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Abstract

This note provides a brief overview of ATLAS, and describes how to install it.
It includes extensive discussion of common configure options, and describes why they
might be employed on various platforms. In addition to discussing how to configure and
build the ATLAS package, this note also describes how an installer can confirm that
the resulting libraries are producing correct answers and running efficiently. Extensive
examples are provided, including a full-length example showing the installation of both
ATLAS and LAPACK on an example architecture.
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1 Introduction

This note provides a quick reference to installing and using ATLAS [20, 17, 18, 19, 23, 22].
ATLAS (Automatically Tuned Linear Algebra Software), is an empirical tuning system that
produces a BLAS [7, 8, 9, 13, 14] (Basic Linear Algebra Subprograms) library which has
been specifically optimized for the platform you install ATLAS on. The BLAS are a set
of building block routines which, when tuned well, allow more complicated Linear Algebra
operations such as solving linear equations or finding eigenvalues to run extremely efficiently
(this is important, since these operations are computationally intensive). For a list of the
BLAS routines, see the FORTRAN77 and C API quick references guides available in the
ATLAS tarfile at:

ATLAS/doc/cblasqref.pdf

ATLAS/doc/f77blasqref.pdf

ATLAS also natively provides a few routines from the LAPACK [2] (Linear Algebra
PACKage). LAPACK is an extremely comprehensive FORTRAN package for solving the
most commonly occurring problems in numerical linear algebra. LAPACK is available as
an open source FORTRAN package from netlib [21], and its size and complexity effectively
rule out the idea of ATLAS providing a full implementation. Therefore, we add support for
particular LAPACK routines only when we believe that the potential performance win we
can offer make the extra development and maintenance costs worthwhile. Presently, ATLAS
provides roughly most of the routines that involve the LU, QR and Cholesky factorizations.
ATLAS’s implementation uses pure recursive version of LU and Cholesky based on the work
of [15, 11, 12, 1], and the QR version uses the hybrid algorithm with static outer blocking
and panel recursion described in [10]; the static blocking is empirically tuned as described
in [16]. In parallel, these routines are further sped up by the PCA panel factorization [6] and
the threading techniques discussed in [5]. The standard LAPACK routines use statically
blocked routines, which typically run slower than recursively blocked for all problem sizes.

In addition to providing the standard FORTRAN77 interface to LAPACK, ATLAS also
provides its own C interface, modeled after the official C interface to the BLAS [4, 3],
which includes support for row-major storage in addition to the standard column-major
implementations. The netlib LAPACK has recently begun supporting Intel’s propriatary
C interface, which is incompatible with the C BLAS as well as ATLAS’s C interface, as
well as performaing a host of unnecessary matrix transpositions. Note that there is no
official C interface to LAPACK, and so there is no general C API that allows users to easily
substitute one C-interface LAPACK for another, as there is when one uses the standard
FORTRAN77 API. For a list of the LAPACK routines that ATLAS natively supplies, see
the FORTRAN77 and C API quick references guide available in the ATLAS tarfile at:

ATLAS/doc/lapackqref.pdf

Note that although ATLAS provides only a handful of LAPACK routines, it is designed
so that it can easily be combined with netlib LAPACK in order to provide the complete
library. See Section 3.1 for details.
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2 Overview of an ATLAS Installation

2.1 Downloading the software and checking for known errors

The main ATLAS homepage is at:

http://math-atlas.sourceforge.net/

The software link off of this page allows for downloading the tarfile. The explicit down-
load link is:

https://sourceforge.net/project/showfiles.php?group_id=23725

Once you have obtained the tarfile, you untar it in the directory where you want to keep
the ATLAS source directory. The tarfile will create a subdirectory called ATLAS, which you
may want to rename to make less generic. For instance, assuming I have saved the tarfile
to /home/whaley/dload, and want to put the source in /home/whaley/numerics, I could
create ATLAS’s source directory (SRCdir) with the following commands:

cd ~/numerics

bunzip2 -c ~/dload/atlas3.10.0.tar.bz2 | tar xfm -

mv ATLAS ATLAS3.10.0

Before doing anything else, scope the ATLAS errata file for known errors/problems that
you should fix/be aware of before installation:

http://math-atlas.sourceforge.net/errata.html

This file contains not only all bugs found, but also all kinds of platform-specific instal-
lation and tuning help.

2.2 Turn off CPU throttling when installing ATLAS

Most OSes and hardware now turn on CPU throttling for power management
even if you are using a desktop machine. CPU throttling makes pretty much all timings
completely random, and so any ATLAS install will be junk. Therefore, before installing
ATLAS, turn off CPU throttling. For most PCs, you can switch it off in the BIOS (eg., on
my Athlon-64 machine, I can say ”No” to ”Cool and Quiet” under ”Power Management”).
Most OSes also provide a way to switch off CPU throttling, but that varies from OS to OS.
Under Fedora, at any rate, the following command seemed to work:

/usr/bin/cpufreq-selector -g performance

On my Core2Duo, cpufreq-selector only changes the parameters of the first CPU, re-
gardless of which cpu you specify. I suspect this is a bug, because on earlier systems, the
remaining CPUs were controlled via a logical link to /sys/devices/system/cpu/cpu0/. In
this case, the only way I found to force the second processor to also run at its peak frequency
was to issue the following as root after setting CPU0 to performance:

cp /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor \

/sys/devices/system/cpu/cpu1/cpufreq/scaling_governor

Under MacOS or Windows, you may be able to change this under the power settings.
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2.3 Basic Steps of an ATLAS install

An ATLAS install is performed in 5 steps, only the first two of which are mandatory. This
install process is very similar to other free software installs, particularly gnu, though the
fact that ATLAS does an extremely complex empirical tuning step can make the build step
particularly long running. There are two directories that we will refer to constantly in this
note, which indicate both the ATLAS source and build directories:

SRCdir : This handle should be replaced by the path to your ATLAS source directory (eg,
/home/whaley/ATLAS3.8.0).

BLDdir : This handle should be replaced by the path to your ATLAS build directory (eg,
/home/whaley/ATLAS3.8.0/Linux P4E64SSE3).

Note that these two directories cannot be the same (i.e. you cannot build the libraries
directly in the source directory). The examples in this note show the BLDdir being a
subdirectory of the SRCdir, but this is not required (in fact, any directory to which the
installer has read/write permission other than SRCdir can be used).

The ATLAS install steps are:

1. configure (§3): Tell the ATLAS build harness where your SRCdir and BLDdir direc-
tories are, and allow ATLAS to probe the platform to create ATLAS’s Make.inc and
BLDdir directory tree.

2. build (§4): Tune ATLAS for your platform, and build the libraries.

3. check1 (§5): Run sanity tests to ensure your libraries are producing correct answers.

4. time1 (§6): Run basic timing on various ATLAS kernels in order to make sure the
tuning done in the build step has resulted in efficient implementations.

5. install1 (§7): Copy ATLAS’s libraries from the BLDdir to some standard location.

It is extremely important that you read Section 3 in particular, as most users will want
to throw at least one flag during the configure step. In particular, most installers will want
to set whether to build 32 or 64-bit libraries (Section 3.7.1), and fine-tune the timer used,
as discussed in Section 3.5. However, for the impatient, here is the way a typical install
might look (see §3 for an explanation of the configure flags, since they will not work on
all systems); note that the characters after the # character are comments, and not meant
to be typed in:

bunzip2 -c atlas3.10.x.tar.bz2 | tar xfm - # create SRCdir

mv ATLAS ATLAS3.10.x # get unique dir name

cd ATLAS3.10.x # enter SRCdir

mkdir Linux_C2D64SSE3 # create BLDdir

cd Linux_C2D64SSE3 # enter BLDdir

../configure -b 64 -D c -DPentiumCPS=2400 \ # configure command

--prefix=/home/whaley/lib/atlas \ # install dir

1Optional step
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--with-netlib-lapack-tarfile=/home/whaley/dload/lapack-3.4.1.tgz

make build # tune & build lib

make check # sanity check correct answer

make ptcheck # sanity check parallel

make time # check if lib is fast

make install # copy libs to install dir

3 The ATLAS configure step

In this step, ATLAS builds all the subdirectories of the BLDdir, and creates the make include
file used in all ATLAS’s Makefiles (Make.inc). In order to do this successfully, you inform
ATLAS where your SRCdir and BLDdir are located, and pass flags which tell configure
what type of install you want to do. The basic way to do a configure step is:

cd BLDdir ; SRCdir/configure [flags]

A complete list of flags is beyond the scope of this paper, but you can get a list of them
by passing --help to configure. In this note, we will discuss some of the more important
flags only. ATLAS takes two types of flags: flags that are consumed by the initial configure
script itself begin with --, and flags that are passed by configure to a later config step
begin with only a single -.

