cleanup . 19
2.7.5 Importance of cleanup . 20

2.8 gemmK usage notes . 21
2.9 Getting ATLAS to use your kernel . 21

2.9.1 Putting it in by hand . 21
2.9.2 With a fresh install . 21
2.9.3 With an old install, but using full install command 22

2.10 Contributing a complete GEMM implementation 22
2.10.1 Supplying ATLAS with what it needs 23
2.10.2 What to do if you don’t supply all precisions 24
2.10.3 Forcing ATLAS to use your GEMM 25

3 Speeding up the Level 2 BLAS 26
3.1 Testing and timing mvn k . 26
3.2 Testing and timing mvt k . 29
3.3 Testing and timing ger k . 32
3.4 Testing and timing ger2 k . 34

2

4 Speeding up the Level 1 BLAS 35
4.1 General comments for Level 1 optimization 35

4.1.1 No general kernels here . 35
4.1.2 General index file description . 36
4.1.3 Things you can assume, and/or need to know when writing kernels . 37

4.2 Testing a kernel . 37
4.3 Timing a kernel . 38
4.4 What to do if you are writing in assembler 39
4.5 Ramblings on special cases . 39
4.6 Notes for ROTG, ROTMG, ROT, ROTM 40
4.7 Notes for ROT . 40
4.8 Notes for ASUM . 40
4.9 Notes for AXPBY . 40
4.10 Notes for AXPY . 41
4.11 Notes for COPY . 41
4.12 Notes for CPSC . 41
4.13 Notes for DOT . 42
4.14 Notes for IAMAX . 42
4.15 Notes for NRM2 . 42
4.16 Notes for SCAL . 42
4.17 Notes for SET . 43
4.18 Notes for SWAP . 43
4.19 Getting your new kernel used . 43

4.19.1 Details I doubt you care about . 44

5 Using special compilers and flags for kernel compilation 44
5.1 Specifying all new compilers and flags . 44
5.2 Specifying additional flags for the default compiler 45
5.3 Using a binary kernel . 45

5.3.1 Using a binary kernel from the command line 46
5.3.2 Using a binary kernel from input file 46

6 A quick reference to ATLAS programming resources 48
6.1 ATLAS’s prefetch header file . 49

7 Conclusion 50

A Some notes on using assembly 51
A.1 Some notes on x86-32 assembler . 51

A.1.1 Register usage . 52
A.1.2 The calling sequence and stack frame 52
A.1.3 A simple example . 54

A.2 Some notes on x86-64 assembler . 55
A.2.1 Register usage . 55
A.2.2 The calling sequence and stack frame 56

A.3 Some notes on Sparc assembler . 56
A.3.1 Register usage . 56

3

A.3.2 The calling sequence and stack frame 57
A.4 Some notes on PowerPC assembler . 58

A.4.1 Register usage for 64 bit PowerPC 59
A.4.2 The calling sequence and stack frame for 64 bit PowerPC 59
A.4.3 Register usage for 32-bit OS X or AIX 60
A.4.4 The calling sequence and stack frame for 32-bit OS X/AIX 61
A.4.5 Register usage for 32 bit Linux . 61
A.4.6 The calling sequence and stack frame for Linux 61
A.4.7 Mixing OS X, AIX and Linux PPC assembler 63

A.5 Some notes on HP PA-RISC assembler . 63
A.5.1 Register usage . 63
A.5.2 Calling sequence and stack frame . 64

A.6 Some notes on MIPS assembler . 66
A.6.1 Register usage . 66
A.6.2 Calling sequence and stack frame . 66

4

1 Introduction

This paper describes the method by which users can speed up ATLAS (Automatically
Tuned Linear Algebra Software) for themselves, as well as contribute any such speedup to
the ATLAS project.

ATLAS is an implementation of a new style of high performance software produc-
tion/maintenance called Automated Empirical Optimization of Software (AEOS). In an
AEOS-enabled library, many different ways of performing a given kernel operation are sup-
plied, and timers are used to empirically determine which implementation is best for a given
architectural platform. ATLAS uses two techniques for supplying different implementations
of kernel operations: multiple implementation and code generation.

In code generation, a highly-parameterized program is written that can generate many
different kernel implementations. The matrix multiply code generator is an example of this.
The second method is multiple implementation, and this, as its name suggests, is simply
supplying various hand-written implementations of the same kernel.

ATLAS provides a standard way for users to help with multiple implementation. ATLAS
is designed such that several kernel routines supply performance for the entire library. The
entire Level 3 BLAS may be speeded up by improving the one simple kernel, which we will
refer to as gemmK, to distinguish it from a full GEMM routine. The Level 2 routines make
similarly be sped up by providing GER and GEMV kernels (there are several of these, as
discussed later). ATLAS has standard timers which can call user-programmed versions of
these kernels, and automatically use them throughout the library when they are superior
to the ATLAS-produced versions.

One thing to consider when getting started is to take the best ATLAS kernel found, and,
for instance, add some prefetch instructions, and see if you can get noticeable improvements.

1.1 Contributing your improvement to ATLAS

If you produce a substantially better kernel than ATLAS presently has, we hope that you will
contribute it to the ATLAS project. Code submissions and discussions of this type should
take place on the math-atlas-devel@lists.sourceforge.net mailing list. Anyone can
sign up for this list, and we hope that interested parties will correspond using it. In this way
someone interested in supplying a particular enhancement to ATLAS can find if someone
else is already working on it, find interested collaborators, get coding help from a wider
pool than with the standard atlas mailing list, etc.

1.1.1 Signing up for the ATLAS mailing list

We have set up a mailing list that we hope contributers and interested parties will subscribe
to. It’s e-mail address is math-atlas-devel@lists.sourceforge.net. For details on
signing up, see http://math-atlas.sourceforge.net/faq.html#lists.

1.1.2 License issues

ATLAS uses a BSD-style license for its distribution, and thus any code that you wish
to contribute must have a compatible license. This effectively rules out GPL and even
LGPL licenses, since if the ATLAS group redistributed any routines with these licenses, the

5

conditions of their licenses would effectively change the entire ATLAS library to GPL or
LGPL.

Note that you, the author, retain the copyright, and thus you can relicense your code
in any way you wish. So, anything released as part of the ATLAS tarfile will need a BSD-
compatible license, but you could then issue the code yourself under a different license.
Alternatively, you can provide your codes as “patches” to standard ATLAS, and thus avoid
the license issue altogether, at the cost of not being part of the standard tarfile. Even if you
decide not to license your contribution in a way that the ATLAS group can redistribute,
submitting it to the mailing list is still recommended. Other people can see your work, and
we can point to it if we think it is cool enough.

1.1.3 Due Credit

We have set in place some infrastructure in order to give contributers credit for their work.
Firstly, if your code is included in the standard tarfile, your contribution will be noted in
ATLAS/doc/AtlasCredits.txt. As the author, you retain the copyright, and thus your
name is in the contributed code. We have also modified the installation logger to print
the author name for user-provided routines (the exception is the Level 1 kernels, which are
simply too numerous for logging). We will make a good faith effort to give due credit for
work, but in general, we can’t guarantee anything.

As an aside, if fame and fortune are your major motivations, you may want to consider
contributing to something else anyway. As the founder of the ATLAS project, I’m still wait-
ing for my first interview with CNN, NBC, etc., or indeed, anyone other then my relatives
(and all those interviews go like, ”You’re in computers, can’t you get those wordperfect
guys to make it easier to use?”).

1.1.4 Inclusion in the ATLAS tarfile

If you submit an improvement to math-atlas-devel@lists.sourceforge.net, we hope
that other ATLAS users will try it out, and give comments. Ultimately, someone in the
ATLAS group (currently, that would be me) will decide whether to include it in the standard
tarfile or not. Such a decision will be based on how hard it is to get to work with our
distribution (this pain should be minimal if the instructions in this note are followed), how
much of an improvement it is, etc. Obviously, there are speed improvements that some
users may utilize that the ATLAS group can’t indulge in (examples include speedups that
possibly lose accuracy, such as, for instance, using Strassen’s algorithm for matrix multiply).
If there appears to be a great demand for such lossy optimizations, we may consider ways
of allowing users to select if they want to risk them.

Note that even if we are ungrateful morons who do not release your submission, you,
and anyone who wants to use your kernel routines, can use the ATLAS infrastructure to
get a complete, fast BLAS implementation.

1.2 Directory terminology

Using ATLAS’s configure, you can build the library in any directory. We will call the
path to your top-level directory where you choose to build ATLAS BLDdir. The ATLAS

6

tarfile produces the source directory, which we will indicate by either SRCdir or simply
ATLAS/.....

1.3 Coding conventions for contributed code

The following rules are mandatory:

• All externally addressable symbols used in the code (eg, routine names, global vari-
ables, etc) will be prefaced by the prefix ATLU .

• All user-contributed include files will be found in ATLAS/include/contrib.

The ATLAS team encourages:

• Using the standard BLAS names for operands (i.e., for GEMM, using the names A, B,
and C for the input matrices, for GEMV, using the names A, X, and Y, etc.).

1.4 A note about ATLAS kernels

All of ATLAS’s user-suppliable kernels are used to speed up a wide range of codes (i.e.,
GEMM speeds up all level 3 BLAS, etc), which means it is possible to write a good GEMM,
for instance, that is still not a good GEMM kernel. The unmodified testers and timers
described in this note time these kernels in their most-used states, so if you develop a kernel
using these techniques, everything will likely be OK. However, if you first write a full-blown
GEMV, for instance, and then attempt to adapt it, there is more opportunity for mismatch.
At the end of each kernel section I give a few kernel notes to give you an idea of how ATLAS
uses the kernel.

2 Speeding up the Level 3 BLAS

The performance kernel for the entire Level 3 BLAS is matrix multiply. Matrix multiply
is written in terms of a lower-level building block that we call gemmK. gemmK is a special
matrix multiply where the input dimensions are fixed at M = N = K = NB, where
the blocking factor NB is chosen in order to maximize L1 cache reuse, for a loose enough
definition of L1 cache (typically, we use it to mean the first level of cache accessible by the
FPU, which may be the L2 cache on some systems).

ATLAS actually has two different classes of GEMM kernels: one for copied matrices
(gemmK), and one that operates directly on the user’s matrices without a copy. For ma-
trices of sufficient size, ATLAS copies the input matrix into block-major storage. In block-
major storage, the NB × NB blocks operated on by the gemmK are actually contiguous.
This optimization prevents unnecessary cache misses, cache conflicts, and TLB problems.
However, for sufficiently small matrices, the cost of this data copy is prohibitively expensive,
and thus ATLAS has kernels that operate on non-copied data. However, without the copy
to simplify the process, there are multiple non-copy kernels (differing kernels for differing
transpose settings, for instance). Since the non-copy kernels are typically only used for very
small problems, and they are much more complex, ATLAS presently accepts contributed
code only for the copy matmul kernel. For most problems, well over 98% of ATLAS time is
spent in the copy matmul kernel, so this should not be much of a problem.

7

2.1 Building the General Matrix Multiply From gemmK

This section describes the code necessary to build the BLAS’s general matrix-matrix mul-
tiply using an L1 cache-contained matmul (hereafter referred to as gemmK).

For our present discussion, it is enough to know that ATLAS has at its disposal highly
optimized routines for doing matrix multiplies whose dimensions are chosen such that cache
blocking is not required (i.e., the hand-written code discussed in this section deals with cache
blocking; the generated/user supplied kernel assumes things fit into cache).

When the user calls GEMM, ATLAS must decide whether the problem is large enough
to tolerate copying the input matrices A and B. If the matrices are large enough to support
this O(N2) overhead, ATLAS will copy A and B into block-major format. ATLAS’s block-
major format breaks up the input matrices into contiguous blocks of a fixed size NB, where
NB is chosen in order to maximize L1 cache reuse. Once in block-major format, the blocks
are contiguous, which eliminates TLB problems, minimizes cache thrashing and maximizes
cache line use. It also allows ATLAS to apply alpha (if alpha is not already one) to the
smaller of A or B, thus minimizing this cost as well. Finally, the package can use the copy
to transform the problem to a particular transpose setting, which for load and indexing
optimization, is set so A is copied to transposed form, and B is in normal (non-transposed)
form. This means our L1-cache contained code is of the form C ← ATB, C ← ATB + C,
and C ← ATB+ βC, where all dimensions, including the non-contiguous stride, are known
to be NB. Knowing all of the dimensions of the loops allows for arbitrary unrollings (i.e., if
the instruction cache could support it, ATLAS could unroll all loops completely, so that the
L1 cache-contained multiply had no loops at all). Further, when the code generator knows
leading dimension of the matrices (i.e., the row stride), all indexing can be done up front,
without the need for expensive integer or pointer computations.

If the matrices are too small, the O(N2) data copy cost can actually dominate the
algorithm cost, even though the computation cost is O(N3). For these matrices, ATLAS
will call an gemm kernel which operates on non-copied matrices (i.e. directly on the user’s
operands). The non-copy matmul kernels will generally not be as efficient as the even the
generated copy gemmK; at this problem size the main drawback is the additional pointer
arithmetic required in order to support the user-supplied leading dimension and its affect
on the cost of the memory load (which varies according to transpose settings, as well as
architectural features).

The choice of when a copy is dictated and when it is prohibitively expensive is an AEOS
parameter; it turns out that this crossover point depends strongly both on the particular
architecture, and the shape of the operands (matrix shape effectively sets limits on which
matrix dimensions can enjoy cache reuse). To handle this problem, ATLAS simply compares
the speed of the copy and non-copy matmul kernels for variously shaped matrices, varying
the problem size until the copy code provides a speedup (on some platforms, and with some
shapes, this point is never reached). These crossover points are determined at install time,
and then used to make this decision at runtime. Because it is the dominant case, this paper
describes only the copied matmul algorithm in detail.

Figure 1 shows the necessary steps for computing a NB×NB section of C using gemmK.
More formally, the following actions are performed in order to calculate the NB × NB

block Ci,j , where i and j are in the range 0 ≤ i < dM/NBe, 0 ≤ j < dN/NBe:

1. Call gemmK of the correct form based on user-defined β (eg. if β == 0, use C ← AB)

8

C3,2 A3,1A3,2

M

N

C ← M

K

A

N

K× B

B1,2

B2,2

B3,2

Figure 1: One step of matrix-matrix multiply

to multiply block 0 of the row panel i of A with block 0 of the column panel j of B.

2. Call gemmK of form C ← AB + C to multiply block k of the row panel i of A with
block k of the column panel j of B, ∀k, 1 ≤ k < dK/NBe.

As this example demonstrates, if a given dimension is not a multiple of the L1 blocking
factor NB, partial blocks results. ATLAS has special routines that handle cases where one
or more dimension is less than NB; these routines are referred to as cleanup codes.

2.2 The Main GEMM Kernel, gemmK

So, there are actually three gemmK kernels (corresponding to different β values), and per-
form the operations: C ← ATB, C ← ATB + C, C ← ATB + βC. All input arrays
(A,B,C) are column-major (they are still used as performance kernels for row-major BLAS
as well, so don’t worry). Additionally, AT and B are in block-major format, such that
lda = ldb = M = N = K = NB.

2.2.1 gemmK macro definitions

In order to make writing a gemmK easier, ATLAS defines several cpp macros for programmer
use. Examples in subsequent sections should illustrate the use of these macros, so we merely
define them here.

First, ATLAS defines the macro ATL USERMM to the appropriate ATLAS internal kernel
name. Second, it defines one of SREAL, DREAL, SCPLX, DCPLX, according to the data type
being compiled (single precision real, double precision real, single precision complex, double
precision complex, respectively).

Similarly, ATLAS defines a macro indicating the β case being compiled, BETA1 (β should
be assumed to be 1.0), BETA0 (β should be assumed to be 0.0), and BETAX (β neither zero
or one, and should be handled as an input parameter).

Finally, the fixed blocking factors for each dimension are defined MB, NB, KB. Note that
for our gemmK, MB = NB = KB = NB; they are separated out for support of the cleanup
codes, where they can be different. ATLAS also defines the macros MB2, NB2, KB2, which
are simply two times the appropriate blocking factor.