We first discuss flags and steps for building a full netlib library using netlib’s LA-
PACK (§3.1), building a shared library (§3.4), changing the compilers (§3.2), and a flag (§3.2.4)
to indicate that you have no FORTRAN compiler (and thus don’t need any FORTRAN
APIs), and changing the way ATLAS does timings (§3.5). Finally, we consider a few miscel-
laneous flags (§3.7), including the flag telling ATLAS whether the resulting libraries should
assume a 64 or 32 bit address space (§3.7.1).

3.1 Building a full LAPACK library using ATLAS and netlib’s LAPACK

ATLAS natively provides only a relative handful of the routines which comprise LAPACK.
However, ATLAS is designed so that its routines can easily be added to netlib’s standard
LAPACK in order to get a full LAPACK library. If you want your final libraries to have
all the LAPACK routines, then you just need to pass the --with-netlib-lapack-tarfile

flag to configure, along with the netlib tarfile that you have previously downloaded. For
instance, assuming you have previously downloaded the lapack tarfile to
/home/whaley/dload/lapack-3.4.1.tgz, you would add the following to your configure
flags:

--with-netlib-lapack-tarfile=/home/whaley/dload/lapack-3.4.1.tgz

Configure then auto-builds a make.inc for LAPACK to use, and builds netlib LAPACK
as part of the ATLAS install process. ATLAS 3.10.0 was tested tow work with LAPACK
v3.4.1 and 3.3.1.
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3.1.1 LAPACK APIs

Note that there is no standard C API to LAPACK. Therefore, when you build the netlib
LAPACK, you get only the Fortran77 API on all platforms. Various vendor libraries provide
various C APIs. ATLAS provides two types of LAPACK APIs for C.

ATLAS’s clapack API: ATLAS’s original C interface to the LU, QR and Cholesky-
related routines is built from the ATLAS/interfaces/lapack/C/src/ directory, and is doc-
umented in ATLAS/doc/cblasqref.pdf. This API is like that of the cblas, in that all
routines take a new argument that allows matrices to be either row- or column-major. This
API is difficult to extend to all of LAPACK, since the F77 LAPACK provided by netlib only
handles column-major. This API uses the CBLAS enum types for F77’s string arguments,
and the appropriate pass-by-value or pass-by-address. This API prefixes clapack to the
native lapack routine name.

3.1.2 Obtaining netlib’s LAPACK

You can download the LAPACK reference implementation from www.netlib.org/lapack/.
For more standard information on LAPACK, please scope the following URLs:

• http://www.netlib.org/lapack/

• http://www.netlib.org/lapack/lawn81/index.html

• http://www.netlib.org/lapack/lawn41/index.html

• http://www.netlib.org/lapack/release_notes.html

• http://www.netlib.org/lapack/lug/index.html

3.2 Changing the compilers and flags that ATLAS uses for the build

ATLAS defines eight different compilers and associated flag macros in its Make.inc which
are used to compile various files during the install process. ATLAS’s configure provides
flags for changing both the compiler and flags for each of these macros. In the following
list, the macro name is given first, and the configure flag abbreviation is in parentheses:

1. XCC (xc): C compiler used to compile ATLAS’s build harness routines (these never
appear in any user-callable library)

2. GOODGCC (gc): gcc with any required architectural flags (eg. -m64), which will be used
to assemble cpp-enabled assembly and to compile certain multiple implementation
routines that specifically request gcc

3. F77 (if): FORTRAN compiler used to compile ATLAS’s FORTRAN77 API interface
routines.

4. ICC (ic): C compiler used to compile ATLAS’s C API interface routines.

5. DMC (dm): C compiler used to compile ATLAS’s generated double precision (real and
complex) matmul kernels

6. SMC (sm): C compiler used to compile ATLAS’s generated single precision (real and
complex) matmul kernels
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7. DKC (dk): C compiler used to compile all other double precision routines (mainly used
for other kernels, thus the K)

8. SKC (sk): C compiler used to compile all other single precision routines (mainly used
for other kernels, thus the K)

It is almost never a good idea to change DMC or SMC, and it is only very rarely a good idea
to change DKC or SKC. For ATLAS 3.10.0, all architectural defaults are set using gcc 4.7.0
only (the one exception is PowerPCG4, where gcc 4.6.2 was used). In most cases, switching
these compilers will get you worse performance and accuracy, even when you are absolutely
sure it is a better compiler and flag combination! In particular, our timings indicated that
clang was always slower on all platforms that gcc, and that it very often produced incorrect
code. Intel’s icc was not tried for this release since it is a non-free compiler, but even worse,
from the documentation icc does not seem to have any firm IEEE floating point compliance
unless you want to run so slow that you could compute it by hand faster. This means that
whenever icc achieves reasonable performance, I have no idea if the error will be bounded
or not.

There is almost never a need to change XCC, since it doesn’t affect the output libraries
in any way, and we have seen that changing the kernel compilers is a bad idea. Under Unix,
most compilers interoperate with the GNU compilers, and so you can build ATLAS with
the GNU compilers, and then simply link to the resulting libs with the compiler of your
choice.

On Windows, if you want to build ATLAS for linking with native libraries such as
MSVC++, then you can build ATLAS with the MinGW compilers, which are GNU compil-
ers that are made to natively interoprate with native Windows compilers. See Section 9.1
for more information.

For those who insist on monkeying with other compilers, Section 3.2.2 gives some guid-
ance. Finally installing ATLAS without a FORTRAN compiler is discussed in Section 3.2.4.

3.2.1 Changing ATLAS interface compilers to match your usage

As mentioned, ATLAS typically gets its best performance when compiled with gcc using
the flags that ATLAS automatically picks for your platform (this assumes you are installing
on a system that ATLAS provides architectural defaults for). However, you can vary the
interface (API) compilers without affecting ATLAS’s performance. Since most compilers
are interoperable with gcc this is what we recommend you do if you are using a non-default
compiler. Note that almost all compilers can interoperate with gcc, though you may have
to throw some special flags (eg., /iface:cref for MSVC++).

The configure flags to override the C interface compiler and flags are:
-C ic <C compiler> -F ic ’<compiler flags>’

The configure flags to override the FORTRAN interface compiler and flags are:
-C if <FORTRAN compiler> -F if ’<compiler flags>’

For example, assume you use the Sun Workshop compilers available under Solaris. You
can instruct configure to use them for building the APIs rather than the gnu compilers
with something like:

-C if f77 -F if ’-dalign -native -xO5’ \

-C ic cc -F ic ’-dalign -fsingle -xO5 -native’
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3.2.2 Rough guide to overriding ATLAS’s compiler choice/changing flags

Previous sections have discussed the more useful cases of overriding ATLAS’s compiler and
flags, which typically leave ATLAS’s kernel compilers alone. Users often wish to add flags or
change arbitrary compilers, however. This is rarely a good idea, and almost always provides
reduced performance. However, you can do it. You can find more details by passing --help

to configure.
If you use the -C flag, then you are overriding ATLAS’s compiler choice (based on

the abbrevation you specify, as described below), -F means to override the flags for that
compiler, and -Fa tells configure that you want to keep ATLAS’s default flags, but wish to
append your own list of flags to them.

All of these flags take an abbreviation (<abbr>) describing the particular compiler/flag
to override/append, where <abbr> is one of,

• One of the already discussed compiler abbreviations (eg, xc, gc, ic, if, sk, dc, sm or
dm)

• al: all compilers (including FORTRAN) except GOODGCC

• alg all compilers (including FORTRAN) including GOODGCC

• ac: all C compilers except GOODGCC

• acg: all C compilers including GOODGCC

Therefore, by passing the following to configure:
-Fa acg ’-DUsingDynamic -fPIC’

We would have all C routines compiled with -fPIC, and also have the macro UsingDynamic
defined (ATLAS does not use this macro, this is for example only).

As an example, if I want to use SunOS’s f77 rather than gfortran, I could pass the
following compiler and flag override:

-C if f77 -F if ’dalign -native -xO5’

IMPORTANT NOTE: If you change the default flags in any way for the kernel
compilers (even just appending flags), you may reduce performance. Therefore once your
build is finished, you should make sure to compare your achieved performance against what
ATLAS’s architectural defaults achieved. See Section 6.1 for details on how to do this. If
your compiler is a different version of gcc, you may also want to tell ATLAS not to use the
architectural defaults, as described in Section 3.7.4.

3.2.3 Forcing ATLAS to use a particular gcc

ATLAS contains architectural defaults allowing installers to skip most of the empirical
tuning, and these defaults were built on most systems for gcc 4.7.0. By default, ATLAS
will search for this version on your system during configure, and if it can’t find it, it will
select the closest version number that it can find. Not even later versions of the compiler
are necessarily safe to use, since both performance and correctness regressions are relatively
common. However, many users wish to force ATLAS to use a particular gcc, even when
they have many different gccs installed. The easiest way to force ATLAS to use a particular
gcc for all C compilers is:
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-C acg /full/path/to/your/gcc

If you specify only the name and not the path (eg., “-C alg gcc-4.4”, then ATLAS
will search for the named compiler in your PATH variable. The safest approach is to give
the full path to the compiler if gcc choice is critical to you. If you want also specify the
gfortran to use, additionally add the flag:

-C if /full/path/to/your/gfortran

IMPORTANT NOTE: If you use a different gcc than 4.7.0, you may reduce per-
formance. Therefore once your build is finished, you should make sure to compare your
achieved performance against what ATLAS’s architectural defaults achieved. See Section 6.1
for details on how to do this. If you can tolerate a long install time, you may also want to
tell ATLAS not to use the architectural defaults, as described in Section 3.7.4.

3.2.4 Installing ATLAS when you don’t have access to a FORTRAN compiler

By default, ATLAS expects to find a FORTRAN compiler on your system. If you cannot
install a FORTRAN compiler, you can still install ATLAS, but ATLAS will be unable to
build the FORTRAN77 APIs for both BLAS and LAPACK. Further, certain tests will not
be able to even compile, as their testers are at least partially implemented in FORTRAN.
To tell ATLAS you wish to install w/o a FORTRAN compiler, simply add the flag:

--nof77

to your configure command.
IMPORTANT NOTE: When you install ATLAS w/o a FORTRAN compiler, your build

step will end with a bunch of make errors about being unable to compile some FORTRAN
routines. This is because the Makefiles always attempt to compile the FORTRAN APIs:
they simply continue the install if they don’t succeed in building them. So, just because
you get a lot of make messages about FORTRAN, don’t assume your library is messed up.
As long as make check and make time say your -nof77 install is OK, you should be fine.
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3.2.5 Improving flag selection using mmflagsearch

If you are on a architecture or using a gcc for which configure does not suggest flags, or if you
believe the present set is out-of-date, you can quickly search through a host of compiler flags
to find the best set for a given gemm kernel using the specialized routine mmflagsearch.c.
To do this, you need a working install, typically installed with your best guess at good flags.
Now, in your BLDdir/tune/blas/gemm directory, issue make xmmflagsearch.

The idea behind this search is that it takes an ATLAS GEMM kernel description file
(output from one of the ATLAS searches), and then tries a series of flags given in another
file, and returns to you the best combination found. The important flags are:

-p [s,d,c,z] : set type/precision prefix

-f <flagfile> : file containing all flags to try

-m <mmfile> : mmsearch output file describing kernel to time

The mmfile is the matmul kernel that you wish to use to find the best flags, and if this
argument is omitted the search will automatically read res/<pre>gMMRES.sum, which is
the best kernel found for the during the prior install using the scalar ANSI C generator. If
bad flags have caused this search to generate a weird file, you can copy this file to a new
name, and then hand edit it to have the features you like.

In the flagfile, any line beginning with ‘#’ is ignored. This file has a special format
that is more easily understood once you understand the method of the search. The user
provides one line for any flags that should always appear (examples include things like
-fPIC, -m64, -mcpu=XXX, etc.). This is given on the first line.

Now, the way the search is going to work is that first it will find the appropriate op-
timization level and fundamental flag combination, which will be searched by trying all
combinations of these flags. Once these baseline flags are determined, all remaining flags
will be tried one after the other using a greedy linear search. With this in mind, the format
of this file is:

Required flags for all cases (eg. -fPIC -m64 -msse3 -mfpmath=sse)

<N> Number of optimization level lines

<lvlflagset1>

....

<lvlflagsetN>

<F> Number of fundamental flag lines

<fundflagset1>

....

<fundflagsetF>

# Now list any number of modifier flag lines

flag set 1

flag set 2

...

flag set X

So, the way this search is going to work is that we will first try all N × (F + 1) com-
binations of the levels and fundamental flags, and choose a best-performing set. We will
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then try adding every provided modifier flag line to the best found combination. The best
performing list will be given.

To create such a flag file one usually scopes the compiler documentation, and finds
all performance-oriented flags. For gcc, you can make mmflagsearch give you a template
that includes all non-architecture-specific optimization flags (as found in the documenta-
tion for gcc 4.2) by running ./xmmflagsearch -f gcc. This will create a directory called
gccflags.txt in the current directory, which presently has a format like:

REPLACE THIS LINE WT ARCH-DEP FLAGS ALWAYS USED (eg, -fPIC -m64 -msse3)

4

-O2

-O1

-O3

-Os

6

-fschedule-insns

-fno-schedule-insns

-fschedule-insns2

-fno-schedule-insns2

-fexpensive-optimizations

-fno-expensive-optimizations

# Flags to probe once optimization level is selected

...

whole boatload of flags

...

Now lets see an example of this working on my ARM embedded machine. The first
thing I do is replace the first line with my mandatory flags:

-mfpu=vfpv3 -mcpu=cortex-a8

I then add two architecture-specific flags to the auto-generated general flag list (might want
to try a lot more, this is just an example), which in this case are:

-mtune=cortex-a8

-mno-thumb

An extract of this search is shown in Figure 1.
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FINDING BEST FLAGS USING MATMUL KERNEL:

ID=0 ROUT=’dgmm.c’ AUTH=’Whaley/emit_mm’ TA=’T’ TB=’N’ \

MULADD=1 PREF=1 LAT=5 NFTCH=2 IFTCH=6 FFTCH=1 KBMAX=0 KBMIN=0 KU=1 NU=5 \

MU=4 MB=80 NB=80 KB=80 L14NB=0 PFBCOLS=0 PFABLK=0 PFACOLS=0 STFLOAT=0 \

LDFLOAT=0 AOUTER=0 LDAB=1 BETAN1=0 LDISKB=1 KUISKB=0 KRUNTIME=0 NRUNTIME=0 \

MRUNTIME=0 LDCTOP=0 X87=0 \

MFLOP=5.848105e+02

FINDING BEST FLAG SETTINGS FOR THIS MATMUL KERNEL:

...Trying optlvls using base flags: ’-mfpu=vfpv3 -mcpu=cortex-a8’

1. mf=557.83, flags=’-O2’

---> Opt level ’-O2’ is better!

2. mf=558.18, flags=’-O2 -fschedule-insns’

3. mf=564.07, flags=’-O2 -fno-schedule-insns’

---> Opt combo ’-O2 -fno-schedule-insns’ is better!

4. mf=564.53, flags=’-O2 -fno-schedule-insns -fschedule-insns2’

5. mf=572.04, flags=’-O2 -fno-schedule-insns -fno-schedule-insns2’

---> Opt combo ’-O2 -fno-schedule-insns -fno-schedule-insns2’ is better!