9

2.2.2 gemmK API

The gemmK API may be summarized as:

#if defined(SREAL) || defined(SCPLX)

void ATL USERMM (const int M, const int N, const int K, const float alpha, const
float *A, const int lda, const float *B, const int ldb, const float
beta, float *C, const int ldc)

#elif defined(DREAL) || defined(DCPLX)

void ATL USERMM (const int M, const int N, const int K, const double alpha, const
double *A, const int lda, const double *B, const int ldb, const
double beta, double *C, const int ldc)

#endif

2.2.3 gemmK description file

In the install process, ATLAS first searches through the gemmK implementations pro-
vided by the ATLAS matmul generator. When the best generated code is found, the user
contributed codes are timed to see if they can beat the generated code. The gemmK mul-
tiple implementation search script opens a description file for each precision (scases.dsc,
dcases.dsc, ccases.dsc, zcases.dsc) in the BLDdir/tune/blas/gemm/ directory, to see
what user-contributed codes are available. This master index file is actually generated
based on several user-supplied files from ATLAS/tune/blas/gemm/CASES (see Section 2.2.4
for the names and definitions of these files). The format for all these files is the same, and
is described in the following paragraphs.

The first line of each file is a comment line, and is ignored. The next line indicates the
number of user-contributed codes to search, and each subsequent line supplies information
about a given user-supplied gemmK. The form of these lines is:
<ID> <flag> <mb> <nb> <kb> <muladd> <lat> <mu> <nu> <ku> <rout> "<author>"

<rout> and <author>" are strings, and the rest of the parameters are signed integers.
The meaning of these parameters are:

• ID: Strictly positive integer which uniquely identifies this descriptor line. ID must by
unique only within a precision.

• <flag>: flag indicating special conditions. See table below.

• <mb>, <nb>, <kb>: Used to indicate restriction on the input parameter M (N , K resp.),
and its associated blocking MB (NB, KB, resp.). If the value is zero, the internal routine
handles any M ; i.e. the loop-limit is a runtime variable. If the value is negative, then
M = MB = -<mb> (i.e., the blocking factor cannot be varied using a macro). If the
value is positive, the blocking factor can be varied by setting the appropriate macro
(MB NB, KB, resp.), but the blocking factor must be a multiple of the value. Therefore,
setting <mb> = 4, indicates that MB must be a multiple of 4, while setting it to 1
indicates that MB is an arbitrary compile-time constant.

10

• <muladd>: Set to zero if you are using separate multiply and add instructions, 1
otherwise. If you don’t know the answer, put 1.

• <lat>: Set to the latency you use between floating point instructions. If you don’t
know the answer, put 1.

• <mu>: Unrolling you are using for the M loop.

• <nu>: Unrolling you are using for the N loop.

• <ku>: Unrolling you are using for the K loop.

• <rout>: The filename of the user-contributed routine, relative to the path ATLAS/tune/blas/gemm/CASES.
Maximum length 64 chars.

• <author>: The name of the author or authors, enclosed in quotes. Maximum length
64 chars.

Table 1 summarizes the presently defined flag values.

FLAG MEANING

0 Normal

8 Do not consider this kernel for cleanup

16 Consider this kernel for cleanup only

32 lda and ldb are not restricted to KB

64 mb provides run-time constraint, not compile-time

128 nb provides run-time constraint, not compile-time

256 kb provides run-time constraint, not compile-time

512 This kernel needs 4Nb ≤ cacheelts

Table 1: Matmul index routine flag variables

Here’s an example:

<ID> <flag> <mb> <nb> <kb> <muladd> <lat> <mu> <nu> <ku> <rout> "<Contributer>"

3

1 0 0 0 0 1 1 1 1 1 ATL_mm1x1x1.c "R. Clint Whaley"

2 0 1 1 1 1 1 1 1 1 ATL_mm1x1x1b.c "R. Clint Whaley"

3 0 1 1 8 1 1 1 1 4 ATL_mm2.c "R. Clint Whaley"

So, we have 3 user-supplied routines, all written by me. The first loops over M , N , and
K, but the following two routines loop over the cpp macros MB, NB, KB. The third routine
insists that KB be a multiple of 8. The first two routines don’t unroll any of the loops,
while the third unrolls the K loop to a depth of 4. They all use a combined muladd style
of programming, and don’t worry about latency.

11

2.2.4 Index filenames

As previously mentioned, ATLAS builds a system and type dependent index file from user-
supplied files in ATLAS/tune/blas/gemm/CASES. This is done so that the all routines do
not need to be run on all machines (i.e., no need to waste time trying to run SSE-enabled
assembly routines when on a Dec ev56). Here is a list of description files presently queried
by ATLAS when building the full search index:

1. [s,d,c,z]cases.0: Any user-contributed kernel which is system independent (i.e. doesn’t
require a particular compiler, etc)

• Convention is to choose IDs in range: 0 < ID < 100.

2. [s,d,c,z]cases.flg: Any user-contributed kernel requiring specific compiler and/or
flags

• Convention is to choose IDs in range: 300 ≤ ID < 400.

3. [s,c]cases.3DN: Kernels requiring 3DNow! to run.

• Convention is to choose IDs in range: 100 ≤ ID < 200.

4. [s,c]cases.SSE: Kernels requiring SSE1 to run.

• Convention is to choose IDs in range: 200 ≤ ID < 300.

2.3 Putting it together with some examples

Let’s say we decide to cover the basics, the classical 3 do loop implementation of matmul
would be:

void ATL_USERMM

(const int M, const int N, const int K, const double alpha,

const double *A, const int lda, const double *B, const int ldb,

const double beta, double *C, const int ldc)

{

int i, j, k;

register double c00;

for (j=0; j < N; j++)

{

for (i=0; i < M; i++)

{

#ifdef BETA0

c00 = 0.0;

#elif defined(BETA1)

c00 = C[i+j*ldc];

#else

c00 = C[i+j*ldc] * beta;

#endif

12

for (k=0; k < K; k++) c00 += A[k+i*lda] * B[k+j*ldb];

C[i+j*ldc] = c00;

}

}

}

We then save this paragon of performance to ATLAS/tune/blas/gemm/CASES/ATL mm1x1x1.c.
From BLDdir/tune/blas/gemm/, we can test that it gets the right answer by:

make mmutstcase pre=d nb=40 mmrout=CASES/ATL_mm1x1x1.c beta=0

make mmutstcase pre=d nb=40 mmrout=CASES/ATL_mm1x1x1.c beta=1

make mmutstcase pre=d nb=40 mmrout=CASES/ATL_mm1x1x1.c beta=7

We pass four arguments to mmutstcase, a precision specifier (d : double precision real;
s : single precision real; z : double precision complex; c : single precision complex), the
size of the blocking parameter NB, the beta value to test (0, 1, and other), and finally, the
filename to test.

If these messages pass the test, we can then see what kind of performance we get by
(this is the actual output on my 266Mhz PII):

make ummcase pre=d nb=40 mmrout=CASES/ATL_mm1x1x1.c beta=1

dNB=40, ldc=40, mu=4, nu=4, ku=1, lat=4: time=1.820000, mflop=53.731868

dNB=40, ldc=40, mu=4, nu=4, ku=1, lat=4: time=1.810000, mflop=54.028729

dNB=40, ldc=40, mu=4, nu=4, ku=1, lat=4: time=1.830000, mflop=53.438251

This is the same timing repeated three times (this just tries to ensure timings are
repeatable), and the only output of real interest is the MFLOP rate at the end. The values
the timer prints (mu, nu, ku, lat) are all defaults because we didn’t specify them; specifying
them has no effect when the timer is used in this way, so don’t worry about them.

Now we can trivially improve the implementation by using the macro constants in order
to let the compiler unroll the loops:

void ATL_USERMM

(const int M, const int N, const int K, const double alpha,

const double *A, const int lda, const double *B, const int ldb,

const double beta, double *C, const int ldc)

{

int i, j, k;

register double c00;

for (j=0; j < NB; j++)

{

for (i=0; i < MB; i++)

{

#ifdef BETA0

c00 = 0.0;

#elif defined(BETA1)

c00 = C[i+j*ldc];

#else

13

c00 = C[i+j*ldc] * beta;

#endif

for (k=0; k < KB; k++) c00 += A[k+i*KB] * B[k+j*KB];

C[i+j*ldc] = c00;

}

}

}

We save this to ATL mm1x1x1b.c, and then time:

make ummcase pre=d nb=40 mmrout=CASES/ATL_mm1x1x1b.c beta=1

dNB=40, ldc=40, mu=4, nu=4, ku=1, lat=4: time=1.670000, mflop=58.558084

dNB=40, ldc=40, mu=4, nu=4, ku=1, lat=4: time=1.660000, mflop=58.910843

dNB=40, ldc=40, mu=4, nu=4, ku=1, lat=4: time=1.670000, mflop=58.558084

OK, maybe a little explicit loop unrolling will make things work better:

void ATL_USERMM

(const int M, const int N, const int K, const double alpha, const double *A, const int lda, const double *B, const int ldb, const double beta, double *C, const int ldc)

{

int i, j, k;

register double c00, c10, b0;

const double *pA0, *pB=B;

#if ((KB / 8)*8 != KB) || (MB / 2)*2 != MB

create syntax error!$@@&

#endif

for (j=0; j < NB; j++, pB += KB)

{

pA0 = A;

for (i=0; i < MB; i += 2, pA0 += KB2)

{

#ifdef BETA0

c00 = c10 = 0.0;

#elif defined(BETA1)

c00 = C[i+j*ldc];

c10 = C[i+1+j*ldc];

#else

c00 = beta*C[i+j*ldc];

c10 = beta*C[i+1+j*ldc];

#endif

for (k=0; k < KB; k += 8)

{

b0 = pB[k];

c00 += pA0[k] * b0;

c10 += pA0[KB+k] * b0;

b0 = pB[k+1];

c00 += pA0[k+1] * b0;

14

c10 += pA0[KB+k+1] * b0;

b0 = pB[k+2];

c00 += pA0[k+2] * b0;

c10 += pA0[KB+k+2] * b0;

b0 = pB[k+3];

c00 += pA0[k+3] * b0;

c10 += pA0[KB+k+3] * b0;

b0 = pB[k+4];

c00 += pA0[k+4] * b0;

c10 += pA0[KB+k+4] * b0;

b0 = pB[k+5];

c00 += pA0[k+5] * b0;

c10 += pA0[KB+k+5] * b0;

b0 = pB[k+6];

c00 += pA0[k+6] * b0;

c10 += pA0[KB+k+6] * b0;

b0 = pB[k+7];

c00 += pA0[k+7] * b0;

c10 += pA0[KB+k+7] * b0;

}

C[i+j*ldc] = c00;

C[i+1+j*ldc] = c10;

}

}

}

And with this ode to beauty and elegance we get (after checking that it still gets the
right answer, of course):

make ummcase pre=d nb=40 mmrout=CASES/ATL_mm2x1x8.c beta=1

dNB=40, ldc=40, mu=4, nu=4, ku=1, lat=4: time=0.720000, mflop=135.822222

dNB=40, ldc=40, mu=4, nu=4, ku=1, lat=4: time=0.710000, mflop=137.735211

dNB=40, ldc=40, mu=4, nu=4, ku=1, lat=4: time=0.710000, mflop=137.735211

Its interesting to see the effects of differing β on the code:

make ummcase pre=d nb=40 mmrout=CASES/ATL_mm2x1x8a.c beta=0

dNB=40, ldc=40, mu=4, nu=4, ku=1, lat=4: time=0.700000, mflop=139.702857

dNB=40, ldc=40, mu=4, nu=4, ku=1, lat=4: time=0.700000, mflop=139.702857

dNB=40, ldc=40, mu=4, nu=4, ku=1, lat=4: time=0.700000, mflop=139.702857

make ummcase pre=d nb=40 mmrout=CASES/ATL_mm2x1x8a.c beta=7

dNB=40, ldc=40, mu=4, nu=4, ku=1, lat=4: time=0.720000, mflop=135.822222

dNB=40, ldc=40, mu=4, nu=4, ku=1, lat=4: time=0.730000, mflop=133.961644

dNB=40, ldc=40, mu=4, nu=4, ku=1, lat=4: time=0.720000, mflop=135.822222

As well as differing blocking factors:

15

make ummcase pre=d mmrout=CASES/ATL_mm2x1x8a.c beta=1 nb=16

dNB=16, ldc=16, mu=4, nu=4, ku=1, lat=4: time=0.850000, mflop=115.112056

dNB=16, ldc=16, mu=4, nu=4, ku=1, lat=4: time=0.860000, mflop=113.773544

dNB=16, ldc=16, mu=4, nu=4, ku=1, lat=4: time=0.850000, mflop=115.112056

make ummcase pre=d mmrout=CASES/ATL_mm2x1x8a.c beta=1 nb=32

dNB=32, ldc=32, mu=4, nu=4, ku=1, lat=4: time=0.730000, mflop=134.034586

dNB=32, ldc=32, mu=4, nu=4, ku=1, lat=4: time=0.740000, mflop=132.223308

dNB=32, ldc=32, mu=4, nu=4, ku=1, lat=4: time=0.730000, mflop=134.034586

make ummcase pre=d mmrout=CASES/ATL_mm2x1x8a.c beta=1 nb=48

dNB=48, ldc=48, mu=4, nu=4, ku=1, lat=4: time=0.820000, mflop=119.223571

dNB=48, ldc=48, mu=4, nu=4, ku=1, lat=4: time=0.820000, mflop=119.223571

dNB=48, ldc=48, mu=4, nu=4, ku=1, lat=4: time=0.820000, mflop=119.223571

If we wanted to have ATLAS try these crappy implementations during the ATLAS
search, we would have the following ATLAS/tune/blas/gemm/CASES/dcases.dsc:

<ID> <flag> <mb> <nb> <kb> <muladd> <lat> <mu> <nu> <ku> <rout> "<Contributer>"

3

1 0 0 0 0 1 1 1 1 1 ATL_mm1x1x1.c "R. Clint Whaley"

2 0 1 1 1 1 1 1 1 1 ATL_mm1x1x1b.c "R. Clint Whaley"

3 0 2 1 8 1 1 2 1 8 ATL_mm2x1x8a.c "R. Clint Whaley"

2.4 More timing info

So maybe you wonder how our big hand-tuned guy stacks up against the ATLAS code
generator? When ATLAS completed its search on my PII, it stored its best case in
ATLAS/tune/blas/gemm/LINUX PII/res/dMMRES:

speedy. cat res/dMMRES

MULADD LAT NB MU NU KU FFTCH IFTCH NFTCH MFLOP

0 5 40 2 1 40 0 2 1 197.94

16

We generate and time this case by:

make mmcase muladd=0 lat=5 nb=40 mu=2 nu=1 ku=40 beta=1

dNB=40, ldc=40, mu=2, nu=1, ku=40, lat=5: time=0.490000, mflop=199.575510

dNB=40, ldc=40, mu=2, nu=1, ku=40, lat=5: time=0.500000, mflop=195.584000

dNB=40, ldc=40, mu=2, nu=1, ku=40, lat=5: time=0.490000, mflop=199.575510

We test that the generator isn’t out of its mind by:

make mmtstcase muladd=0 lat=5 nb=40 mu=2 nu=1 ku=40 beta=1

Note that when timing/testing the generator, varying the parameters such as mu, nu,
ku, beta, etc., generates different codes, and thus different performance numbers:

16

make mmcase muladd=0 lat=4 nb=40 mu=2 nu=1 ku=4 beta=1

dNB=40, ldc=40, mu=2, nu=1, ku=4, lat=4: time=0.760000, mflop=128.673684

dNB=40, ldc=40, mu=2, nu=1, ku=4, lat=4: time=0.770000, mflop=127.002597

dNB=40, ldc=40, mu=2, nu=1, ku=4, lat=4: time=0.770000, mflop=127.002597

make mmcase muladd=0 lat=4 nb=40 mu=2 nu=1 ku=8 beta=1

dNB=40, ldc=40, mu=2, nu=1, ku=8, lat=4: time=0.640000, mflop=152.800000

dNB=40, ldc=40, mu=2, nu=1, ku=8, lat=4: time=0.630000, mflop=155.225397

dNB=40, ldc=40, mu=2, nu=1, ku=8, lat=4: time=0.630000, mflop=155.225397

make mmcase muladd=0 lat=4 nb=40 mu=2 nu=2 ku=40 beta=1

dNB=40, ldc=40, mu=2, nu=2, ku=40, lat=4: time=2.550000, mflop=38.349804

dNB=40, ldc=40, mu=2, nu=2, ku=40, lat=4: time=2.560000, mflop=38.200000

dNB=40, ldc=40, mu=2, nu=2, ku=40, lat=4: time=2.550000, mflop=38.349804

2.5 Complex gemmK

Vainly hoping we were done, eh? Nope, complex codes are special. ATLAS actually uses
the real matrix multiply generator in order to do complex multiplication. It needs some
tricks to do this, obviously. The first thing to note is that if Xr denotes the real elements
of X, and Xi indicates the imaginary components, then complex matrix-matrix multiply of
the form C ← AB + βC may be accomplished by the following four real matrix multiplies:

1. Cr ← AiBi − βCr

2. Ci ← AiBr + βCi

3. Cr ← ArBr − Cr

4. Ci ← ArBi + Ci

This works fine assuming β is real, otherwise β must be applied explicitly as a complex
scalar, and then set β = 1 in the above outline.

Therefore, in order to use this trick, upon copying A and B to block-major storage,
ATLAS also splits the arrays into real and imaginary components. The only matrix not
expressed as two real matrices is then C, and to fix this problem, ATLAS demands that
the complex gemmK stride C by 2. An example will solidify the confusion.

A simple 3-loop implementation of an ATLAS complex gemmK is:

void ATL_USERMM

(const int M, const int N, const int K, const double alpha,

const double *A, const int lda, const double *B, const int ldb,

const double beta, double *C, const int ldc)

{

int i, j, k;

register double c00;

for (j=0; j < N; j++)

{

17

for (i=0; i < M; i++)

{

#ifdef BETA0

c00 = 0.0;

#else

c00 = C[2*(i+j*ldc)];

#ifdef BETAX

c00 *= beta;

#endif

#endif

for (k=0; k < K; k++) c00 += A[k+i*lda] * B[k+j*ldb];

C[2*(i+j*ldc)] = c00;

}

}

}

First we test that it produces the right answer:

make cmmutstcase pre=z nb=40 mmrout=CASES/ATL_cmm1x1x1.c beta=0

make cmmutstcase pre=z nb=40 mmrout=CASES/ATL_cmm1x1x1.c beta=1

make cmmutstcase pre=z nb=40 mmrout=CASES/ATL_cmm1x1x1.c beta=8

Then we scope the awesome performance:

make cmmucase pre=z nb=40 mmrout=CASES/ATL_cmm1x1x1.c beta=1

zNB=40, ldc=40, mu=4, nu=4, ku=1, lat=4: time=1.830000, mflop=53.438251

zNB=40, ldc=40, mu=4, nu=4, ku=1, lat=4: time=1.830000, mflop=53.438251

zNB=40, ldc=40, mu=4, nu=4, ku=1, lat=4: time=1.830000, mflop=53.438251

Now, since we are clearly gluttons for punishment, we compare our masterwork to
ATLAS’s generated kernel:

speedy. cat res/zMMRES

MULADD LAT NB MU NU KU FFTCH IFTCH NFTCH MFLOP

0 5 36 2 1 36 0 2 1 186.42

10

speedy. make mmcase muladd=0 lat=5 nb=36 mu=2 nu=1 ku=36 beta=1

dNB=36, ldc=36, mu=2, nu=1, ku=36, lat=5: time=0.500000, mflop=195.581952

dNB=36, ldc=36, mu=2, nu=1, ku=36, lat=5: time=0.490000, mflop=199.573420

dNB=36, ldc=36, mu=2, nu=1, ku=36, lat=5: time=0.490000, mflop=199.573420

2.6 What to do if you are writing in assembler

If your kernel is written in gas assembler, you can tell the tester and timer that by setting
the appropriate compiler and flag macro on the command line. For single precision types,
these macros for gemmK are called SMC and SMCFLAGS, respectively, and they are DMC and
DMCFLAGS for double precision routines. For instance, to test a DGEMM code written in
assembler, requiring a 16 blocking factor, you’d issue:

18

make ummcase pre=d mmrout=CASES/myassembler.c nb=16 \

DMC=gcc DMCFLAGS="-x assembler-with-cpp"

2.7 Providing ATLAS with kernel cleanup code

As mentioned in Section 2.1, when any problem dimension (eg., M, N, or K) is not a multiple
of NB, ATLAS must call cleanup code to handle the remainder. When the user-contributed
kernel is only modestly faster than ATLAS’s generated kernel, letting the generated code
handle cleanup will probably be an adequate solution. However, when the user-contributed
kernel is much faster than the generated code, using the generated cleanup may represent a
significant performance drop for many problem sizes (see Section 2.7.5 for an analysis of the
cost of cleanup), and thus it becomes necessary for the user to supply ATLAS with cleanup
code as well. In order to understand how this is done, it is necessary to discuss how ATLAS
does cleanup.

2.7.1 ATLAS and cleanup

As we have seen, ATLAS’s main performance kernel is an L1 cache contained matmul with
fixed dimension NB, and when a given problem dimension of the general matmul is not a
multiple of NB, cleanup code must be called. It should be apparent that generating codes
with all dimensions fixed at compile time, as we do with the full kernel, is not a good idea for
cleanup, since it would result in roughly NB

3 cleanup routines. Not only would this make
the average executable huge, but it would also probably result in performance degredation
due to constant instruction load.

ATLAS therefore normally generates a variable number of cleanup cases, with the num-
ber of generated codes minimally being 7, and the maximum number being 6 + NB. The
number of generated codes can vary because the K cleanup routines are special, sometimes
requiring NB different codes to handle efficiently, as we will see below.

ATLAS splits the generated cleanup into these categories

1. M-cleanup M < NB && N = K = NB: 3 routines, corresponding to BETA = 0, 1
and arbitrary

2. N-cleanup N < NB && M = K = NB: 3 routines, corresponding to BETA = 0, 1
and arbitrary

3. K-cleanup K <= NB && M ≤ NB && N ≤ NB: Only one BETA case (arbitrary),
but may compile special case for each possible K value, resulting in at least 1, and at
most NB K-cleanup routines

So we see that K-cleanup is special in several ways. First, it is the most general cleanup
routine, since it can handle multiple dimensions not being less than NB, whereas the M-
and N-cleanup routines can only have their respective dimensions less then NB. The second
thing to note is that we compile only the most general BETA case for K-cleanup; this is due
to the fact that we may need NB different routines to handle K-cleanup efficiently, and
multiplying this number of routines by three seems counterproductive.

The final difference in the K-cleanup is the fact that it potentially requires NB different
routines to support. This is due to several factors. Firstly, in ATLAS, the innermost loop

19

in gemm is the K-loop, making it very important for performance. On systems without
good loop handling, such as the x86, heavy K unrollings are critical. Secondly, the leading
dimensions of the A and B matrices are fixed to KB due to the data copy, which allows
for more efficient indexing of these matrices. If a routine takes run-time K (rather than
compile-time, as when the dimension is fixed to KB), it must also take run-time lda and
ldb, and this extra indexing is too costly on many architectures.

2.7.2 User supplied cleanup

Users can supply cleanup code for the following three cases only, all of which come in the
three BETA variants:

1. M-cleanup M < NB && N = K = NB

2. N-cleanup N < NB && M = K = NB

3. K-cleanup K < NB && M = N = NB

The generated code handles all cleanup where more than one dimension is less than
the blocking factor. This simplification allows ATLAS to avoid having to test NB

3 cases
when selecting user cleanup. Once the matrices in question are larger than NB, cleanup
with more than one dimension less than NB rapidly stops being a performance factor. Small
matrices where this cleanup is a factor are almost certainly going to be handled by ATLAS’s
small-case code anyway, so it seems unlikely that this simplification will hurt performance
in practice. Section 2.7.5 shows this in a more formal way.

Users need to be very careful when supplying cleanup, because if the user indicates that
a dimension must be a compile-time variable, rather than a runtime variable, ATLAS will
generate up to NB routines to handle user cleanup, and since user routines are compiled
with all BETA variants, it is possible to generate 9NB cleanup cases, in addition to ATLAS’s
generated cases. It is therefore recommended that the user supply cleanup that uses run-
time arguments whenever possible, and indicate kernels taking compile-time dimensions as
not to be used for cleanup.

2.7.3 Indicating cleanup in the index file

Any routine that does not throw the flag value of 8 will be evaluated by the install as a
cleanup possibility. Flag values are very important for indicating opportunities for cleanup.
Here is an example from the release:

1 480 4 4 1 1 1 4 4 2 ATL_mm4x4x2US.c "V. Nguyen & P. Strazdins"

OK, as always, we can read this to see that MB and NB must be multiples of 4, and
that KB can be any value. With no flag modifiers, if we wanted to use the routine for K
cleanup, we would have to compile it into NB different routines, since loop dimensions are
compile-time parameters by default. However, this routine is modified by a flag value of
480. What does this mean? Consulting table 1, we see that 32 + 64 + 128 + 256 = 480,
which means lda and ldb are not restricted to KB (i.e., they are run-time parameters to
the routine), the M-loop is controlled by a run-time variable, the N-loop is controlled by a
run-time variable, and the K-loop is controlled by a run-time variable. We therefore know

20

that we can use this routine for all cleanups (M-, N-, and K-cleanup), and we need only one
routine to do so (i.e., we do not have to compile NB routines to handle all cases). However,
it can only be used for M- and N- cleanup cases where the respective dimension is a multiple
of 4. Therefore, assuming this kernel is superior to the generated code, it will be used for all
K cleanup routines. However, for M and N cleanup, there will be something corresponding
to the following pseudocode:

if (M % 4 == 0) call ATL_mm4x4x2US

else call generated M cleanup

It is clear that without overloading the flag value to an even more ludicrous degree,
that cleanup will eventually need to have it’s own index file. For instance, it would be
nice to be able to insist that a particular K-cleanup code be used only when K > 3, for
instance, in addition to insisting it be a multiple of a particular value. The fact that cleanup
does not already have such a seperate file simply represents a design failure on my part;
it was not until I had already produced the system working as it does now that I saw its
shortcomings, and then it was too late to change for the release. Subsequent developer
releases will probably address this shortcoming.

2.7.4 Testing and timing cleanup

Cleanup is tested in the same way as the normal kernel, but you need to supply additional
parameters. M, N, and K are the problem dimensions, and MB, NB, KB are the blocking
factors. If the blocking factors are set to zero, that means they are run-time parameters
to the routine. lda, ldb, ldc are the leading dimensions of the operand arrays, and they
default to KB, KB, and zero, respectively.

Here is an example of testing an M-cleanup routine, insisting that M is a run-time
argument:

make mmutstcase mmrout=CASES/ATL_mm1x1x1.c pre=d M=17 N=40 K=40 \

mb=0 nb=40 kb=40

Here is timing the same routine, but insisting that the M-loop is fixed at compile time:

make ummcase mmrout=CASES/ATL_mm1x1x1.c pre=d M=17 N=40 K=40 \

mb=17 nb=40 kb=40

Here’s testing a K-cleanup routine, taking run-time K and leading dimensions:

make mmutstcase mmrout=CASES/ATL_mm1x1x1.c pre=d M=40 N=40 K=27 \

mb=40 nb=40 kb=0 lda=0 ldb=0

The same test taking compile-time K and leading dimensions:

make mmutstcase mmrout=CASES/ATL_mm1x1x1.c pre=d M=40 N=40 K=27 \

mb=40 nb=40 kb=27 lda=27 ldb=27

21

2.7.5 Importance of cleanup

In analyzing the importance of good cleanup for performance, it is necessary to recognize
the various types that can occur. The cleanup that user’s can supply to ATLAS is one
dimensional cleanup, i.e., only one of the three possible dimensions is less than NB. There
is also 2 and 3 dimensional cleanup. To give an idea of the relative importance of various
catagories of computation, it is roughly true that the matmul kernel is a cubic cost, the one
dimensional cleanup is a square cost, the two dimensional cleanup is a linear cost, and the
three dimensional cleanup is O(1).

This is shown more formally below. Define Mr = M mod NB, let m,n, k be the dimen-
sional arguments to the gemmK and/or cleanup, and remember that matrix multiplication
takes 2MNK flops, and we see that the flop count for each catagory is:

• m = n = k = NB: b M
NB
cb N

NB
cb K

NB
c2NB

3 =⇒ b N
NB
c3 2NB

3

• m < NB,n = k = NB: b N
NB
cb K

NB
c2MrNB

2 =⇒ b N
NB
c2 2NrNB

2

• n < NB,m = k = NB: b M
NB
cb K

NB
c2NrNB

2 =⇒ b N
NB
c2 2NrNB

2

• k < NB,m = n = NB: b M
NB
cb N

NB
c2KrNB

2 =⇒ b N
NB
c2 2NrNB

2

• m < NB,n < NB,k = NB: b K
NB
c2MrNrNB =⇒ b N

NB
c2Nr

2NB

• m < NB,k < NB,n = NB: b N
NB
c2MrKrNB =⇒ b N

NB
c2Nr

2NB

• n < NB,k < NB,m = NB: b M
NB
c2NrKrNB =⇒ b N

NB
c2Nr

2NB

• m < NB,n < NB,k < NB: 2MrNrKr =⇒ 2Nr
3

Note that the simplified equations to the right of =⇒ assume the square case, i.e.
M = K = N . The above analysis can now be grouped into the catagories of interest as in:

• kernel : b N
NB
c3 2NB

3

• 1D cleanup: 3b N
NB
c2 2NrNB

2 < 3b N
NB
c2 2NB

3

• 2D cleanup: b N
NB
c2Nr

2NB < 3b N
NB
c 2NB

3

• 3D cleanup: 2Nr
3 < 2NB

3

The simplified equations to the right of the < above provide a safe upper bound on cleanup
cost by setting Nr = NB (in reality, 0 < Nr < NB, of course).

With this analysis, we can easily see why it is not important for the user to be able to
contribute 2D and 3D cleanup cases: remember that all of these kernels are for ATLAS’s
large-case gemm. ATLAS has a seperate small-case gemm, which is invoked when the
problem is so small that the 2N2 copy cost is significant compared to the 2N3 computational
costs. So, in the cases where the O(N) 2D cleanup or O(1) 3D cleanup costs are prohibitive,
this large-case gemm will probably not be used anyway.

22

2.8 gemmK usage notes

The assumptions behind this kernel are that the input operands are loaded to L1 only one
time (i.e., the blocking guarantees that all of the matrix accessed in the inner loop plus
the active panel of the matrix in the outer loop fits in L1). For very large caches, all three
operands may fit into cache, but this is typically not the case. Because this gemmK is called
by routines that place K as the innermost loop, the output operand C will typically come
from the L2 cache (except, obviously, on the first of the K

NB
such calls). ATLAS uses the

JIK loop variant of on-chip multiply, and thus all of A fits in cache, with nu columns of
B. To take an example, say you are using mu = nu = 4, with NB = 40, then the idea is
that the 40 × 40 piece of A, along with the 40 × 4 piece of B (the active panel of B), and
the 4× 4 section of C all fit into cache at once, with enough room for the load of the next
step, and any junk the algorithm might have in L1. That panel of B is applied to all of A,
and then a new panel is loaded. Since the panel has been applied to all A, it will never be
reloaded, and thus we see that B is loaded to L1 only one time. Since all of A fits in L1,
and we keep it there across all panels of B, it is also loaded to L1 only one time.

If written appropriately, loading all of B with a few rows of A should theoretically be
just as efficient (i.e., the IJK variant of matmul). However, the variants where K is not
the innermost loop are unlikely to work well in ATLAS, if for no other reason than the
transpose settings we have chosen militate against it.

Note that the β = 0 case must not read C, since the memory may legally be unitialized.

2.9 Getting ATLAS to use your kernel

OK, so let’s say you’ve got a kernel that is faster than what ATLAS is presently using, how
do you get ATLAS to use it? First, of course, you put the source in the CASES directory,
and update the appropriate <pre>cases index file. Then, you take different steps depending
on how you wish to do the install, as discussed in the following sections. In all of these
discussions, <pre> is replaced by your type/precision modifier (one of s, d, c, z).

2.9.1 Putting it in by hand

In an already-installed ATLAS, you can make ATLAS reinstall just the kernel. From your
BLDdir/tune/blas/gemm/ directory, issue these commands:

rm res/<pre>u*

rm res/<pre>MMRES

./xmmsearch -p <pre>

make <pre>install

2.9.2 With a fresh install

First, run config as usual. Then, tail the created Make.inc file, and see if the macro
INSTFLAGS includes -a 1. If so, ATLAS has some architectural defaults for your architec-
ture (though perhaps not for your compiler, if you have forced the use of a non-default
compiler), which won’t include your shiny new kernel. So, you will need to remove the files
indicating the default gemmK kernel for your precision. To do this, scope your ARCH setting
in your Make.inc. For the purposes of this discussion, let us say it set to Core2Duo64SSE3

23

(i.e., in the below example, substitute the definition of ARCH for Core2Duo64SSE3). Go to
ATLAS/CONFIG/ARCHS, and issue the following commands:

gunzip -c Core2Duo64SSE3.tgz | tar xvf -

rm Core2Duo64SSE3/gemm/gcc/<pre>u*

rm Core2Duo64SSE3/gemm/gcc/<pre>MMRES

rm Core2Duo64SSE3.tgz

tar cvf Core2Duo64SSE3.tar Core2Duo64SSE3

gzip Core2Duo64SSE3.tar

mv Core2Duo64SSE3.tar.gz Core2Duo64SSE3.tgz

Now, continue install as normal, and your kernel should be used if it beats what ATLAS
is presently using. Note that this assumes you are using gcc as the gemmK compiler, which
is the default on most systems. If you are using a different compiler, you would substitute
its name instead of gcc in the above lines. If there is no subdirectory with the name of your
compiler in the tarfile, ATLAS has no architectural defaults for that compiler, and thus you
need to make no changes to the tarfile.