6. mf=572.11, flags=’-O2 -fno-schedule-insns -fno-schedule-insns2

-fexpensive-optimizations’

7. mf=573.24, flags=’-O2 -fno-schedule-insns -fno-schedule-insns2

-fno-expensive-optimizations’

8. mf=572.34, flags=’-O1’

... Bunch of cases elided ...

27. mf=562.53, flags=’-Os -fno-schedule-insns -fno-schedule-insns2

-fexpensive-optimizations’

28. mf=563.81, flags=’-Os -fno-schedule-insns -fno-schedule-insns2

-fno-expensive-optimizations’

...All cases using flags: ’-O2 -mfpu=vfpv3 -mcpu=cortex-a8 -fno-schedule-insns

-fno-schedule-insns2’

29. mf=571.41, flags=’-mtune=cortex-a8’

30. mf=572.32, flags=’-mno-thumb’

31. mf=571.02, flags=’-fno-cprop-registers’

... Bunch of cases elided ...

42. mf=574.69, flags=’-fomit-frame-pointer’

43. mf=572.39, flags=’-foptimize-register-move’

44. mf=571.79, flags=’-fno-optimize-register-move’

45. mf=592.68, flags=’-fprefetch-loop-arrays’

---> Adding flag ’-fprefetch-loop-arrays’!

46. mf=572.65, flags=’-fno-prefetch-loop-arrays’

... Bunch of cases elided ...

90. mf=594.61, flags=’-falign-loops=8’

91. mf=594.65, flags=’-falign-loops=16’

92. mf=594.37, flags=’-falign-loops=32’

BEST FLAGS GIVE MFLOP=592.68 (6.25% improvement over first case):

’-O2 -mfpu=vfpv3 -mcpu=cortex-a8 -fno-schedule-insns -fno-schedule-insns2

-fprefetch-loop-arrays’

Figure 1: Result of ./xmmflagsearch -p d -f gccflags.txt on ARM
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3.3 Handling hyperthreading, SMT, modules, and other horrors

Most modern machines include multiple virtual processors on each core; this basic idea is
called hyperthreading by Intel, SMT by IBM, and other names by others. AMD took it to
a new level with the dozer architecture, where two integer units share an FPU.

All of these techniques mainly help for codes that are extremely inefficient: by allowing
multiple threads that cannot drive the architecture’s backend at its maximal rate, you
can get the backend running nearer to peak. However, for efficient codes that can drive
the bottleneck backend functional units at their maximal rate, these strategies can cause
slowdowns that range from slight to catastrophic, depending on the situation. For ATLAS,
the main problem is usually that the increased contention on the caches caused by the extra
threads tends to thrash the caches.

The only architecture where I have seen the use of these virtual processors yield speedups
on most ATLAS operations is the Sun Niagara; I believe the machine I observed speedups
on was a T2, but this might be true for any of the T-series.

I recommend that HPC users turn off these virtual processors on all other systems, which
is usually done either in the BIOS or by OS calls. If you do not have root, or if you have
less optimized applications that are getting speedup from these virtual cores, you can tell
ATLAS to use only the real cores if you learn a little about your machine. Unfortunately,
ATLAS cannot presently autodetect these features, but if you experiment you can discover
which affinity IDs are the separate cores, and tell ATLAS to use only these cores. The
general form is to add the following to your usual configure flags:

--force-tids="# <thread ID list>"

For instance, on my AMD Dozer system, there are 8 integer cores, but only 4 FPUs,
and so for best performance we would like to use 4 threads rather than 8, and be sure to
not use any integer core that shares an FPU. A little testing showed that on my system,
core IDs 0, 1, 3, and 6 are all independent of each other, and so I can tell ATLAS to use
only these four cores in threaded operations by adding this flag to configure:

--force-tids="4 0 1 3 6"

On my system, this actually slightly reduces parallel GEMM performance, but noticably
improves factorization performance.

Similarly, an IBM Power7 I have access to has 8 physical cores, but offers 64 SMT units.
If you install with the default flags, your parallel speedup for moderate sized DGEMMs is
around 4.75. On the other hand, if you add:

--force-tids="8 0 8 16 24 32 40 48 56"

Then the parallel DGEMM speedup for moderate sized problems is more like 6.5.
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3.4 Building dynamic/shared libraries

ATLAS natively builds static libraries (i.e. libs that usually end in ‘.a’ under Unix and
‘.lib’ under windows). ATLAS always builds such a library, but it can also optionally
be requested to build a dynamic/shared library (typically ending in .so for Unix or .dll
windows) as well. In order to do so, you must tell ATLAS up front to compile with the
proper flags (the same is true when building netlib’s LAPACK, see §3.1 for more details).
As long as you are using gnu compilers, all you need to add to your configure command
is:

--shared

For any non-gnu compiler, you will additionally have to tell configure what flags are
needed to tell the compiler to produce a shared library-compatible object file (you can skip
this step if the compiler does so by default.

ATLAS always builds the static libraries, but the --shared command adds an additional
step to the install which also builds two shared libraries:

libsatlas.[so,dylib,dll ]: This library contains all serial APIs (serial lapack, serial BLAS),
and all ATLAS symbols needed to support them.

libtatlas.[so,dylib,dll ]: This library contains all parallel APIs (parallel LAPACK and
parallel BLAS) and all ATLAS symbols needed to support them.

After your build is complete, you can cd to your OBJdir/lib directory, and ask ATLAS
to build the .so you want. If you want all libraries, including the FORTRAN77 routines,
the target choices are:

shared : create shared versions of ATLAS’s sequential libs

ptshared : create shared versions of ATLAS’s threaded libs

If you want only C routines (eg., you don’t have a FORTRAN compiler):

cshared : create shared versions of ATLAS’s sequential libs

cptshared : create shared versions of ATLAS’s threaded libs

Note that this support for building dynamic libraries is new in this release, and not well
debugged or supported, and is much less likely to work for non-gnu compilers.

WINDOWS NOTE: If you are on Windows and using the MinGW compilers to
work natively in windows (outside cygwin), then please see the errata file for additional
instructions on enabling this porting.

IMPORTANT NOTE: Since gcc uses one less integer register when compiling with
this flag, this could potentially impact performance of the architectural defaults, but we
have not seen it so far. Therefore, do not throw this flag unless you want dynamic libraries.
If you want both static and dynamic libs, the safest thing is probably to build ATLAS twice,
once static and once dynamic, rather than getting both from a dynamic install.
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3.5 Changing the way ATLAS does timings

By default ATLAS does all timings with a CPU timer, so that the install can be done on
a machine that is experiencing relatively heavy load. However, CPU time has very poor
resolution, and so this makes the timings less repeatable and thus tends to produce relatively
poorly optimized libraries. Therefore, if you are installing ATLAS on a machine which is
not heavily loaded, you will want to improve your install by instructing ATLAS to use one
of its higher resolution wall timers.

For x86 machines, ATLAS has access to a cycle accurate wall timer, assuming you are
using gcc as your interface compiler (we use gcc’s inline assembly to enable this timer –
under Linux, Intel’s icc also supports this form of inline assembly). ATLAS needs to be
able to translate the cycle count returned by this function into seconds, so you must pass
your machine’s clock rate to ATLAS. In order to do this, you add the following flags to
your configure flags:

-D c -DPentiumCPS=<your Mhz>

So, for my 2.4Ghz Core2Duo, I would pass:

-D c -DPentiumCPS=2400

If you are not on an x86 machine, or if your kernel compiler is not gcc (or icc if on
Linux), then you cannot use the above cycle-accurate wall timer. However, wall time is still
much more accurate than CPU time, so you can indicate ATLAS should use its wall timer
for the install by passing the flag:

-D c -DWALL

Note that on Windows XP/NT/2000, this should still get you a cycle-accurate walltime,
since it calls some undocumented Windows APIs that purport to do so. For Solaris, the
high resolution timer gethrtime will be used. For all other OSes, this will call a standard
wall timer such as gettimeofday, which is still usually much more accurate than the CPU
timer.