2.9.3 With an old install, but using full install command

When rebuilding an old install, the main trap is to avoid having architectural defaults
make it so you don’t time your new kernel. Follow the instructions given in Section 2.9.2,
but additionally make sure you delete any prexisting directory that matches your ARCH

definiton. Therefore, in the above example, in the ATLAS/CONFIG/ARCHS directory, you
would additionally issue:

rm -rf Core2Duo64SSE3

If such a subdirectory existed.
From your BLDdir directory, then issue:

rm bin/INSTALL_LOG/*

rm tune/blas/gemm/res/<pre>u*

rm tune/blas/gemm/res/<pre>MMRES

make build

2.10 Contributing a complete GEMM implementation

This feature has been temporarily disabled in 3.8, though it may be re-enabled
in the 3.9 series if there is user demand. This section is therefore kept around
solely historical purposes, and will need to be updated if the feature is added
back in.

Contributing an L1 kernel is the prefered method of user contribution for Level 3 BLAS
speedup, but it is not the only one supported by ATLAS. ATLAS also allows a user to
contribute a complete system-specific GEMM implementation. This method of contribution
is far less desirable than kernel contribution, and thus the standards of acceptance are
correspondingly higher.

When only a kernel is contributed, it is only used when timings indicate it is superior
to the best ATLAS-supplied routine for a given architecture. Because kernel routines are

24

called in known ways by the ATLAS infrastructure, the timer can be made to accurately
reflect typical usage. A full GEMM, which is to all intents called directly by the user, has
no “typical” usage, and the timer is thus not able to ensure that the user’s full GEMM is
superior to that supplied by ATLAS in a system-independent way, even if the additional
installation time required to choose amoung full GEMM implementations were allowed.
Thus, full GEMM implementations will be used only when ATLAS’s configuration detects a
known architecture where the ATLAS team has certified the full GEMM to be significantly
better than ATLAS’s native GEMM, across the entire spectrum of problem shapes and
sizes (with the exception of those shapes and sizes handled by ATLAS’s non-copy code, as
explained below).

As explained in Section 2.1, ATLAS has both a small-case matmul, which does not copy
the user’s input operands, and a large-case code that does. The user contributed GEMM
replaces ATLAS’s large-case GEMM, and then timings are used as normal to determine the
crossover points at which the contributed GEMM outperforms ATLAS’s small-case code.

2.10.1 Supplying ATLAS with what it needs

ATLAS expects that the contributed GEMM will have its own architecture- specific subdi-
rectory, just as with all other ATLAS source directories. That directory is indicated to AT-
LAS by the UMMdir macro set in Make.inc. For instance, on the alpha platform, Mr. Goto’s
GEMM is used by ATLAS, and UMMdir is therefore set to: $(TOPdir)/src/blas/gemm/GOTO/$(ARCH).

In this directory, there must be a master makefile, called Makefile, which minimally
contains the following targets:

• susermm : builds the single precision real gemm with all its dependencies

• dusermm : builds the double precision real gemm with all its dependencies

• cusermm : builds the single precision complex gemm with all its dependencies

• zusermm : builds the double precision complex gemm with all its dependencies

• sclean : deletes all non-library files created by susermm

• dclean : deletes all non-library files created by dusermm

• cclean : deletes all non-library files created by cusermm

• zclean : deletes all non-library files created by zusermm

For each precision, ATLAS calls the user’s GEMM using this API:

int ATL_U<pre>usergemm(const enum ATLAS_TRANS TA, const enum ATLAS_TRANS TB,

const int M, const int N, const int K,

const SCALAR alpha, const TYPE *A, const int lda,

const TYPE *B, const int ldb, const SCALAR beta,

TYPE *C, const int ldc)

25

where,

<pre> : s d c z

SCALAR float double float* float*

TYPE float double float float

This routine should return 0 upon successful invocation, and -1 if unable to malloc
enough memory. Other errors may be signaled by returning a value of 2. On error in this
routine, ATLAS will call the no-copy code to get the answer, so a return value of 1 indicates
that ATLAS should do this. If a fatal error occurs, or if an error occurs after operands have
been modified (i.e., calling the no-copy code will no longer produce the correct answer),
then execution should be halted.

ATLAS’s interface routines have already done all required error checking, so the user
need not check the input arguments in this routine, or any of the lower-level user contributed
routines.

2.10.2 What to do if you don’t supply all precisions

Remember that what ATLAS is doing is substituting your GEMM for its own large-case
GEMM. However, ATLAS’s large-case GEMM is still compiled in the library, it is just not
being used. The following code will call ATLAS’s large case code for all precisions:

#include "atlas_misc.h"

#include "atlas_lvl3.h"

int Mjoin(Mjoin(ATL_U,PRE),usergemm)

(const enum ATLAS_TRANS TA, const enum ATLAS_TRANS TB,

const int M, const int N, const int K, const SCALAR alpha,

const TYPE *A, const int lda, const TYPE *B, const int ldb,

const SCALAR beta, TYPE *C, const int ldc)

{

int ierr;

if (N >= M)

{

if (ierr = Mjoin(PATL,mmJIK)(TA, TB, M, N, K, alpha, A, lda, B, ldb,

beta, C, ldc))

ierr = Mjoin(PATL,mmIJK)(TA, TB, M, N, K, alpha, A, lda, B, ldb,

beta, C, ldc);

}

else

{

if (ierr = Mjoin(PATL,mmIJK)(TA, TB, M, N, K, alpha, A, lda, B, ldb,

beta, C, ldc))

ierr = Mjoin(PATL,mmJIK)(TA, TB, M, N, K, alpha, A, lda, B, ldb,

beta, C, ldc);

}

26

return (ierr);

}

So, you can use the above code to have ATLAS call it’s normal routines for those
precisions you do not supply, and call your own otherwise. In order to help understand
this process, ATLAS includes a “user-supplied” GEMM that simply calls ATLAS’s own
GEMM for all precisions, in ATLAS/src/blas/gemm/UMMEXAMPLE. If, for instance, you have
a single precision real GEMM but nothing else, you can take this directory as a starting
point, adding your own commands for single precision real in the Makefile, etc, and leaving
everything else alone.

In order to do this, you should do the following:

1. In ATLAS/src/blas/gemm/UMMEXAMPLE:

• mkdir <arch>

• cp Makefile <arch>/.

• ln -s ../../../../../Make.<arch> Make.inc

• Modify <arch>/Makefile to compile your single precision routine

• Follow the instructions given in Section 2.10.3, which discusses how to make
ATLAS use a contributed GEMM that config has not setup for you

2.10.3 Forcing ATLAS to use your GEMM

If ATLAS detects you are on a platform where a contributed full GEMM is superior to
ATLAS’s large-case GEMM, ATLAS will automatically handle the details of making ATLAS
call the user-contributed routine. If, however, you wish to force ATLAS to use your GEMM
(for instance, you are testing your code before contribution, or just want to utilize ATLAS
for complete BLAS coverage with your GEMM), you should take the following steps, after
creating the appropriate subdirectory and API as previously described:

1. Edit your Make.inc file:

• Change UMMdir to point to your full GEMM’s architecture subdirectory

• Add -DUSERGEMM to the CDEFS macro.

2. In ATLAS/src/blas/gemm, touch ATL gemmXX.c and ATL AgemmXX.c to force recom-
pilation

3. In BLDdir/src/blas/gemm/ type make lib

4. In BLDdir/include/, issue

• rm ?Xover.h atlas cacheedge.h

• touch altas cacheedge.h sXover.h dXover.h cXover.h zXover.h

5. In BLDdir/tune/blas/gemm/, issue:

• rm res/?Xover.h res/atlas cacheedge.h

• make res/atlas cacheedge.h

27

• make res/sXover.h pre=s

• make res/dXover.h pre=d

• make res/cXover.h pre=c

• make res/zXover.h pre=z

3 Speeding up the Level 2 BLAS

ATLAS presently empirically tunes four kernels to optimize the various L2BLAS, as shown
in Table 2. This table shows matvec used to tune SYMV and HEMV, and this is mostly
true. For essentially any modern x86 or ARM, GEMV will be used speed up HEMV
and SYMV, but on other systems, ATLAS will simply use the reference implementation,
which may be faster. The problem is that to support HEMV/SYMV optimally, we need
a kernel which we have not yet empirically tuned. You can build SYMV and HEMV out
of GEMV, but in doing so you bring the matrix A into registers twice (once from memory,
and once from cache). Since the load of A is the dominant cost in these operations, that
is not good news. However, for places where vector instructions speed up memory access
(modern x86) and where the compiler can’t do a great job (ARM), using a tuned GEMV
in this fashion is still faster than just calling a reference version. So, for most systems,
speeding up the GEMV kernels will cause a corresponding speedup in SYMV and GEMV,
but these operations are the least well-tuned BLAS that ATLAS supports (as a percentage
of achievable peak, not raw MFLOP, of course). All other L2BLAS operations should be
well optimized, particularly for large problems.

Mneum operations Used to support

mvn k y ← Ax, y ← Ax+ y GEMV, TRMV, TRSV, HEMV, SYMV

mvt k y ← ATx, y ← ATx+ y GEMV, TRMV, TRSV, HEMV SYMV

ger k A← xyT +A GER, GERU, GERC, SYR, HER

ger2 k A← xyT + wzT +A, GER2, GER2U, GER2C, SYR2, HER2

Table 2: Level-2 BLAS kernels, and the L2BLAS routines they improve

In this section, we use some macros that are automatically defined by the ATLAS build
system. The first is ATL CINT which is presently an alias for const int. The macros SCALAR
and TYPE are defined according the precision being being compiled:

<pre> : s d c z

SCALAR float double float* float*

TYPE float double float float

3.1 Testing and timing mvn k

The API of this routine is given by:

void ATL_UGEMV(ATL_CINT M, ATL_CINT N, const TYPE *A, ATL_CINT lda,

const TYPE *X, TYPE *Y)

28

If the routine is compiled with the macro BETA0 defined, then it should perform the operation
y ← Ax; if this macro is not defined, then it should perform y ← Ax + y. A is a column-
major lda × N contiguous array where lda ≥ M . M specifies both the number of rows of
A and the length of the vector X. N provides the number of columns in A, and the length
of the vector Y .

Since this is a O(MN) operation, and A is M ×N in size, this algorithm is dominated
by the load of A. No reuse of A is possible, so the best we can do is reuse the vectors
(through operations like register and cache blocking).

Each element of Y can obviously be computed by doing a dot product of the corre-
sponding row of A with X. However, this accesses the matrix along the non-contiguous
dimension, which leads to terrible memory heirarchy usage for any reasonably sized matrix.
Therefore, mvn k cannot be written in this fashion.

In order to optimize the access of A (dominant algorithmic cost) we must access it in a
column-major fashion. Therefore, instead of writing it as a series of dot products (ddots),
we can write it as a series of axpys (recall that axpy does the operation y ← αx+ y).

Therefore, instead of being composed of a series of ddots, mvn k should be implemented
as a series of axpys. In this formulation, we access columns of A (the contiguous dimension)
at a time, and we write update all elements of Y

A simple implementation of this kernel (for real precisions) is:

#include "atlas_misc.h" /* define TYPE macros */

void ATL_UGEMV(ATL_CINT M, ATL_CINT N, const TYPE *A, ATL_CINT lda,

const TYPE *X, TYPE *Y)

{

register int j, i;

/*

* Peel 1st iteration of N-loop if BETA0 is defined

*/

#ifdef BETA0

{

const register TYPE x0 = *X;

for (i=0; i != M; i++)

Y[i] = A[i] * x0;

j=1;

A += lda; /* done with this column of A */

}

#else

j=0;

#endif

for (; j != N; j++)

{

const TYPE register x0 = X[j];

register TYPE y0 = Y[i];

for (i=0; i != M; i++)

Y[i] += A[i] * x0;

29

A += lda; /* done with this column of A */

}

}

To time and test mvn k kernel, its implementation must be stored in the
OBJdir/tune/blas/gemv/MVNCASES directory. Assuming I saved the above implementation
to mvn.c in the above directory, I can test the kernel from the OBJdir/tune/blas/gemv di-
rectory with the command: make <pre>mvnktest, where <pre> specifies the type/precision
and is one of : s, d, c, or z.

This target uses the following make variables which you can change to vary the type of
testing done; number in parens are the default values that will be used if no command-line
override is given:

• mu (1): Unrolling on M dimension

• nu (1): Unrolling on N dimension

• mvnrout: the filename of your kernel implementation

• Mt (297): Number of rows of A (elements of y)

• Nt (177): Number of columns of A (elements of x)

• ldat (Mt): leading dimension for the matrix A

• align (-Fx 16 -Fy 16 -Fa 16): alignments that matrix and vectors must adhere to.

• <pre>MVCC (ATLAS default compiler) : compiler required to compile your kernel

• <pre>MVCFLAGS (ATLAS default flags) : compiler flags required to compile your kernel

• beta (1) : 0 or 1 (scale of y)

Therefore, to test the β = 1.0 case of double precision real:

>make dmvnktest mu=1 nu=1 mvnrout=mvn.c

.... bunch of compilation, etc

TEST M=997, N=177, lda=1111, STARTED

TEST M=997, N=177, be=0.00, lda=1111, incXY=1,1 PASSED

To test single precision β = 0.0 with a different shape:

>make smvnktest mu=1 nu=1 mvnrout=mvn.c beta=0 Mt=801 Nt=55 ldat=1000

.... bunch of compilation, etc

TEST M=801, N=55, lda=1000, STARTED

TEST M=801, N=55, be=0.00, lda=1000, incXY=1,1 PASSED

Now we are ready to time this masterpiece. We have two choices for timers. The first
such timer simply calls your newly-written kernel directly. It does no cache flushing at
all: it initializes the operands (bringing them into the fastest level of heirarchy into which
they fit), and times the operations. This is the timer to use when you want to preload the

30

problem to a given level of cache and see how fast your kernel is in isolation. The make
target for this methodology is <pre>mvnktime.

The second make target calls ATLAS’s GEMV driver that builds the full GEMV from
the kernels. This timer does cache flushing, and is what you should use to estimate how
fast the complete GEMV will be. This make target is <pre>mvntime.

Both of these targets take largely the same make macros:

• mu (1): Unrolling on M dimension

• nu (1): Unrolling on N dimension

• mvnrout: the filename of your kernel implementation

• M (1000): Number of rows of A (elements of y)

• N (1000): Number of columns of A (elements of x)

• lda (M): leading dimension for the matrix A

• align (-Fx 16 -Fy 16 -Fa 16): alignments that matrix and vectors must adhere to.

• <pre>MVCC (ATLAS default compiler) : compiler required to compile your kernel

• <pre>MVCFLAGS (ATLAS default flags) : compiler flags required to compile your ker-
nel; pass ”-x assembler-with-cpp” (along with any architecture-specific flags) if your
kernel is written in assembly (assuming your compiler is gcc).

• beta (1) : 0 or 1 (scale of y)

• flushKB : for mvntime, kilobytes of memory to flush.

Therefore, to time the probable speed of a complete GEMV of size 1000x32 while flushing
16MB of memory, I would issue:

>make dmvntime mu=1 nu=1 mvnrout=mvn.c M=1000 N=32 flushKB=16384

GEMV: M=1000, N=32, lda=1008, AF=[16,16,16], AM=[0,0,0], beta=1.000000e+00, alpha=1.000000e+00:

M=1000, N=32, lda=1008, nreps=57, time=2.011856e-05, mflop=3230.85

M=1000, N=32, lda=1008, nreps=57, time=2.011042e-05, mflop=3232.15

M=1000, N=32, lda=1008, nreps=57, time=2.006722e-05, mflop=3239.11

NREPS=3, MAX=3239.11, MIN=3230.85, AVG=3234.04, MED=3232.15

3.2 Testing and timing mvt k

The API of this routine is given by:

void ATL_UGEMV(ATL_CINT M, ATL_CINT N, const TYPE *A, ATL_CINT lda,

const TYPE *X, TYPE *Y)

If the routine is compiled with the macro BETA0 defined, then it should perform the operation
y ← ATx; if this macro is not defined, then it should perform y ← ATx+ y. A is a column-
major lda × N contiguous array where lda ≥ M . M specifies both the number of rows of

31

A and the length of the vector X. N provides the number of columns in A, and the length
of the vector Y .

Since this is a O(MN) operation, and A is M ×N in size, this algorithm is dominated
by the load of A. No reuse of A is possible, so the best we can do is reuse the vectors
(through operations like register and cache blocking).

Each element of Y can obviously be computed by doing a dot product of the corre-
sponding row of A with X, and this gives us the simplist implementation possible:

#include "atlas_misc.h" /* define TYPE macros */

void ATL_UGEMV(ATL_CINT M, ATL_CINT N, const TYPE *A, ATL_CINT lda,

const TYPE *X, TYPE *Y)

{

register int j, i;

for (j=0; j < N; j++)

{

#ifdef BETA0

register TYPE y0 = 0.0;

#else

register TYPE y0 = Y[j];

#endif

for (i=0; i < M; i++)

y0 += A[i] * X[i];

Y[j] = y0;

A += lda; /* done with this column */

}

}

To time and test a mvt k kernel, its implementation must be stored in the
OBJdir/tune/blas/gemv/MVTCASES directory. Assuming I saved the above implementation
to mvt.c in the above directory, I can test the kernel from the OBJdir/tune/blas/gemv di-
rectory with the command: make <pre>mvtktest, where <pre> specifies the type/precision
and is one of : s, d, c, or z.

This target uses the following make variables which you can change to vary the type of
testing done; number in parens are the default values that will be used if no command-line
override is given:

• mu (1): Unrolling on M dimension

• nu (1): Unrolling on N dimension

• mvtrout: the filename of your kernel implementation

• Mt (297): Number of rows of A (elements of y)

• Nt (177): Number of columns of A (elements of x)

• ldat (Mt): leading dimension for the matrix A

• align (-Fx 16 -Fy 16 -Fa 16): alignments that matrix and vectors must adhere to.

32

• <pre>MVCC (ATLAS default compiler) : compiler required to compile your kernel

• <pre>MVCFLAGS (ATLAS default flags) : compiler flags required to compile your kernel

• beta (1) : 0 or 1 (scale of y)

Therefore, to test the β = 1.0 case of double precision real:

>make dmvtktest mu=1 nu=1 mvtrout=mvt.c

.... bunch of compilation, etc

TEST M=997, N=177, lda=1111, STARTED

TEST M=997, N=177, be=1.00, lda=1111, incXY=1,1 PASSED

We have two choices for timers. The first such timer simply calls your newly-written
kernel directly. It does no cache flushing at all: it initializes the operands (bringing them
into the fastest level of heirarchy into which they fit), and times the operations. This is the
timer to use when you want to preload the problem to a given level of cache and see how
fast your kernel is in isolation. The make target for this methodology is <pre>mvtktime.

The second make target calls ATLAS’s GEMV driver that builds the full GEMV from
the kernels. This timer does cache flushing, and is what you should use to estimate how
fast the complete GEMV will be. This make target is <pre>mvttime.

Both of these targets take largely the same make macros:

• mu (1): Unrolling on M dimension

• nu (1): Unrolling on N dimension

• mvtrout: the filename of your kernel implementation

• M (1000): Number of rows of A (elements of y)

• N (1000): Number of columns of A (elements of x)

• lda (M): leading dimension for the matrix A

• align (-Fx 16 -Fy 16 -Fa 16): alignments that matrix and vectors must adhere to.

• <pre>MVCC (ATLAS default compiler) : compiler required to compile your kernel

• <pre>MVCFLAGS (ATLAS default flags) : compiler flags required to compile your ker-
nel; pass ”-x assembler-with-cpp” (along with any architecture-specific flags) if your
kernel is written in assembly (assuming your compiler is gcc).

• beta (1) : 0 or 1 (scale of y)

• flushKB : for mvntime, kilobytes of memory to flush.

Therefore, to time the probable speed of a complete GEMV of size 1000x32 while flushing
16MB of memory, I would issue:

>make dmvttime mu=1 nu=1 mvtrout=mvt.c M=1000 N=32 flushKB=16384

GEMV: M=1000, N=32, lda=1008, AF=[16,16,16], AM=[0,0,0], beta=1.000000e+00, alpha=1.000000e+00:

M=1000, N=32, lda=1008, nreps=57, time=2.809835e-05, mflop=2313.30

M=1000, N=32, lda=1008, nreps=57, time=2.812956e-05, mflop=2310.74

M=1000, N=32, lda=1008, nreps=57, time=2.807517e-05, mflop=2315.21

NREPS=3, MAX=2315.21, MIN=2310.74, AVG=2313.08, MED=2313.30

33

3.3 Testing and timing ger k

The API of ger k is given by:

void ATL_UGERK(ATL_CINT M, ATL_CINT N, const TYPE *X, const TYPE *Y,

TYPE *A, ATL_CINT lda)

This kernel performs the outer product operation A ← xyT + A. A is a column-major
lda ×N contiguous array where lda ≥ M . M specifies both the number of rows of A and
the length of the vector X. N provides the number of columns in A, and the length of the
vector Y .

Since this is a O(MN) operation, and A is M ×N in size, this algorithm is dominated
by the load of A. No reuse of A is possible, so the best we can do is reuse the vectors
(through operations like register and cache blocking).

The simplist implementation of this operation is done by doing a axpy operation for
each column of the matrix:

#include "atlas_misc.h" /* define TYPE macros */

void ATL_UGERK(ATL_CINT M, ATL_CINT N, const TYPE *X, const TYPE *Y,

TYPE *A, ATL_CINT lda)

{

register int j, i;

for (j=0; j < N; j++)

{

const register TYPE y0 = Y[j];

for (i=0; i < M; i++)

A[i] += X[i] * y0;

A += lda; /* done with this column */

}

}

To time and test a ger k kernel, its implementation must be stored in the
OBJdir/tune/blas/gemv/R1CASES directory. Assuming I saved the above implementation
to ger.c in the above directory, I can test the kernel from the OBJdir/tune/blas/ger

directory with the command: make <pre>r1ktest, where <pre> specifies the type/precision
and is one of : s, d, c, or z.

This target uses the following make variables which you can change to vary the type of
testing done; number in parens are the default values that will be used if no command-line
override is given:

• mu (1): Unrolling on M dimension

• nu (1): Unrolling on N dimension

• r1rout: the filename of your kernel implementation

• Mt (297): Number of rows of A (elements of x)

• Nt (177): Number of columns of A (elements of y)

34

• ldat (Mt): leading dimension for the matrix A

• align (-Fx 16 -Fy 16 -Fa 16): alignments that matrix and vectors must adhere to.

• <pre>R1CC (ATLAS default compiler) : compiler required to compile your kernel

• <pre>R1CFLAGS (ATLAS default flags) : compiler flags required to compile your kernel

To test this kernel with a 511x220 matrix, I would issue:

>make dr1ktest mu=1 nu=1 r1rout=ger.c Mt=511 Nt=220

.... bunch of compilation, etc

TEST CONJ=0, M=511, N=220, lda=511, incY=1, STARTED

TEST CONJ=0, M=511, N=220, lda=511, incY=1, PASSED

We have two choices for timers. The first such timer simply calls your newly-written
kernel directly. It does no cache flushing at all: it initializes the operands (bringing them
into the fastest level of heirarchy into which they fit), and times the operations. This is the
timer to use when you want to preload the problem to a given level of cache and see how
fast your kernel is in isolation. The make target for this methodology is <pre>r1ktime.

The second make target calls ATLAS’s GER driver that builds the full GER from the
kernels. This timer does cache flushing, and is what you should use to estimate how fast
the complete GER will be. This make target is <pre>r1time.

Both of these targets take largely the same make macros:

• mu (1): Unrolling on M dimension

• nu (1): Unrolling on N dimension

• r1rout: the filename of your kernel implementation

• M (1000): Number of rows of A (elements of x)

• N (1000): Number of columns of A (elements of y)

• lda (M): leading dimension for the matrix A

• align (-Fx 16 -Fy 16 -Fa 16): alignments that matrix and vectors must adhere to.

• <pre>R1CC (ATLAS default compiler) : compiler required to compile your kernel

• <pre>R1CFLAGS (ATLAS default flags) : compiler flags required to compile your ker-
nel; pass ”-x assembler-with-cpp” (along with any architecture-specific flags) if your
kernel is written in assembly (assuming your compiler is gcc).

• beta (1) : 0 or 1 (scale of y)

• flushKB : for mvntime, kilobytes of memory to flush.

Therefore, to time the probable speed of a complete GER of size 1000x220 while flushing
16MB of memory, I would issue:

35

>make dr1time mu=1 nu=1 r1rout=ger.c M=800 Nt=220 flushKB=16384

.... bunch of compilation, etc

GER1: M=800, N=1000, lda=800, AF=[16,16,16], AM=[0,0,0], alpha=1.000000e+00:

M=800, N=1000, lda=800, nreps=3, time=8.589835e-04, mflop=1863.60

M=800, N=1000, lda=800, nreps=3, time=8.340690e-04, mflop=1919.27

M=800, N=1000, lda=800, nreps=3, time=8.746753e-04, mflop=1830.16

NREPS=3, MAX=1919.27, MIN=1830.16, AVG=1871.01, MED=1863.60

To time the kernel alone without cache flushing:

>make dr1ktime mu=1 nu=1 r1rout=ger.c M=800 Nt=220

.... bunch of compilation, etc

GER1: M=800, N=1000, lda=800, AF=[16,16,16], AM=[0,0,0], alpha=1.000000e+00:

M=800, N=1000, lda=800, nreps=3, time=6.657494e-04, mflop=2404.51

M=800, N=1000, lda=800, nreps=3, time=6.664957e-04, mflop=2401.82

M=800, N=1000, lda=800, nreps=3, time=6.842208e-04, mflop=2339.60

NREPS=3, MAX=2404.51, MIN=2339.60, AVG=2381.97, MED=2401.82

3.4 Testing and timing ger2 k

The rank-2 update kernel ger2 k performs the operation A← xyT +wzT +A, and has the
API:

void ATL_UGER2K

(ATL_CINT M, ATL_CINT N, const TYPE *X, const TYPE *Y,

const TYPE *W, const TYPE *Z, TYPE *A, ATL_CINT lda)

The rank-2 update kernel ger2 k uses the exact same testing and timing methodology as
described for ger k in the previous section, except the kernel must be stored in the R2CASES/
subdirectory, and you substute “r2” for “r1” in the testing and timing commands, and “R2”
for “R1” in the compiler and flag macros.

A simple GER2 implememtation would be:

#include "atlas_misc.h" /* define TYPE macros */

void ATL_UGER2K

(ATL_CINT M, ATL_CINT N, const TYPE *X, const TYPE *Y,

const TYPE *W, const TYPE *Z, TYPE *A, ATL_CINT lda)

{

register ATL_INT i, j;

for (j=0; j < N; j++)

{

const register TYPE y0=Y[j], z0=Z[j];

for (i=0; i < M; i++)

A[i] += X[i]*y0 + W[i]*z0;

A += lda; /* finished with this column */

}

}

36

Assuming I save the above file to R2CASES/r2k.c, I would test:

>make sr2ktest mu=1 nu=1 r2rout=r2k.c

.... bunch of compilation, etc

TEST CONJ=0, M=297, N=177, lda=297, incY=1, STARTED

TEST CONJ=0, M=297, N=177, lda=297, incY=1, PASSED

And time the single precision real kernel without cache flushing with:

>make sr2ktime mu=1 nu=1 r2rout=r2k.c

.... bunch of compilation, etc

GER2: M=1000, N=1000, lda=1000, AF=[16,16,16], AM=[0,0,0], alpha=1.000000e+00:

M=1000, N=1000, lda=1000, nreps=1, time=9.489282e-04, mflop=4217.39

M=1000, N=1000, lda=1000, nreps=1, time=9.714776e-04, mflop=4119.50

M=1000, N=1000, lda=1000, nreps=1, time=9.486141e-04, mflop=4218.79

NREPS=3, MAX=4218.79, MIN=4119.50, AVG=4185.22, MED=4217.39

4 Speeding up the Level 1 BLAS

4.1 General comments for Level 1 optimization

All Level 1 optimizations are carried on in the BLDdir/tune/blas/level1 directory and its
subdirectories. Under this directory are subdirs with names corresponding to the generic
name of the routine in question (eg. AXPY, IAMAX, DOT, etc). It is in these subdirs that
the user should place the routines to test and time.

A great deal of the performance win to be had on the Level 1 BLAS, particularly for
long vectors, comes from using data prefetch. ATLAS now includes a prefetch header file
(described in Section 6.1), which makes prefetch instructions for various systems available
for C programmers.

4.1.1 No general kernels here

The Level 1 BLAS are in general too basic to be written in terms of simpler kernels.
Therefore, each Level 1 routine must be pretty much optimized individually. The only real
reuse of kernels comes from either complex-to-real reuse, or one BLAS routine simplifying
to another.

For an example of complex-to-real reuse, consider ZNRM2 which, when called with incX

= 1, can be simply implemented as a call to DNRM2 with 2*N. An example of a routine
simplifying to another would be calling DSCAL with alpha = 0.0, which devolves to a call
to the primitive ATL dset.

Therefore, if you are planning to optimize a particular case, be sure to read the appopri-
ate section below to make sure that the case you want to optimize is not implemented by
a call to another routine.

As with other ATLAS optimizations, each routine has its own kernel index file, one for
each precision (eg., AXPY/dcases.dsc indexes the various DAXPY implementations that
should be tested and timed during the install process). All of these index files follow the
format below, though they leave out unneeded parameters (eg., SCAL, which operates on
only one vector, will not have an entry for incY or BETA).

37

4.1.2 General index file description

The general form of the index files are:

<Number of kernels>

<ID> <alpha> <beta> <incX> <incY> <source file> <author name>

.

.

<ID> <alpha> <beta> <incX> <incY> <source file> <author name>

Here’s an explanation of these values:

• ID: Strictly positive (> 0) integer which must be unique in the file (eg., two lines
should not begin with the same ID). This ID is used to distinguish between kernels,
so reusing one will result in confusion.

• ialpha: Integer flag describing special conditions of the scalar alpha. Possible values
are:

– 1: alpha = 1.0 (for complex, (1.0, 0.0))

– -1: alpha = -1.0 (for complex, (-1.0, 0.0))

– 0: For complex only, this flag means that the imaginary component is zero (i.e.,
scalar is actually real, not complex).

– 2: or anything else, is assumed to mean that nothing special is known about the
scalar.

• ibeta: Same as ialpha, but for second scalar.

• incX: Stride on the X vector your kernel is specialized for (eg., incX=1 means the
kernel works only for X vectors with unit stride).

• incY: Vector stride for Y vector.

• source file: The name of the source file appearing in the BLAS subdir (eg, AXPY/myaxpy.c
would mean an entry of myaxpy.c).

• author name: Name of the author, enclosed in double quotes.

For example, here is an example AXPY/dcases.dsc:

3

1 2 0 0 axpy1_x0y0.c "R. Clint Whaley"

2 2 1 1 axpy1_x1y1.c "R. Clint Whaley"

2 -1 1 1 axpy1_an1x1y1.c "R. Clint Whaley"

<ID> <ialpha> <incX> <incY> <rout> <author> [\

So, to make this work, all three filenames mentioned above must appear in your AXPY/
subdir. The first kernel routine is the general case: general incX, incY, and alpha. The
second specializes both vector increments to unit stride, but takes any alpha. Finally, the
last routine specializes even further, with unit strides and requiring alpha be negative one.

38

Note that all index files must contain at least one routine that handles the most general
cases, and passes the tester.

If you need a particular compiler and flag combo to compile your kernel you end the line
with a \, and put the compiler on the following line, and the flags on a line after that. So, if
axpy x1y1.c needed gcc, with -O1 -fschedule-insns -DGOODPERFORMANCE for flags, the
above file would be changed to:

3

1 2 0 0 axpy1_x0y0.c "R. Clint Whaley"

2 2 1 1 axpy1_x1y1.c "R. Clint Whaley" \

gcc

-O1 -fschedule-insns -DGOODPERFORMANCE

2 -1 1 1 axpy1_an1x1y1.c "R. Clint Whaley"

<ID> <ialpha> <incX> <incY> <rout> <author> [\

4.1.3 Things you can assume, and/or need to know when writing kernels

First, ATLAS will ensure that N > 0 for all routines. Vector strides will never be zero, and
for those routines taking only one vector, the vector stride will always be positive.