3.6 Building Generic x86 libraries

Many users ask how ATLAS can be used to build libraries that will run on all x86 platforms.
In general, this is a bad idea: ATLAS gets its speed by specializing for particular platforms,
so the more generic a library is the less performance it will achieve! Note that libraries like
MKL can do well across many platforms by having fat binaries, where each kernel routine
has actually been seperately tuned for many different platforms, and then queries something
like CPUID to determine what sublibrary to call dynamically. ATLAS does not have the
ability to build fat libraries.

So, users wanting generic x86 libraries will definitely lose performance in ATLAS, but
many system admins have asked for this feature, and so I have added it to ATLAS. The
idea is to get you libraries that get better performance than the reference BLAS, but whose
percentage of peak may be woefully low, but that will run on a variety of platforms. You
can do this by artificially overriding ATLAS’s architecture detection, and manually telling
configure to use use some generic architectural defaults that have been created, as described
in the following paragraphs.
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Never use these libraries unless this portability is absolutely required. They must use
portable settings for blocking, for instance, which will mean that on many platforms they
will use only a fraction of the actual cache, causing large performance drops. Even worse,
peak performance may by reduced by as much as factor of 8, due to not using the proper
ISA extension. The most portable ISA uses only the x87 unit, which has a much lower peak
rate on most modern machines (eg., an Intel sandy bridge can do 16 flops/cycle using AVX
in single precision, but only 8 flops/cycle if using SSE, and only 2 flops/cycle using the x87
unit).

3.6.1 Building generic libraries for any x86 with an x87 FPU (PPRO & later)

To build binaries that will run on any x86 platform that implements an x87 FPU unit (I
believe this is all Intel architectures from PentiumPRO onwards, and any AMD platform
since at least the original Athlon), add the following flags to your configure line:

-b 32 -V -1 -A 11

-b 32 ensures that you build the 32-bit libraries, which is necessary, since most older
machines do not implement x86-64 (AMD64). The -V -1 says use no ISA extensions beyond
the original x86 spec. The -A 11 selects an artificial architecture called x86x87, providing
you with portable (but slow!) architectural defaults.

3.6.2 Building generic libraries for SSE1 (PIII & later)

If all of the machine you target implement the original SSE ISA extension, then you can
improve your single precision peak by allowing ATLAS to use SSE1 kernels. These libraries
should work on the Pentium III or any following Intel chip; for AMD it should work with
the Athlon XP or any following chip.

To build this generic target, add the following flags to your configure line:

-b 32 -V 128 -A 12

-b 32 ensures that you build the 32-bit libraries, which is necessary, since most older
machines do not implement x86-64 (AMD64). The -V 128 says that the original x86 ISA
is extended by SSE1 only. The -A 12 selects an artificial architecture called x86SSE1,
providing you with portable (but slow!) architectural defaults.

3.6.3 Building generic libraries for SSE2 (P4 & later)

If all your target machines at least have SSE2, then you can use SSE for double precision
computations as well. For intel, chips starting with the Pentium 4 had SSE2, and I believe
AMD introduced SSE2 with the Opteron processor. Early P4’s are 32-bit, and later are 64-
bit, so you will need to decide yourself if you want -b 32 or -b 64 for your libraries. Right
now, we have introduced architectural defaults only for 32-bits (meaning the 64-bit installs
will take much longer). So, to limit the ISA to 32-bit, add these flags to your configure line:

-b 32 -V 192 -A 13
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3.6.4 Selecting a good generic CacheEdge

ATLAS uses the CacheEdge macro set in BLDdir/include/atlas_cacheedge.h and atlas_tcacheedge.h

to control the L2-cache blocking for the serial and threaded libraries, respectively. You’ll
want to be sure this value is either set to the minimum of the L2SIZE of any target archi-
tecture, or ridiculously large, so that no effective L2 blocking is done. So, if you are using
non-celeron x86, it almost always safe to set this value (in both files) to 256K (262144),
since almost all archs have at least this much cache. If you know your target machines have
more cache than this, then increase this number appropriately. If you may have celerons or
other archs with crippled last-level caches, then I recommend you set CacheEdge to 4194304

(4MB). At this level, CacheEdge doesn’t effectively block for caches, but it will tend to keep
your workspace requirements down.

3.6.5 Handling paralellism in generic libraries

The most portable library is the serial library. You can instruct ATLAS to build only the
serial library by adding -t 0 to your configure flags.

Assuming all your platforms provide the same type of threading (eg., pthreads), then
you may also build the threaded libraries. However, since ATLAS uses processor affinity,
you will need to build the threaded libs to match the smallest number of processors of any
machine you are targeting. You can limit the number of processors to compile for using the
-t X configure flag, where X is the number of processors to tune for. So, if your smallest
targeted core count was 2, you would add -t 2 to your configure flags.

3.7 Various other flags

3.7.1 Changing pointer bitwidth (64 or 32 bits)

Most modern platforms allow for compiling libraries to handle either 32 or 64 bit address
spaces. On the x86, this selection strongly affects the ISA used (eg., whether to use IA32 or
x86-64). The x86-64 ISA, with 16 rather than 8 registers, is more amenable to optimization
than the IA32, so if the user has no preference, 64-bit pointers are recommended. If ATLAS’s
guess is not correct, you can tell configure what address space to build for. In order to force
32-bit pointer width, pass the flag:

-b 32

and in order to force 64 bit pointers, pass:
-b 64

(the b stands for bitwidth).
This tells ATLAS to throw the appropriate compiler flags for compilers it knows about,

as well as effecting various configure probes. Therefore, if you override ATLAS’s compiler
choices, be sure that you give the correct flags to match this setting.

3.7.2 Changing configure verbosity

configure does a series of architectural probes to figure out how to do an install on your
system. Many of the probes that are run don’t produce output during the configure step.
You can tell configure that you want to see more output by cranking up the verbosity.
Presently, maximum verbosity is enabled by adding the flag:
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-v 2

3.7.3 Controlling where ATLAS will move files to during install step

ATLAS supplies some flags to control where ATLAS will move files to when you do the
make install step (§2). These flags are taken from gnu configure, and they are:

• --prefix=<dirname> : Top level installation directory. include files will be moved
to <dirname>/include and libraries will be moved to <dirname>/lib. Default:
/usr/local/atlas

• --incdir=<dirname> : Installation directory for ATLAS’s include files. Default:
/usr/local/atlas/include.

• --libdir=<dirname> : Installation directory for ATLAS’s libraries.
Default: /usr/local/atlas/lib.

3.7.4 Telling ATLAS to ignore architectural defaults

Architectural defaults are partial results of past searches when the compiler and architecture
are known. They allow you skip the full ATLAS search, which makes install time much
quicker. They also ensure that you have good results, since they typically represent several
searches and/or user intervention into the usual search so that maximum performance is
found. This doesn’t typically mean a huge performance difference, since the empirical
search usually does an adequate job, but it often provides a few extra percentage points
of performance. Also, occasionally the empirical search will, due to machine load or other
timing problems, produce inadequate code, and using the architectural defaults prevents
this from happening.

By default, ATLAS automatically uses the architectural defaults anytime it has results
for the given architecture and compiler. However, the compiler detection is based on the
compiler name, not version, and so ATLAS’s architectural defaults for gnu gcc4.7.0 might
not be best for gcc3 or apple’s gcc, etc, even though configure would use the architectural
defaults in such cases.

So, there are times when you want to tell ATLAS to ignore any architectural defaults
it might have. Common reasons include the fact that you have overridden the compiler
flags ATLAS uses, or are using an earlier version of the supported compiler. In these
cases, the best idea is often to install both with and without the architectural defaults, and
compare timings. If both your installs (homegrown-compiler/flags+archdef, homegrown-
compiler/flags+search) are slower than the architectural defaults using the default compiler,
you should probably install the default compiler. However, if your results are largely the
same, you know your changes haven’t depressed performance and so it is OK to use the
generated libraries (see Section 6 for details on timing an ATLAS install). If your timing
results are substantially better, and you haven’t enabled IEEE-destroying flags, you should
send your improved compiler and flags to the ATLAS team!