For routines taking more than one vector, this is not so simple. The first thing that
needs to be clear is that internally, ATLAS does not use the pointer conventions that the
BLAS do when it comes to handling vectors with negative increments. In the BLAS, if
you want to operate on a vector with a negative increment, you pass in the end of the
negatively incremented vector (i.e, you always pass the part of the vector closest to 0 in
memory, regardless of the increment). ATLAS will instead pass the beginning of the vector
regardless of sign, so that the following sample code would correctly step through a vector
regardless of the sign:

for (i=0; i < N; i++, X += incX, Y += incY) ...

.
ATLAS also fiddles with the vector increments so that:

1. Both increments are never negative

2. incY will be negative only if |incX| == 1 and |incY| != 1.

There may be additional constraints, on an individual routine basis.

4.2 Testing a kernel

Testing is straightforward. If your BLAS routine is <blas>, and your file in the /<blas>

subdir is <rout>, then you compile and test it by:

make <pre><blas>test urout=<rout>

On the makefile line, you can also pass N=<N> to test a particular length vector. Each
tester has various flags that can be passed to them, and these can be passed to make via
the opt="flags" macro.

39

To find out what flags a tester takes, compile it, and run the resulting executable with
-help (or just look in the source, you slacker).

Alright, here’s a specific example. Let’s say I have just written a new AXPY implemen-
tation and put it in AXPY/myaxpy.c. I can then test it with:

make daxpytest urout=myaxpy.c

When I fire this off, it does a bunch of compilation, and then spits out something like:

ITST N alpha incX incY TEST

====== ======== ======== ==== ==== ======

0 777 1.00 1 1 PASSED

1 777 -1.00 1 1 PASSED

2 777 0.90 1 1 PASSED

ALL AXPY SANITY TESTS PASSED.

Now, let’s say I’ve written a complex routine (cmyaxpy), that can handle multiple
increments. To test various increments, I do:

speedy. make zaxpytest urout=cmyaxpy.c opt="-X 4 -1 1 -2 3 -Y 4 1 -1 2 -3"

ITST N ralpha ialpha incX incY TEST

====== ======== ======== ======== ==== ==== ======

0 777 1.00 0.00 -1 1 PASSED

1 777 -1.00 0.00 -1 1 PASSED

2 777 1.30 0.00 -1 1 PASSED

3 777 0.90 1.10 -1 1 PASSED

.....

.....

61 777 -1.00 0.00 3 -3 PASSED

62 777 1.30 0.00 3 -3 PASSED

63 777 0.90 1.10 3 -3 PASSED

ALL AXPY SANITY TESTS PASSED.

4.3 Timing a kernel

IMPORTANT NOTE: At present, all of ATLAS Level 1 timing is completely inaccurate
for short vectors. Both the level 1 timing in ATLAS/bin, and the kernel timers described
here screw this up. Essentially, our portable cache flushing mechanisms are not complete
enough to get things completely out of cache, so you see that short vectors appear to get
better performance than long vectors, a patent impossibility if all caches were correctly
flushed. The only “solution” we have at the moment is to time vectors that themselves
overflow the cache (i.e., N=1000000).

Timing works a lot like testing. If your BLAS routine is <blas>, and your file in the
/<blas> subdir is <rout>, then you compile and time it by:

make <pre><blas>case urout=<rout>

So, to time the previously meantioned myaxpy.c with a million length vector, you’d
have the following:

40

speedy. make daxpycase urout=myaxpy.c N=1000000

N=1000000, tim=5.000000e-02

N=1000000, tim=5.000000e-02

N=1000000, tim=5.000000e-02

N=1000000, time=5.000000e-02, mflop=40.000000

N=1000000, incX=1, incY=1, mflop = 40.000000

So, we got 40Mflop out of that implementation. All the timers take the flag -C <cache

flush size in bytes>, which you can use to get the L1 (or L2) contained performance.
Eg, the timer is usually doing it’s best to flush the caches, but I want to see what perfor-
mance I get when in the L1 cache. What I do is:

make daxpycase urout=myaxpy.c N=500 opt="-C 512"

N=500, tim=4.296302e-06

N=500, tim=3.938276e-06

N=500, tim=4.296302e-06

N=500, time=4.176960e-06, mflop=239.408571

N=500, incX=1, incY=1, mflop = 239.408571

Flushing 512 bytes is not going to do anything, and N=500 will not overflow cache, so we
see that L1-contained operations come in at 240Mflop . . .

When it comes to timing codes with varying increments, the timer is not as flexible as
the tester. It can time only one given increment value at a time. So, to time axpy with
incX=3 and incY=4, we’d do:

make daxpycase urout=myaxpy N=500 opt="-X 3 -Y 4"

4.4 What to do if you are writing in assembler

If your kernel is written in gas assembler, you can tell the tester and timer that by setting
the <pre>UCC and <pre>UCCFLAGS appropriately. For instance, to test the DDOT code given
in Section A.1.3, you would issue:

make ddottest dUCC=gcc dUCCFLAGS="-x assembler-with-cpp" urout=ddot.c

4.5 Ramblings on special cases

When presented with these options, you may be tempted to ask what cases you should
optimize. On the other hand, you might also validly ask: isn’t it obvious that it is always
incX = incY = 1, and why did you bother building in this special case flexibility?

First, it must be acknowledged that on most systems, bandwidth contraints will make
any non-unit optimization tough. Doesn’t mean it can’t be done, though, at least to some
degree.

For an example of why you want some flexibility, consider the COPY routine. Of course,
the most optimizable routine is incX = incY = 1. However, one big use of the routine I
make myself is to copy from noncontiguous storage to unit stride, so that more efficient
access is possible. This suggests that the ability to make incX arbitrary and incY = 1

might be useful in this routine.

41

For an example of a non-unit fixed stride, think of doing conjugation on a complex
vector. That is essentially a real SCAL, with incX = 2 and alpha = -1.0, and if this was
important to you, you could optimize that exact case.

Ultimately, one can never foresee when flexibility will be needed, anyway. With the
present case, a user that knew he was accessing a vector with increments of 50, 100, 500 all
the time, could create special cases for them . . .

All that said, incX=incY=1 is often the only case where optimization will have a not-
icable effect, so it’s where I’d concentrate my efforts as long as there’s not some reason to
do otherwise.

4.6 Notes for ROTG, ROTMG, ROT, ROTM

1. ROTG is essentially a scalar routine, so I didn’t feel it was worth optimizing beyond
just not writing it in a non-braindead way in the first place.

2. As for the rest of the routines, OK, so I haven’t supported speeding up any of them
yet, sue me. I myself don’t use’em, and I couldn’t write the testers without scoping
the code, so they got a pass. Let me know if you call these guys, maybe I’ll get off
my duff . . .

4.7 Notes for ROT

1. Applies plane rotation.

2. An index file input line looks like:

<ID> <C> <S> <incX> <incY> <source file> <author name>

3. Will never be called with C = 1, S = 0 (ROT is no-op for this case)

4. For complex, if both vectors have unit stride, the real routine is called with 2*N.

4.8 Notes for ASUM

1. Performs asum← ||re(x)||1 + ||im(x)||1

2. An index file input line looks like:

<ID> <incX> <source file> <author name>

3. For complex, if both vectors have unit stride, the real routine is called with 2*N.

4.9 Notes for AXPBY

1. Performs y ← αx+ βy

2. An index file input line looks like:

<ID> <alpha> <beta> <incX> <incY> <source file> <author name>

42

3. The kernel will never be called with beta == 1.0 (AXPY is called instead).

4. The kernel will never be called with beta == 0.0 (CPSC is called instead).

5. The kernel will never be called with alpha == 0.0 (SCAL is called instead).

6. For complex, if both vector strides are 1, and the imaginary components of alpha and
beta are both zero, the real kernel is called with 2*N.

4.10 Notes for AXPY

1. Performs y ← αx+ y

2. An index file input line looks like:

<ID> <alpha> <incX> <incY> <source file> <author name>

3. The kernel will never be called with alpha == 0.0.

4. For complex, if both vector strides are 1, and the imaginary component of alpha is
zero, the real kernel is called with 2*N.

4.11 Notes for COPY

1. Performs y ← x

2. An index file input line looks like:

<ID> <incX> <incY> <source file> <author name>

3. For complex with both vector strides 1, the real kernel is called with 2*N.

4. incX arbitrary incY=1 is interesting since it represents copying to contiguous storage.

4.12 Notes for CPSC

1. Performs y ← αx

2. An index file input line looks like:

<ID> <alpha> <incX> <incY> <source file> <author name>

3. Never called with α of zero (SET is called instead).

4. Never called with α of one (COPY is called instead).

5. For complex, if both vector strides are 1, and the imaginary component of α is zero,
the real kernel is called with 2*N.

6. incX arbitrary incY=1 is interesting since it represents copying to contiguous storage.

43

4.13 Notes for DOT

1. Performs dot← xT y or dot← xHy

2. An index file input line looks like:

<ID> <incX> <incY> <source file> <author name>

3. For complex, DOTU’s index file is [c,z]cases.dsc, while DOTC’s is [c,z]casesc.dsc.

4. During compilation of the DOTC kernels, ATLAS throws the compilation flag -DConj

(this is so both nonconjugate and conjugate cases can come from the same file).

4.14 Notes for IAMAX

1. Performs amax← 1stk 3 |re(xk)|+ |im(xk)|

2. An index file input line looks like:

<ID> <incX> <source file> <author name>

4.15 Notes for NRM2

1. Performs nrm2← ||x||2

2. An index file input line looks like:

<ID> <incX> <source file> <author name>

3. For complex, if both vectors have unit stride, the real routine is called with 2*N.

4. The user should be aware that this routine was originally added to the BLAS mostly for
accuracy concerns, not for optimization. The simple implementation of this routine:

for (nrm2=0.0, i=0; i < N; i++, X += incX) nrm2 += *X * *X;

return(sqrt(nrm2));

will needlessly overflow for half of the exponent range. Thus, a good implementation
must either use extended precision or a scaling algorithm (such as the sum of squares
used in the reference BLAS) to prevent overflow in the squaring process.

4.16 Notes for SCAL

1. Performs x← αx

2. An index file input line looks like:

<ID> <alpha> <incX> <source file> <author name>

3. If alpha is zero, the ATLAS internal routine ATL set is called.

4. For complex, if incX == 1, and the imaginary component of alpha is zero, the real
routine is called with N*2.

5. The incX == 2, alpha == -1.0 real cases can be used for complex conjugation.

44

4.17 Notes for SET

1. Performs x← α

2. An index file input line looks like:

<ID> <alpha> <incX> <source file> <author name>

3. For complex, if incX == 1, and the imaginary component of alpha is the same as the
real component, the real routine is called with N*2.

4. alpha == 0.0 is heavily used in some codes.

4.18 Notes for SWAP

1. Performs x↔ y

2. An index file input line looks like:

<ID> <incX> <incY> <source file> <author name>

3. For unit stride case, the complex routine calls the real equivalent with N*2.

4. The main use of this routine that I am aware of is row-swapping in factorizations, so
this is one routine that it would make sense to optimize the arbitrary increment cases,
if it were possible.

4.19 Getting your new kernel used

Once you have a kernel that beats the present offerings, and you have updated the appro-
priate index file(s), nothing could be easier. If you are starting from a fresh install without
Level 1 arch defaults, you need do nothing further: the install process will find your kernel.

Things are almost as simple if you have already installed, and need to force a redo. First,
get rid of old search results by issuing rm BLDdir/tune/blas/level1/res/<pre><blas> SUMM.
Then, go to BLDdir/src/blas/level1/, and type :

rm Make_<pre><blas>

make Make_<pre><blas>

make <pre>lib

and that should do it.
So, to do that for the omnipresent DAXPY, on my PIII, I’d do:

cd BLDdir

rm tune/blas/level1/res/dAXPY_SUMM.

cd ATLAS/src/blas/level1/

rm Make_daxpy

make Make_daxpy

make dlib

45

4.19.1 Details I doubt you care about

The executable that tests and times all input kernels and chooses a winner to be included
in ATLAS is x<blas>srch. So, for instance, the search executable for AXPY can be built
by typing make xaxpysrch in BLDdir/tune/blas/level1/.

Each BLAS’s search routine creates a file res/<pre><blas> SUMM. All summation file
have the same format, which is:

<# of specific cases>

<ID> <ialpha> <ibeta> <incX> <incY> <rout> <auth>

....

<ID> <ialpha> <ibeta> <incX> <incY> <rout> <auth>

For instance, if you want to see what went into making your DAXPY, you’d

speedy. cat res/dAXPY_SUMM

2

3 2 2 1 1 axpy32_x1y1.c "R. Clint Whaley"

1 2 2 0 0 axpy1_x0y0.c "R. Clint Whaley"

So, we see that the search has found two routines to build DAXPY out of. For incX =

incY = 1, it will call axpy32 x1y1.c, and for all other cases, it will call axpy1 x0y0.c

5 Using special compilers and flags for kernel compilation

5.1 Specifying all new compilers and flags

For all BLAS kernels supported by ATLAS, you can specify a particular compiler and flags
to be used in compiling your kernel. Normally, the default compiler specified by config is
used. To override this behavior, you simply end a primitive line in the particular description
file with the backslash character ‘\’, and then the next two lines are assumed to contain
your compiler, and the flags to use, respectively. For instance, Let us say you start with a
simple gemm description file like:

2

300 480 4 4 1 1 1 4 4 2 ATL_mm4x4x2US.c "V. Nguyen & P. Strazdins"

301 8 4 4 2 1 1 4 4 2 ATL_mm4x4x2US_NB.c "V. Nguyen & P. Strazdins"

You then decide you want the first routine compiled with gcc, and some ultrasparc-
specific flags. This file would change to:

2

300 480 4 4 1 1 1 4 4 2 ATL_mm4x4x2US.c "V. Nguyen & P. Strazdins" \

gcc

-O -mcpu=ultrasparc -mtune=ultrasparc -fno-schedule-insns -fno-schedule-insns2

301 8 4 4 2 1 1 4 4 2 ATL_mm4x4x2US_NB.c "V. Nguyen & P. Strazdins"

46

5.2 Specifying additional flags for the default compiler

At present, only the Level 2 kernels have this option. It’s the same as when you specify a
new compiler and flags, but you specify the compiler as ‘+’, and the flags you give on the
following flagline are added to its default flags. This can be useful for compiling the same
routine multiple times with differing macros (eg., prefetch distance, etc.). Let us say you
had this simple gemv description file:

2

1 8 0 0 ATL_gemvN_mm.c "R. Clint Whaley"

2 0 1 1 ATL_gemvN_1x1_1.c "R. Clint Whaley"

2

101 8 0 0 ATL_gemvT_mm.c "R. Clint Whaley"

102 0 2 8 ATL_gemvT_2x8_0.c "R. Clint Whaley"

You now want to compile ATL gemvT 2x8 0.c two different ways: one with a default
prefetch distance, and once with a prefetch distance of 16. This would be simply:

2

1 8 0 0 ATL_gemvN_mm.c "R. Clint Whaley"

2 0 1 1 ATL_gemvN_1x1_1.c "R. Clint Whaley"

2

101 8 0 0 ATL_gemvT_mm.c "R. Clint Whaley"

102 0 2 8 ATL_gemvT_2x8_0.c "R. Clint Whaley"

103 0 2 8 ATL_gemvT_2x8_0.c "R. Clint Whaley" \

+

-DPREFETCH_DIST=16

5.3 Using a binary kernel

All the ATLAS machinery assumes you are using a C source, or something that can be made
to look like one (i.e. assembler done as in-line assembler in C). Not all ways of programming
can be made to work this way, so ATLAS has the ability to take an object-only kernel. The
level 1 kernels do not have this option, but the Level 2 and 3 do.

This ability is an ugly hack on the pre-existing machinery, so don’t expect either elegance
or ease of use with this option: it is a last-resort kind of thing at best.

ATLAS has a routine that it builds called ./xccobj, which is a “compiler” for object
files. Essentially, what it does is fake compilation, but instead it simply moves a pre-
compiled .o into place during the install/tuning process. You can see the source for this
routine in ATLAS/bin/ccobj.c.

This routine reads in some special “compiler flags” that you pass it in order to figure
out what to do. The most important of these are:

• -o <outfile>: Same as with a compiler.

• --objdir <objdir> The directory where the object file to be copied resides. The
default is ATLAS/blas/gemm/CASES/objs.

47

• --name <name> The base name of the object file to be copied. This name is suffixed
by the appropriate beta suffix, as determined by the usual BETA macro definition.
Name has no usuable default, so it must be specified.