To force ATLAS to ignore the architectural defaults (and thus to perform a full ATLAS
search), pass the following flags to configure:

-Si archdef 0
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4 The ATLAS build step

This is the step where ATLAS performs all its empirical tuning, and then uses the discovered
kernels to build all required libraries. It uses the BLDdir created by the configure step, and
is invoked from the BLDdir with the make build command, or simply by make. This step
can be quite long, depending on your platform and whether or not you use architectural
defaults. For a system like the Core2Duo with architectural defaults, the build step may
take 10 or 20 minutes, while in order to complete a full ATLAS search on a slower platform
(eg. MIPS) could take anywhere between a couple of hours and a full day.

5 The ATLAS check step

In this optional step, ATLAS runs various testers in order to make sure that the generated
library is not producing completely bogus results. For each precision, ATLAS runs the
standard BLAS testers (both C and F77 interface), and then various of ATLAS’s homegrown
testers that appear in ATLAS/bin. If you have installed without a FORTRAN compiler, then
the standard BLAS testers cannot be run (the standard BLAS testers, downloadable from
netlib, require FORTRAN even to test the C interface), and so your testing will be less
comprehensive.

There are two possible targets, check which tests ATLAS’s serial routines, and ptcheck

which check the parallel routines. You cannot run ptcheck if you haven’t installed the
parallel libraries. This step is invoked from BLDdir by typing:

make check # test serial routines

make ptcheck # check parallel routines

Both of these commands will first do a lot of compilation, and then they will finish with
results such as:

core2.home.net. make check

...................................................

..... A WHOLE LOT OF COMPILATION AND RUNNING ......

...................................................

DONE BUILDING TESTERS, RUNNING:

SCOPING FOR FAILURES IN BIN TESTS:

fgrep -e fault -e FAULT -e error -e ERROR -e fail -e FAIL \

bin/sanity.out

8 cases: 8 passed, 0 skipped, 0 failed

4 cases: 4 passed, 0 skipped, 0 failed

8 cases: 8 passed, 0 skipped, 0 failed

4 cases: 4 passed, 0 skipped, 0 failed

8 cases: 8 passed, 0 skipped, 0 failed

4 cases: 4 passed, 0 skipped, 0 failed

8 cases: 8 passed, 0 skipped, 0 failed

4 cases: 4 passed, 0 skipped, 0 failed

DONE

SCOPING FOR FAILURES IN CBLAS TESTS:

fgrep -e fault -e FAULT -e error -e ERROR -e fail -e FAIL \
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interfaces/blas/C/testing/sanity.out | \

fgrep -v PASSED

make[1]: [sanity_test] Error 1 (ignored)

DONE

SCOPING FOR FAILURES IN F77BLAS TESTS:

fgrep -e fault -e FAULT -e error -e ERROR -e fail -e FAIL \

interfaces/blas/F77/testing/sanity.out | \

fgrep -v PASSED

make[1]: [sanity_test] Error 1 (ignored)

DONE

make[1]: Leaving directory ‘/home/whaley/TEST/ATLAS3.7.36.0/obj64’

Notice that the Error 1 (ignored) commands come from make, and they indicate that
fgrep is not finding any errors in the output files (thus this make output does not represent
the finding of an error). When true errors occur, the lines of the form

8 cases: 8 passed, 0 skipped, 0 failed

will have non-zero numbers for failed, or you will see other tester output discussing
errors, such as the printing of large residuals.

As mentioned, this is really sanity checking, and it runs only a few tests on a handful
of problem sizes. This is usually adequate to catch most blatant problems (eg., compiler
producing incorrect output). More subtle or rarely-occurring bugs may require running the
LAPACK and/or full ATLAS testers. The ATLAS developer guide [24] provides instructions
on how to use the full ATLAS tester, as well as help in diagnosing problems. The developer
guide is provided in the ATLAS tarfile as ATLAS/doc/atlas devel.pdf

6 The ATLAS time step

In this optional step, ATLAS times certain kernel routines and reports their performance as
a percentage of clock rate. Its purpose is to provide a quick way to ensure that your install
has resulted in a library that obtains adequate performance. If you are installing using
architectural defaults, this step will print a timing comparison against the performance
that the ATLAS maintainer got when creating the architectural defaults. To invoke this
step, issue the following command in your BLDdir:

make time

In Figure 2 we see a typical printout of a successful install, in this case ran on my 2.4Ghz
Core2Duo. The Refrenc columns provide the performance achieved by the architectural
defaults when they were originally created, while the Present columns provide the results
obtained using the new ATLAS install we have just completed. We see that the Present

columns wins occasionally (eg. single precision real kSelMM), and loses sometimes (eg. single
precision complex kSelMM), but that the timings are relatively similar across the board. This
tells us that the install is OK from a performance angle.

As a general rule, performance for both data types of a particular precision should be
roughly comparable, but may vary dramatically between precisions (due mainly to differing
vector lengths in SIMD instructions).
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NAMING ABBREVIATIONS:

kSelMM : selected matmul kernel (may be hand-tuned)

kGenMM : generated matmul kernel

kMM_NT : worst no-copy kernel

kMM_TN : best no-copy kernel

BIG_MM : large GEMM timing (usually N=1600); estimate of asymptotic peak

kMV_N : NoTranspose matvec kernel

kMV_T : Transpose matvec kernel

kGER : GER (rank-1 update) kernel

Kernel routines are not called by the user directly, and their

performance is often somewhat different than the total

algorithm (eg, dGER perf may differ from dkGER)

Reference clock rate=2394Mhz, new rate=2394Mhz

Refrenc : % of clock rate achieved by reference install

Present : % of clock rate achieved by present ATLAS install

single precision double precision

******************************** *******************************

real complex real complex

--------------- --------------- --------------- ---------------

Benchmark Refrenc Present Refrenc Present Refrenc Present Refrenc Present

========= ======= ======= ======= ======= ======= ======= ======= =======

kSelMM 535.0 551.4 525.4 509.6 311.5 312.7 298.0 296.5

kGenMM 175.5 174.0 175.5 173.6 160.5 159.7 165.4 166.9

kMM_NT 145.2 143.7 149.3 150.7 135.3 131.0 132.3 134.3

kMM_TN 163.2 158.0 161.1 164.6 148.7 144.8 146.0 155.4

BIG_MM 510.1 544.5 504.0 545.9 307.7 301.5 293.0 304.9

kMV_N 113.5 109.1 216.9 208.3 58.9 56.2 97.4 88.8

kMV_T 89.9 85.9 94.6 96.4 47.2 44.4 74.1 77.1

kGER 154.2 154.1 119.4 116.9 29.1 26.0 46.8 45.6

Figure 2: Normal results for make time on Core2Duo64SSE3

Reference clock rate=2200Mhz, new rate=1597Mhz

....

single precision double precision

******************************** *******************************

real complex real complex

--------------- --------------- --------------- ---------------

Benchmark Refrenc Present Refrenc Present Refrenc Present Refrenc Present

========= ======= ======= ======= ======= ======= ======= ======= =======

kSelMM 335.5 338.8 329.4 331.6 178.9 180.8 180.3 178.7

kGenMM 175.4 100.4 174.2 100.3 163.7 92.6 141.4 94.9

kMM_NT 142.0 86.8 141.2 92.0 125.3 85.2 138.1 88.8

kMM_TN 143.0 92.7 141.1 95.2 139.4 87.8 137.4 90.1

BIG_MM 327.1 325.2 318.6 320.0 169.8 171.3 171.0 172.0

kMV_N 61.4 35.5 139.3 98.9 47.2 30.7 71.9 74.2

kMV_T 73.6 53.6 75.3 62.5 31.6 20.2 52.7 36.6

kGER 43.6 28.8 91.8 65.1 23.7 18.3 46.8 40.3

Figure 3: Timings results when architectural defaults are compiled with substandard gcc4.1
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The timings are normalized to the clock rate, which is why the clock rate of both the
reference and present install are printed. It is expected that as clock rates rise, performance
as a percent of it may fall slightly (since memory bus speeds do not usually rise in exact
lockstep). Therefore, if I installed on a 3.2Ghz Core2Duo, I would not be surprised if the
Present install lost by a few percentage points in most cases.