• -DBETA or -DATL_BETA. These are standard macros used to specify which BETA case
a particular kernel can handle. According to this definition, a beta suffix will be added
to the --name basename to find the object file to copy (this is to simulate all the beta
cases coming from the same C code, as in the normal case). The values, along with
their suffixes are:

– -DATL_BETA0 ⇒ _b0

– -DATL_BETA1 ⇒ _b1

– -DATL_BETAX ⇒ _bX

– -DATL_BETAXI0 ⇒ _bXi0

The default is ATL_BETA1.

• -DConj_: If this macro definition is found, the name of the routine to be copied is
actually <name>c_<beta>, and that routine should supply the conjugate version of
the kernel (simulates recompiling the same source in order to get both normal and
conjugate versions of routines). The default is no conjugation. Note that this macro
is set automatically by the build process, so the user would only set it manually when
testing and timing by hand.

5.3.1 Using a binary kernel from the command line

OK, let us say you have a kernel object file, called new b1.o which you have compiled/assembled/created
using the magnetic field of the earth. You want to test and time it on the command line.
For the DGEMM kernel, this would be simply:

make ummcase mmrout=CASES/ATL_objdummy.c DMC=./xccobj \

DMCFLAGS="--name new" nb=30 beta=1

make mmutstcase mmrout=CASES/ATL_objdummy.c DMC=./xccobj \

DMCFLAGS="--name new" nb=30 beta=1

Note that ATL objdummy.c could be any file that exists in the indicated directory (does
not need to be a compilable file), and that we do not specify the beta case (done using
the tester/timer machinery) or the objdir (because we placed the kernel in the default
directory).

5.3.2 Using a binary kernel from input file

Here’s an example of an object kernel primitive line from a real gemm kernel descriptor file:

315 8 -30 -30 -30 0 4 30 30 30 ATL_objdummy.c "Julian Ruhe" \

./xccobj

--name julian2

This guy assumes that in the directory ATLAS/tune/blas/gemm/CASES/objs, you have
these three files:

48

1. julian2 b0.o

2. julian2 b1.o

3. julian2 bX.o

49

6 A quick reference to ATLAS programming resources

ATLAS has a quite a bit of programming infrastructure which can be used. The routines
in ATLAS/src/auxil represent low-level routines which can be called from anywhere in the
ATLAS code (other than the Level 1 kernel routines), and are prototyped by including
either atlas misc.h or atlas aux.h.

ATLAS makes fairly heavy use of macros in order to achieve something approaching
precision (and in some cases type) independent code. Any routine can include the general
macro file atlas misc.h in order to get access to these macros. Low level routines are com-
piled multiple times with differing makefile-controlled cpp macros (call these index macros)
in order to produce differing implementations. The index macros used in ATLAS presently
include:

• Type/precision selection macros, choices are:

1. SREAL: single precision real is expected

2. DREAL: double precision real is expected

3. SCPLX: single precision complex is expected

4. DCPLX: double precision complex is expected

• Scalar alpha case selection macros, choices are:

1. ALPHA1: scalar α should be assumed to be 1

2. ALPHAXI0: only valid for complex types; real component is unknown, but imagi-
nary component is zero

3. ALPHAX: scalar alpha is unknown, and must be applied as a variable

• Scalar β case selection macros, choices are:

1. BETA0: scalar beta should be assumed to be 0

2. BETA1: scalar beta should be assumed to be 1

3. BETAXI0: only valid for complex types; real component is unknown, but imagi-
nary component is zero

4. BETAX: scalar beta is unknown, and must be applied as a variable

• For complex types only, ATLAS defines the index variable Conj when the conjugation
of the transpose setting is needed

Each of these index macros define a number of helper macros that go with them.
atlas misc.h should be examined for full details. For instance, if SREAL or DREAL are
defined, the type-determinant macro TREAL is defined. Similarly, if SCPLX or DCPLX are
defined, the type-determinant macro TCPLX is defined. For a simpler example, the precision
macro defines ATL_rone, which corresponds to 1.0f in single precision, and 1.0 in double.
A great many of these helper macros are designed to be used to help in resolving names in-
dependant of type. In order to use these naming macros, we use the macro-joining function
Mjoin(Mac1, Mac2), which results in the joining of the Mac1 and Mac2.

50

You can examine the GEMV kernel implementations for examples of how this works. In
particular, ATLAS uses the same implementation for single and double precision by using
these macros, and recompiling the same source with differing index macros. Just to give a
quick example, the index macro controlling β defines a helper macro BNM which corresponds
to the correct beta name for the gemv and ger kernels. Using this trick, we can reduce:

#ifdef BETA0

#ifdef Conj_

void ATL_dgemvNc_a1_x1_b0_y1

#else

void ATL_dgemvN_a1_x1_b0_y1

#endif

#elif defined (BETA1)

#ifdef Conj_

void ATL_dgemvNc_a1_x1_b1_y1

#else

void ATL_dgemvN_a1_x1_b1_y1

#endif

#elif defined (BETAXI0)

#ifdef Conj_

void ATL_dgemvNc_a1_x1_bXi0_y1

#else

void ATL_dgemvN_a1_x1_bXi0_y1

#endif

#else

#ifdef Conj_

void ATL_dgemvNc_a1_x1_bX_y1

#else

void ATL_dgemvN_a1_x1_bX_y1

#endif

#endif

to:

#include "atlas_misc.h"

#ifdef Conj_

void Mjoin(Mjoin(ATL_dgemvNc_a1_x1,BNM),_y1)

#else

void Mjoin(Mjoin(ATL_dgemvN_a1_x1,BNM),_y1)

#endif

6.1 ATLAS’s prefetch header file

ATLAS has an include file (ATLAS/include/atlas prefetch.h), which defines the follow-
ing macros:

• ATL GOT L1PREFETCH: This macro is only defined if ATLAS has a way of doing Level
1 cache prefetch for your architecture.

51

• ATL pfl1R(mem) This macro prefetches the address pointed at by mem. It prefetches
one cacheline into L1. The cacheline length will vary by platform, and the include file
does not define it at this time (so sue me). This prefetch is optimized for read access.
If your system does not possess level 1 prefetch, this macro will define to nothing (i.e.,
it will not be an error to call it).

• ATL pfl1W(mem) This macro prefetches the address pointed at by mem. It prefetches
one cacheline into L1. The cacheline length will vary by platform, and the include file
does not define it at this time (so sue me). This prefetch is optimized for write access.
If your system does not possess level 1 prefetch, this macro will define to nothing (i.e.,
it will not be an error to call it).

These prefetch instructions are not the same as user read, and do not cause access errors
(i.e., you can prefetch the NULL pointer).

7 Conclusion

As you have seen, this note and the protocols it describes have plenty of room for improve-
ment. Now, as the end-user of this function, you may have a naturally strong and negative
reaction to these crude mechanisms, tempting you to send messages decrying my lack of
humanity, decency, and legal parentage to the atlas or developer mailing lists. While this
is quite understandable, keep in mind that I’m not a very understanding guy, and am also
a gigantic baby that pouts when my tender feelings are hurt. So, the proper bitch format
involves

• First thanking me for spending time in hell getting things to their present crude state

• Then, supplying your constructive ideas

For a higher overview of things, scope out the paper ATLAS/doc/atlas over.ps, which
describes the ideas behind ATLAS, including several that are touched upon only lightly in
this note.

52

A Some notes on using assembly

This appendix contains useful information for people wanting to supply assembly kernels.
Presently, ATLAS config detects seven styles of assembler, all using gnu’s gcc/gas:

1. x86-32: Classic x86 assembler (AT&T syntax)

2. x86-64: Assembler for 64-bit mode of x86-64 (AT&T syntax).

3. Sparc: Sparc assembler.

4. OS X PowerPC: PowerPC assembly using OS X’s ABI.

5. Linux PowerPC: PowerPC assembly using Linux’s ABI.

6. HP-UX PA-RISC: PA-RISC assembly using HP-UX’s commands.

7. Linux PA-RISC: PA-RISC assembly using Linux’s commands.

The following sections give some hints that may be helpful in writing assembly for each
of these variants. One trick to keep in mind, when you are unsure of syntax or how to
do something, is to write the code in C, and use gcc to convert your C implementation to
assembler (gcc -S), and see how gcc does it.

A.1 Some notes on x86-32 assembler

All assembly kernels presently in ATLAS utilize gcc for compilation. This is because gcc is
required by the architectural defaults for all x86 archs, and is freely and widely available.
Gcc/gas uses an AT&T style assembler syntax, which may be a bit confusing for people
used to the MASM/NASM style. People tend to talk like this is a big deal, but I learned
x86 assembler from a MASM-style book, and was working in AT&T immediately. The main
difference is that MASM has a style of DEST, SOURCE, while AT&T uses SOURCE, DEST.
For concise description of MASM/AT&T differences, scope:

http://www.gnu.org/manual/gas-2.9.1/html_mono/as.html#SEC198

There are numerous examples of CPP-augmented assembler in ATLAS’s kernels. Look
in the relavant description file (eg., ATLAS/tune/blas/gemm/dcases.SSE,
ATLAS/tune/blas/level1/IAMAX/dcases.dsc, etc.), and any kernel that mandates gcc as
the compiler, with the flags of -x assembler-with-cpp is an example.

A x86-32 assembler kernel should contain the following CPP lines at the beginning of
the file:

#ifndef ATL_GAS_x8632

#error "This kernel requires gas x86-32 assembler!"

#endif

This quick error exit keeps a non-x86-32 assembler from generating hundreds or thousands
of spurious error messages during install.

53

A.1.1 Register usage

x86-32 provides a grand total of eight integer registers, a full 7 of which are usable as integer
registers!! Whatever will we do with such bounty. Table 3 summarizes these registers. Note

CALLEE
REGISTER USAGE SAVE

%eax integer return val NO

%edx dividend reg NO

%ecx count reg NO

%ebp optional frame pointer YES

%ebx local reg YES

%esi local reg YES

%edi local reg YES

%esp Stack pointer YES

%st fp return val, aliased with mmx NO

%st1-7 scratch regs, aliased with mmx NO

%mmx0-7 scratch MMX regs, aliased with fp stack NO

%xmm0-7 scratch SSE/SSE2 regs NO

Table 3: Possible x86-32 registers

that the MMX registers are only available on architectures possing the MMX ISA extensions,
and that the xmm registers are only available on architectures implementing SSE or SSE2.
It is also worth mentioning that all of the integer registers with the exception of the stack
pointer (%esp) may be used as general purpose registers, in addition to their specialized
usages. Finally, please note that the MMX registers and floating point are aliased, so they
cannot be referenced at the same time.

Registers marked as CALLEE SAVE = YES must be explicitly saved by any functions
which write them. Registers marked NO are scratch registers whose values need not be
saved. EAX is used by intergral functions to return the value, and the floating point top-
of-stack, %st returns floating point values. EBP is documented as base pointer, but I think
most sane people just do all referencing from ESP (the stack pointer), and utilize EBP as
an additional integer register.

As for floating point registers, the x86-32 has eight of them arranged in a pseudo-stack.
A document this brief cannot explain this travesty to you if you don’t already grok it. Go
read the x87 FPU description in an assembler book, and come back when you are through
crying.

A.1.2 The calling sequence and stack frame

When your function first gets control, the stack frame looks like:

54

Caller’s frame

last arg
...

%esp+4 1st arg

%esp return address

To get an idea of how this can be used, let us say we have the following function:

int isum(int N, int *v);

So, we want to sum up the vector v, and return the sum. Let us say that we are going
to use all 7 integer registers, and put N into eax and v into edx. Our function prologue
would then look like:

int isum(int N, int *v)

.global isum

.type isum,@function

isum:

#

Save non-scratch registers

#

subl $16, %esp

movl %ebx, (%esp)

movl %ebp, 4(%esp)

movl %esi, 8(%esp)

movl %edi, 12(%esp)

#

Load N and v

#

movl 20(%esp), %eax

movl 24(%esp), %edx

Assuming we accumulated our integer sum into ecx, the function epilogue would then
consist of:

#

Set return value

#

movl %ecx, %eax

#

Restore registers

#

movl (%esp), %ebx

movl 4(%esp), %ebp

movl 8(%esp), %esi

movl 12(%esp), %edi

addl $16, %esp

ret

55

A.1.3 A simple example

Here is the complete code for the simplist assembler implementation of a DDOT primitive
(we are implementing the case where incX and incY are known to be 1):

#

These macros show integer register usage

#

#define N %eax

#define X %edx

#define Y %ecx

#

#double ATL_UDOT(const int N, const double *X, const int incX,

const double *Y, const int incY)

.global ATL_UDOT

.type ATL_UDOT,@function

ATL_UDOT:

#

Load parameters

#

movl 4(%esp), N

movl 8(%esp), X

movl 16(%esp), Y

#

Dot product starts at 0

#

fldz

LOOP:

fldl (X)

fldl (Y)

fmulp %st, %st(1)

addl $8, X

addl $8, Y

faddp %st, %st(1)

dec N

jnz LOOP

ret

Notice that because we are able to confine ourselves to the three scratch registers, we
have an empty function prologue and epilogue (we do not save any registers or move the
stack pointer).

56

A.2 Some notes on x86-64 assembler

x86-64 assembler is AMD’s extension of the classic IA32 into 64 bits. It’s expanded register
set and associated calling sequence improvements make it a good deal easier to code.

A x86-64 assembler kernel should contain the following CPP lines at the beginning of
the file:

#ifndef ATL_GAS_x8664

#error "This kernel requires gas x86-64 assembler!"

#endif

This quick error exit keeps a non-x86-64 assembler from generating hundreds or thousands
of spurious error messages during install.

A.2.1 Register usage

x86-64 has a much less claustrophobic 16 integer registers, as well as 16 SSE/SSE2 registers.
It has the usual complement of 8 x87 registers, aliased with 8 MMX registers. The available
x86-64 registers is summarized in Table 4.

CALLEE
REGISTER USAGE SAVE

%rsp Stack pointer YES

%rbx optional base pointer YES

%rbp optional frame pointer YES

%rax integer return val NO

%rdi 1st int arg NO

%rsi 2nd int arg NO

%rdx 3rd int arg NO

%rcx 4th int arg NO

%r8 5th int arg NO

%r9 6th int arg NO

%r10 used to pass static chain pointer NO

%r11 scratch reg NO

%r12-15 callee-saved regs YES

%xmm0-1 pass & return fp args NO

%xmm2-7 pass fp args NO

%xmm8-15 scratch regs NO

%mmx0-7 scratch regs, aliased to fp stack NO

%st returns long double args NO
aliased with mmx regs

%st1-7 scratch regs, aliased with mmx NO

Table 4: x86-64 register summary

57

A.2.2 The calling sequence and stack frame

When your function first gets control, the stack frame looks like:

Caller’s frame

last overflow arg
...

8(%rsp) 1st overflow arg

0(%rsp) return address

-8(%rsp) begin red zone (16-byte aligned)

-128(%rsp) end of red zone

The “red zone” is an reserved area that is not modified by signal or interrupt handlers,
and so may be used as the temporary area for leaf functions.

When arguments are passed, they are first passed in registers as summarized in Table 4.
Only when all registers of a given type are used up are they passed on the stack (the
“overflow” args above). Note that the 7th and later integral arguments will overflow, as
will the 9th and later floating point arguments. All argument lengths are rounded up to 8
bytes (i.e., a 4-byte integer is passed in the %edi portion of the %rdi register, for instance),
both in register passing and in stack passing.

A.3 Some notes on Sparc assembler

A Sparc assembler kernel should contain the following CPP lines at the beginning of the
file:

#ifndef ATL_GAS_SPARC

#error "This kernel requires gas SPARC assembler!"

#endif

This quick error exit keeps a non-SPARC assembler from generating hundreds or thousands
of spurious error messages during install.

A.3.1 Register usage

Table 5 shows the registers available on the sparc. For floating point registers, double
precision only uses even numbered registers, with the next odd numbered register holding
the second half of the 64-bit value. Single precision instructions can’t use %f32-%f62.
However, one trick to keep in mind is anytime you need to load two consecutive single
precision values, these can be loaded to an even and next odd register with one ldd, which
is more efficient than two ld.

The sparc has only eight globally visable integer registers, the Global registers. Applica-
tions are not allowed to use the system registers (%g5-%g7), not even if they are saved and restored.
Note that in the 64-bit variants of the ABI, %g5 can be used, and need not be saved for v9,
but must be saved for v8plus. The other 24 registers (In, Out, Local) are in a moving
register window, which is moved by the save and restore commands. Note that %g0 can
be the target of an operation, but it’s value will not be effected (eg., its value will remain
0, even if you were to subcc %i2, 8, %g0).