True problems typically display a significant loss that occurs in a pattern. The most
common problem is from installing with a poor compiler, which will lower the performance
of most compiled kernels, without affecting the speed of assembly kernels. Figure 3 shows
such an example, where gcc 4.1 (a terrible compiler for floating point arithmetic on x86
machines) has been used to install ATLAS on an Opteron, rather than gcc 4.7.0, which
was the compiler that was used to create the architectural defaults. Here, we see that the
present machine is actually slower than the machine that was used to create the defaults, so
if anything, we expect it to achieve a greater percentage of clock rate. Indeed, this is more
or less true of the first line, kSelMM. On this platform, kSelMM is written totally in assembly,
and BIG MM calls these kernels, and so the Present results are good for these rows. All the
other rows show kernels that are written in C, and so we see that the use of a bad compiler
has markedly depressed performance across the board. Anytime you see a pattern such as
this, the first thing you should check is if you are using a recommended compiler, and if
not, install and use that compiler.

On the other hand, if only your BIG MM column is depressed, it is likely you have a
bad setting for the CacheEdge or the complex-to-real crossover point (if the performance is
depressed only for both complex types).

6.1 Contrasting non-default install performance

If you do not install using the architectural defaults, make time will only print out the
Present columns. This gives you a good summary of ATLAS’s library performance, but
it can be hard to tell what is good and bad if you are not familiar with ATLAS on this
hardware. Sometimes, ATLAS has architectural defaults for your platform, but your install
doesn’t use them. This is usually because the installer has specified the use of a non-
default compiler, or has explicitly asked that the architectural defaults not be used, or has
overridden the detection of the architecture, etc. In this case, make time does not do the
comparison against the architectural defaults, and so only the Present columns are printed.

However, if you wish to ensure that your library is as good as one that uses the archi-
tectural defaults, then you can manually tell the program called by make time (xatlbench
to do the comparison. The most common example would be you have switched to an un-
supported compiler (eg., the Intel compiler), and now you want to see if the library you
built using it is as fast or faster than the one using the default gcc 4.7 compiler. Another
example would be that you want to compare the performance of two closely related archi-
tectures. This is what we will do here, where we contrast the performance of the 32 and 64
bit versions of the library on my Core2Duo.

In order to manually do a comparison between a present install and any of the results
stored in ATLAS’s architectural defaults you’ll need to perform the following steps:

1. make time issued in the BLDdir of your non-default install. This does the timings of
the present build, and stores the results in BLDdir/bin/INSTALL LOG.
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2. cd SRCdir/CONFIG/ARCHS, and find the tarfile containing the results you wish to com-
pare against. In our case, we choose Core2Duo32SSE3.tar.bz2 to compare against
our own Core2Duo64SSE results.

3. bunzip2 -c Core2Duo32SSE3.tar.bz2 | tar xvf - untars the selected architectural
results (replace Core2Duo32SSE3.tar.bz2 with the tarfile you have selected in step#2).

4. cd BLDdir

5. ./xatlbench -dp SRCdir/CONFIG/ARCHS/<ARCH> -dc BLDdir/bin/INSTALL_LOG

xatlbench is the program that compares two sets of results, with the -dp pointing
to the previous (Refrenc) install result directory and -dc pointing to the current
(Present) install result directory.

Figure 4 shows me doing this on my Core2Duo, with SRCdir = /home/whaley/TEST/ATLAS3.7.36.0

and BLDdir = /home/whaley/TEST/ATLAS3.7.36.0/obj64, where we compare the present
64-bit install to the stored 32-bit install. We see that the 64-bit install, which gets to use 16
rather than 8 registers, is slightly faster for almost all kernels and precisions, as one might
expect.

6.2 Discussion of timing targets

Presently, ATLAS times mostly kernel routines, which are used to build higher level routines
that then appear in the BLAS or LAPACK. kSelMM is the matrix multiply kernel that is
being used for large GEMM calls, which will be the best kernel found in the generator and
multiple implementation searches. Therefore this kernel may be written in assembly on
some platforms. kGenMM is the fastest generated kernel that matches kSelMM, and it may
be used for some types of cleanup. All generated kernels are written in ANSI C, and thus
their peak performance will strongly depend on the compiler being used.

kMM NT and kMM TN are two of the four generated kernels that will be used for small-case
GEMM when we cannot afford to copy the input matrices. The last two characters indicate
the transpose settings. The other two kernels’ performance lies between these extremes: NT
is typically the slowest kernel (all non-contiguous access), and TN is typically the fastest (all
contiguous access).

BIG MM is the only non-kernel timing we presently report, and it is the speed found when
doing a large GEMM call. “Large” can vary by platform: it is typically M = N = K = 1600,
except where we were unable to allocate that much memory, where it will be less. On many
machines, this line gives you a rough asymptotic bound on BLAS performance.

The next three lines report Level 2 BLAS kernel performance (the Level 2 BLAS’ perfor-
mance will follow these kernels in roughly the same way that the Level 3 follow the GEMM
kernels).

See Appendix A for details on more extensive auto-benchmarking.

7 The ATLAS install step

This final optional step instructs ATLAS to copy the created libraries and include files into
the appropriate directories, as specified in the configure step. This functionality is new, and
so far is not bullet-proof (for instance, it copies only static libraries, and so presently fails
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core2.home.net. cd /home/whaley/TEST/ATLAS3.7.36.0/obj64

core2.home.net. make time

..... lots of output .....

core2.home.net. pushd ~/TEST/ATLAS3.7.36.0/CONFIG/ARCHS/

core2.home.net. ls

BOZOL1.tgz CreateTar.sh MIPSICE964.tgz POWER564.tgz

Core2Duo32SSE3/ HAMMER64SSE2.tgz MIPSR1xK64.tgz PPCG532AltiVec.tgz

Core2Duo32SSE3.tgz HAMMER64SSE3.tgz negflt.c PPCG564AltiVec.tgz

Core2Duo64SSE3/ IA64Itan264.tgz P432SSE2.tgz USIV32.tgz

Core2Duo64SSE3.tgz KillDirs.sh P4E32SSE3.tgz USIV64.tgz

CoreDuo32SSE3.tgz Make.ext P4E64SSE3.tgz

CreateDef.sh Makefile POWER432.tgz

CreateDirs.sh MIPSICE932.tgz POWER464.tgz

core2.home.net. gunzip -c Core2Duo32SSE3.tgz | tar xvf -

..... lots of output .....

core2.home.net. pushd

core2.home.net. ./xatlbench \

-dp /home/whaley/TEST/ATLAS3.7.36.0/CONFIG/ARCHS/Core2Duo32SSE3 \

-dc /home/whaley/TEST/ATLAS3.7.36.0/obj64/bin/INSTALL_LOG/

.....

Reference clock rate=2394Mhz, new rate=2394Mhz

.....

single precision double precision

******************************** *******************************

real complex real complex

--------------- --------------- --------------- ---------------

Benchmark Refrenc Present Refrenc Present Refrenc Present Refrenc Present

========= ======= ======= ======= ======= ======= ======= ======= =======

kSelMM 539.0 551.4 496.5 509.6 299.4 312.7 289.0 296.5

kGenMM 165.1 174.0 165.1 173.6 156.1 159.7 153.8 166.9

kMM_NT 137.6 143.7 134.7 150.7 115.7 131.0 123.5 134.3

kMM_TN 116.3 158.0 112.3 164.6 101.3 144.8 110.9 155.4

BIG_MM 521.3 544.5 476.5 545.9 282.6 301.5 282.8 304.9

kMV_N 69.0 109.1 206.9 208.3 56.3 56.2 69.4 88.8

kMV_T 84.8 85.9 117.3 96.4 48.0 44.4 87.9 77.1

kGER 90.1 154.1 114.2 116.9 27.9 26.0 41.5 45.6

Figure 4: Comparing 32 and 64 bit libraries on a 2.4 Ghz Core2Duo
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to copy any dynamic libraries the user has built). From your BLDdir, it may be invoked
by:

make install

By default, this command will copy all the static libraries to /usr/local/atlas/lib

and all the user-includable header files to /usr/local/atlas/include. You may override
this default directory during the configure step using the gnu-like flags --prefix, --incdir
and/or --libdir. Assuming you didn’t issue --incdir or --libdir, you can also override
the prefix directory at install time with the command:

make install DESTDIR=<prefix directory to install atlas in>

8 Example: Installing ATLAS with full LAPACK on Linux/AMD64

In this section, I show a complete ATLAS install, including installing LAPACK. We assume
I have already downloaded the tarfiles atlas3.9.12.tar.bz2 and lapack.tgz into the
/home/whaley/dload directory.