58

CALLEE
REGISTER USAGE SAVE

Global Registers

%g0 (%r0) Always zero NO

%g1-%g4 (%r1-%r4) global regs NO

%g5-%g7 (%r5-%r7) system regs - no use NO USE

Out Registers

%o0 (%r8) Return value from callee NO
outgoing arg 1 to caller

%o1-%o5 (%r9-%r13) outgoing arg 2-6 to caller NO

%o6/%sp (%r14) Stack pointer YES

%o7 (%r15) scratch/@ of CALL inst. NO

Local Registers

%l0-%l7 (%r16-%r23) scratch registers YES

In Registers

%i0-%i5 (%r24-%r29) incoming arg 1-6 YES

%i6/%fp (%r30) frame pointer YES

%i7 (%r31) return address - 8 YES

Floating Point Registers

%f0-%f31 single prec regs NO
even #’s double prec

%f32-%f62 double prec regs NO

Table 5: Sparc register summary

Note that as long as you use the save statement, all callee-saved registers are implicitly
saved by the register window.

The caller’s Out registers are the callee’s In registers.

A.3.2 The calling sequence and stack frame

After the callee performs the save statement, the stack frame looks like:
[%fp] Caller’s frame

variable size local scratch
(if needed) strg for wrd8

[%sp+92] (if needed) strg for wrd7
[%sp+68] storage for words 1-6
[%sp+64] struct/union return ptr
[%sp] ireg window save

32 bit ABI

[%fp+2047] Caller’s frame

variable size local scratch
(if needed) strg for wrd8

[%sp+176+2047] (if needed) strg for wrd7
[%sp+128+2047] storage for words 1-6
[%sp+2047] ireg window save

64 bit ABI

The callee’s arguments are stored in the caller’s stack frame. Note that the address of
%sp must be kept 8-byte aligned for the 32 bit ABI, and 16-byte aligned for 64 bit.

For the 64-bit frame, the 2047 offset is called the BIAS, and it allow system libs to know

59

which ABI is in effect (if 1 in last binary digit, 64 bit). Integers are stored in 64 bit slots,
with the last 4 bytes holding the good value. Therefore, to load an int stored at 176 you
do a ldsw [%sp+2047+176+4], reg.

For the 32-bit ABIs, floating point args are passed in the integer regs (2 regs for double)
and floating point functions return their value in %f0.

For the 64 bit v9 ABI, there is a complicated memory-slot/register mapping which
determines how things are passed in registers, as shown in 2 (note that after the callee
executes the save statement, the %o registers will of course be the %i registers). Note that
v9a is just v9 with VIS extensions, and v9b also includes some UltraSPARC-III extensions,
so all v9 ABIs are the same for the information discussed here.

Memory Intergral Float Double Quad

%sp+BIAS+128 %o0 %f1 %f0 %f0

%sp+BIAS+136 %o1 %f3 %f2

%sp+BIAS+144 %o2 %f5 %f4 %f4

%sp+BIAS+152 %o3 %f7 %f6

%sp+BIAS+160 %o4 %f9 %f8 %f8

%sp+BIAS+168 %o5 %f11 %f10

%sp+BIAS+176 n/a %f13 %f12 %f12

%sp+BIAS+184 n/a %f15 %f14

%sp+BIAS+192 n/a %f17 %f16 %f16

%sp+BIAS+200 n/a %f19 %f18

%sp+BIAS+208 n/a %f21 %f20 %f20

%sp+BIAS+216 n/a %f23 %f22

%sp+BIAS+224 n/a %f25 %f24 %f24

%sp+BIAS+232 n/a %f27 %f26

%sp+BIAS+240 n/a %f29 %f28 %f28

%sp+BIAS+248 n/a %f31 %f30

Figure 2: Argument passing for 64-bit SPARC v9 ABI

A.4 Some notes on PowerPC assembler

There are three OSes that I know something about that do PowerPC assembler: AIX, OS X,
and Linux. All three of these OSes use the same ABI for 64-bit assembly (64-bit PowerPC
ELF ABI Supplement 1.7). For 32 bits, the ABIs for AIX and OS X are essentially the
same, but Linux differs very slightly in register usage and substantially in the way the stack
is defined.

The standard ATLAS include file defines the macros ATL AS OSX PPC, ATL AS AIX PPC

and ATL GAS LINUX PPC, which can be used like:

#ifndef ATL_AS_OSX_PPC

#error "This kernel requires OS X PPC assembler!"

#endif

to guard against invalid compilation.

60

A.4.1 Register usage for 64 bit PowerPC

The register usage for PPC64 is given in Table 6.

CALLEE
REGISTER USAGE SAVE

Integer Registers

r01 Used in prolog/epilog NO

r1 Stack pointer YES

r2 TOC pointer (reserved) YES

r3 1st para/return val NO

r4-r10 3-8th para NO

r11 Environment pointer NO

r12 Used by global linkage NO

r13 reserved system thread ID N/A

r14-31 Global int registers YES

Floating Point Registers

f0 Scratch reg NO

f1-13 1-13th fp para NO

f14-f31 Global fp regs YES

Special Registers

LR Link register YES

CTR Count register NO

XER Fixed pt exception NO

FPSCR fp status & ctrl NO

CR0-CR7 Condition reg fields, each 4 bits wide 2, 3, 4 : YES

Vector Registers

v0-v1 scratch regs NO

v2-v13 vec para regs NO

v14-v19 scratch regs NO

v20-v31 global vregs YES

vrsave (32 bits) YES

Table 6: Register usage for 64-bit PowerPC assembly
.

A.4.2 The calling sequence and stack frame for 64 bit PowerPC

The 64-bit PowerPC ELF ABI defines a 288-byte red zone beneath the stack pointer which
can be used by leaf functions in lieu of allocating their own stack frame. The stack frame
is:

1r0 interpretated as 0 for many instructions, so don’t use unless you are really sure of what you are doing!

61

fp reg save area (optional)

ireg save area (optional)

VRSAVE save word (32 bits, optional)

padding (optional)

Local storage (optional)

48(r1) Parameter area (>= 8 words)

40(r1) TOC save area

32(r1) Link editor doubleword

24(r1) Compiler doubleword

16(r1) Link register (LR) save

8(r1) Condition register (CR) save

0(r1) ptr to callee’s stack

If the LR is changed, it is first saved to the LR save area, and similarly if any of the
callee-saved condition register fields are modified, it must be saved to the CR save area.

A.4.3 Register usage for 32-bit OS X or AIX

CALLEE
REGISTER USAGE SAVE

Integer Registers

r01 Used in prolog/epilog NO

r1 Stack pointer YES

r2 TOC pointer (reserved) YES

r3 1st para/return NO

r4 2nd para/return NO

r5-r10 3-8th para NO

r11 Environment pointer NO

r12 Used by global linkage NO

r13-31 Global int registers YES

Floating Point Registers

f0 Scratch reg NO

f1-13 1-13th fp para NO

f14-f31 Global fp regs YES

Special Registers

LR Link register YES

CTR Count register NO

XER Fixed pt exception NO

FPSCR fp status & ctrl NO

CR0-CR7 Condition reg fields, each 4 bits wide 2, 3, 4 : YES

1r0 interpretated as 0 for many instructions, so don’t use unless you are really sure of what you are doing!

62

Note that if an OS X/AIX routine accepts a floating point register, the appropriate
number of integer registers are skipped, even though the value is passed in a fp reg. Linux
does not waste registers in this way.

A.4.4 The calling sequence and stack frame for 32-bit OS X/AIX

When control is passed to the called routine, the stack pointer points to the callee’s frame,
which looks like:

fp reg save area (optional)

ireg save area (optional)

padding (optional)

Local storage (optional)

24(r1) Parameter area (>= 8 words)

20(r1) TOC save area

16(r1) Link editor doubleword

12(r1) Compiler doubleword

8(r1) Link register (LR) save

4(r1) Condition register (CR) save

0(r1) ptr to callee’s stack

• Stack pointer must be quadword aligned

• Start of fp & ireg save areas always double word aligned

• Before calling another func, must save the LR in LR save area

• Have 224-byte (OSX) / 220-byte (AIX) red zone below stack ptr so leaf func frame

A.4.5 Register usage for 32 bit Linux

A.4.6 The calling sequence and stack frame for Linux

When control is passed to the called routine, the stack pointer points to the callee’s frame,
which looks like:

fp reg save area (optional)

ireg save area (optional)

CR save area (optional)

Local storage (optional)

8(r1) Parameter area (optional)

4(r1) Link register (LR) save

0(r1) ptr to callee’s stack

• Stack pointer is always 16-byte (quad-word) aligned.

• Stack pointer (sp) updated atomically via “store word with update”.

1r0 interpretated as 0 for many instructions, so don’t use unless you are really sure of what you are doing!

63

CALLEE
REGISTER USAGE SAVE

Integer Registers

r01 Used in prolog/epilog NO

r1 Stack pointer YES

r2 TOC pointer (reserved) YES

r3-r4 1/2 para and return NO

r5-r10 3-8th integer para NO

r11-r12 Func linkage regs NO

r12 Used by global linkage NO

r13 Small data area ptr reg NO

r14-30 Global int registers YES

r31 Global/environment ptr YES

Floating Point Registers

f0 Scratch reg NO

f1 1st para / return NO

f2-8 2-8th fp para NO

f9-f13 Scratch reg NO

f14-f31 Global fp regs YES

Special Registers

CR0-CR7 Condition reg fields, each 4 bits wide 2, 3, 4 : YES

LR Link register YES

CTR Count register NO

XER Fixed pt exception NO

FPSCR fp status & ctrl NO

• Any non-scratch reg f# must be saved to the fp reg save area at location 8*(32-#)
from the previous frame (i.e., the register f31 is saved adjacent to previous ptr to
callee’s stack).

• Any non-scratch reg r# must be saved in the ireg save area 4*(32-#) bytes before the
low-addressed end of the fp reg save area.

• Minimum stack frame callee save and LR save.

• No red zone is specifically mandated.

• If number if ipara is ≤ 8 and the number of fppara ≤ 8, then no values are stored in
the parameter area, and if this is true for all calls made by the routine, the parameter
area will be of size 0.

• Stack pointer must be quadword aligned

• If parameters are contained in registers, no space allocated in frame

64

A.4.7 Mixing OS X, AIX and Linux PPC assembler

Other than register usage and stack frame issues (which can be isolated into the prologue
and epilogue sections of code), the only real difference between these assemblies lies in
the way registers are addressed. Under Linux, all registers are addressed by their number
only, whereas under OS X, integer registers are prefixed by r, and floating point registers
are prefixed by f. Therefore, I usually write a routine with two different prologues and
epilogues, and at the start of the file I do something like:

#if defined(ATL_GAS_LINUX_PPC) || defined(ATL_AS_AIX_PPC)

#define r0 0

#define r1 1

...

#define r31 31

#define f0 0

#define f1 1

...

#define f31 31

#endif

and then use the OS X-style of register naming.
Also, since I’m using cpp anyway, I use C style comments, to avoid problems with OS X

and Linux having different comment characters.

A.5 Some notes on HP PA-RISC assembler

ATLAS presently supports only 32 bit PA-RISC assembly. Such routines should include:

#if !defined(ATL_LINUX_PARISC) && !defined(ATL_HPUX_PARISC)

#error "This kernel requires PA-RISC assembler!"

#endif

This quick error exit keeps a non-parisc assembler from generating hundreds or thousands
of spurious error messages during install.

A.5.1 Register usage

Table 7 shows the registers available on the PA-RISC. For floating point registers, single
precision registers get additional modifier ’L’ or ’R’ for left or right 32 bits.

• Non-leaf functions must save %r2 before calling a func.

• single prec fp args are passed in right side of fp arg ptrs

• If single prec fp arg has no ’L’ or ’R’ suffix, ’L’ is assumed

65

CALLEE
REGISTER USAGE SAVE

%r0 Always zero NO

%r1 general reg NO

%r2 (%rp) return ptr/address NO

%r3-%r18 general regs YES

%r19 shared lib link reg NO

%r20-%r22 general regs NO

%r23 (%arg3) 4th iarg NO

%r24 (%arg2) 3rd iarg NO

%r25 (%arg1) 2nd iarg NO

%r26 (%arg0) 1st iarg NO

%r27 (%dp) RESERVED: global data pointer NA

%r28 (%ret0) func ret reg NO

%r29 static link reg NO

%r30 (%sp) stack pointer YES

%r31 general reg NO

Floating Point Registers

%fr0 / always zero fp status reg NO

%fr1-%fr3 exceptions regs NO

%fr4-%fr7 fp arg regs NO

%fr8-%fr11 fp regs NO

%fr12-%fr21 fp regs YES

%fr22-%fr31 fp regs NO

Table 7: HPPA register summary

A.5.2 Calling sequence and stack frame

Stack pointer always kept 64-bit aligned, and it grows upward.

66

...previous stack frame

reg save

local vars

-4*(N+9)(r30) arg word N (opt)

-52(r30) arg word 4 (optional)

-48(r30) arg word 3 (required)

-44(r30) arg word 2 (required)

-40(r30) arg word 1 (required)

-36(r30) arg word 0 (required)

-32(r30) External Data/LT ptr

-28(r30) External SR4/LT

-24(r30) External RP

-20(r30) Current RP

-16(r30) Static Link

-12(r30) Cleanup

-8(r30) Reloc stub RP

-4(r30) ptr to callee’s stack

67

A.6 Some notes on MIPS assembler

ATLAS presently supports only the 64-bit ISAs (MIPS III and MIPS IV) using the ABIs
discussed below, which seem to work for Linux and IRIX. This information is presently
priliminary, but as far as I can tell, both IRIX and Linux use the same ABIs. The only
difference appears to be in their comment character, which is easily worked around by using
C-style comments (assuming you use cpp, as I do).

There seem to be a lot of MIPS ABIs, and different archs use different ones. As far as I
know, Linux follows the SGI/IRIX ABIs, which can be sorted into the following catagories,
based on the IRIX cc flag or gcc’s -mabi= flag:

-32 : this is the classic 32 ABI build for old MIPS I MIPS II 32 bit hardware. Has only 16
fp regs, and integer regs are 32 bits long. Not presently supported by ATLAS.

-o64 : Seems to be a 64-bit extension of -32, which is also not presently supported by
ATLAS.

-64 : 64 bit ABI for MIPS III and MIPS IV ISA machines. Integer regs are 64 bits long,
and 32 fp regs are allowed. Supported by ATLAS.

-n32 : 32 bit ABI for MIPS III and MIPS IV ISA machines. Integer regs are 64 bits long,
and 32 fp regs are allowed. Has same register usage as -64, but integers, longs, and
pointers all 32 bit.

NOTE: rest of this document describes my understanding of -64 and -n32 ABIs only.
MIPS assembler routines in ATLAS should include:

#if !defined(ATL_GAS_MIPS)

#error "This kernel requires MIPS assembler!"

#endif

This quick error exit keeps a non-MIPS assembler from generating hundreds or thousands
of spurious error messages during install.

A.6.1 Register usage

Table 8 shows the registers available on MIPS.
Note that in parameter passing, you can only pass 8 args in registers, regardless of what

type, and args always consume a register of the correct type, and cause a skip of the other
type. So, here’s the register passing of a simple routine with mixed arguments:

// $f12 $5 $f14 $7

void bob(float s, int i, double d, int k);

A.6.2 Calling sequence and stack frame

Stack pointer always kept 16-byte aligned (8-byte aligned for the old unsupported -32 ABI),
and it grows downward:

68

CALLEE
REGISTER USAGE SAVE

$0 Always zero n/a

$1/$at assemb temp NO

$2-$3 integer return NO

$4-$11 1st 8 iargs NO

$12-$15 scratch NO

$16-$23 saved regs YES

$24-$25 scratch NO

$26-$27 reserved for kernel n/a

$28 ($gp) global pointer YES

$29 ($sp) stack pointer YES

$30 optional frame ptr YES

$31 return address NO

Floating Point Registers for -64

$f0,$f2 fp func return vals NO

$f1,$f3 scratch NO

$f4-$f11 scratch NO

$f12-$f19 1st 8 fp args NO

$f20-$f23 scratch NO

$f24-$f31 scratch YES

Floating Point Registers for -n32

$f0,$f2 fp func return vals NO

$f1,$f3 scratch NO

$f4-$f11 scratch NO

$f12-$f19 1st 8 fp args NO

$f21,23,25,27,29,31 scratch NO

$f20,22,24,26,28,30 scratch YES

Table 8: MIPS register summary

Caller’s frame
... remaining overflow args

16($sp) 1st overflow arg

16 bytes reserved
$sp for args passed in regs

Note that integers are promoted to 64 bits, and all optional parameters are allocated at
least 64 bits, even if they are short.

69