8.1 Figuring out configure flags

The system is a Fedora Core 8 system, which unfortunately uses the broken gcc 4.1.2,
which would cripple ATLAS performance. Therefore, prior to installing ATLAS, I have
installed gcc 4.2.1, with --prefix=/home/whaley/local/gcc-4.2.1 I therefore add the
following lines to my .cshrc so that ATLAS will use this gcc (it is put first in the path),
and will be able to find the gcc 4.2 libraries:
set path = (/home/whaley/local/gcc-4.2.1/bin $path)

setenv LD_LIBRARY_PATH /home/whaley/local/gcc-4.2.1/lib64:/home/whaley/local/gcc-4.2.1/lib

I source the C shell startup file, and then check that I’m now getting the correct compiler:

etl-opt8>source ~/.cshrc

etl-opt8>gcc -v

Using built-in specs.

Target: x86_64-unknown-linux-gnu

Configured with: ../configure --prefix=/home/whaley/local/gcc-4.2.1 --enable-languages=c

Thread model: posix

gcc version 4.2.1

Now, I don’t need to pass a lot of flags to set what compiler to use, since ATLAS will
find gcc 4.2 as the first compiler, and it will have the libraries it needs to work. However,
I want to build dynamic libraries for this install, so I know I’ll need to add the --shared

configure flag; config will automatically add the required -fPIC flag to all gnu compilers so
they can build shared object code.

Now, I do a top on etl-opt8 (the machine name) and see that I’m alone on the ma-
chine. Therefore, I will want to use the cycle-accurate x86-specific wall timer in order to
improve the accuracy of my install. This requires me to figure out what the Mhz of my
machine is. Under Linux, I can discover this with cat /proc/cpuinfo, which tells me
cpu MHz : 2100.000. Therefore, I will throw -D c -DPentiumCPS=2100.

I want ATLAS to install the resulting libraries and header files in the directory
/home/whaley/local/atlas, so I’ll pass --prefix=/home/whaley/local/atlas as well.
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I want a 64 bit install, and to build a full LAPACK library, so I will also want to throw
-b 64 and
--with-netlib-lapack-tarfile=/home/whaley/dload/lapack.tgz.

8.2 Creating BLDdir and installing ATLAS

I’m ready to install ATLAS and LAPACK. I just need to untar the ATLAS tarfile, issue,
create my BLDdir, and issue the previously selected flags to configure:
etl-opt8>bunzip2 -c ~/dload/atlas3.9.12.tar.bz2 | tar xfm -

etl-opt8>mv ATLAS ATLAS3.9.12.1

etl-opt8>cd ATLAS3.9.12.1/

etl-opt8>mkdir obj64

etl-opt8>cd obj64/

etl-opt8>../configure -b 64 -D c -DPentiumCPS=2100 --shared \

--prefix=/home/whaley/local/atlas \

--with-netlib-lapack-tarfile=/home/whaley/dload/lapack.tgz

...................................................

............<A WHOLE LOT OF OUTPUT>................

...................................................

etl-opt8>ls

ARCHS/ Makefile xconfig* xprobe_3dnow* xprobe_OS*

atlcomp.txt Make.inc xctest* xprobe_arch* xprobe_pmake*

atlconf.txt Make.top xf2cint* xprobe_asm* xprobe_sse1*

bin/ src/ xf2cname* xprobe_comp* xprobe_sse2*

include/ tune/ xf2cstr* xprobe_f2c* xprobe_sse3*

interfaces/ xarchinfo_linux* xf77test* xprobe_gas_x8632* xprobe_vec*

lib/ xarchinfo_x86* xflibchk* xprobe_gas_x8664* xspew*

etl-opt8>make

.........................................................

............<A WHOLE WHOLE LOT OF OUTPUT>................

.........................................................

ATLAS install complete. Examine

ATLAS/bin/<arch>/INSTALL_LOG/SUMMARY.LOG for details.

make[1]: Leaving directory ‘/home/whaley/TEST/ATLAS3.9.12.1/obj64’

make clean

make[1]: Entering directory ‘/home/whaley/TEST/ATLAS3.9.12.1/obj64’

rm -f *.o x* config?.out *core*

make[1]: Leaving directory ‘/home/whaley/TEST/ATLAS3.9.12.1/obj64’

1628.011u 153.212s 23:05.34 128.5% 0+0k 32+3325928io 0pf+0w

OK, in a little over 20 minutes, we’ve got ATLAS and LAPACK built. Now, we need
to see if it passes the sanity tests, which we do by:
etl-opt8>make check

........................................................

............<A WHOLE LOT OF COMPILATION>................

........................................................

DONE BUILDING TESTERS, RUNNING:

SCOPING FOR FAILURES IN BIN TESTS:

fgrep -e fault -e FAULT -e error -e ERROR -e fail -e FAIL \

bin/sanity.out

8 cases: 8 passed, 0 skipped, 0 failed

4 cases: 4 passed, 0 skipped, 0 failed

8 cases: 8 passed, 0 skipped, 0 failed

4 cases: 4 passed, 0 skipped, 0 failed
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8 cases: 8 passed, 0 skipped, 0 failed

4 cases: 4 passed, 0 skipped, 0 failed

8 cases: 8 passed, 0 skipped, 0 failed

4 cases: 4 passed, 0 skipped, 0 failed

DONE

SCOPING FOR FAILURES IN CBLAS TESTS:

fgrep -e fault -e FAULT -e error -e ERROR -e fail -e FAIL \

interfaces/blas/C/testing/sanity.out | \

fgrep -v PASSED

make[1]: [sanity_test] Error 1 (ignored)

DONE

SCOPING FOR FAILURES IN F77BLAS TESTS:

fgrep -e fault -e FAULT -e error -e ERROR -e fail -e FAIL \

interfaces/blas/F77/testing/sanity.out | \

fgrep -v PASSED

make[1]: [sanity_test] Error 1 (ignored)

DONE

make[1]: Leaving directory ‘/home/whaley/TEST/ATLAS3.9.12.1/obj64’

61.684u 6.485s 1:08.66 99.2% 0+0k 0+163768io 0pf+0w

So, since we see no failures, we passed. I get essentially the same output when I check
the parallel interfaces (my machine has eight processors) via make ptcheck.

Now, I am ready to make sure my libraries are getting the expected performance, so I
do:
etl-opt8>make time

........................................................

............<A WHOLE LOT OF COMPILATION>................

........................................................

single precision double precision

******************************** *******************************

real complex real complex

--------------- --------------- --------------- ---------------

Benchmark Refrenc Present Refrenc Present Refrenc Present Refrenc Present

========= ======= ======= ======= ======= ======= ======= ======= =======

kSelMM 643.4 642.9 622.0 621.8 323.8 343.5 320.5 316.9

kGenMM 191.4 192.1 161.8 174.1 178.3 164.3 172.9 172.4

kMM_NT 140.0 138.5 127.4 129.3 137.4 136.1 126.4 131.8

kMM_TN 165.2 165.3 159.8 157.0 163.0 161.6 158.0 155.2

BIG_MM 604.1 617.0 601.8 599.8 311.3 332.3 309.2 292.1

kMV_N 74.3 70.2 211.2 197.5 51.9 48.4 107.3 99.7

kMV_T 82.2 79.8 97.2 95.3 46.4 43.9 77.6 73.3

kGER 60.1 56.9 153.5 130.3 38.8 32.0 77.5 64.8

We see that load and timer issues have made it so there is not an exact match, but that
neither install is worse overall, and so this install looks good! Now we are finally ready to
install the libraries. We can do so, and then check what got installed by:

etl-opt8>make install

...............................................

..............<A LOT OF OUTPUT>................

...............................................

etl-opt8>cd ~/local/atlas/

etl-opt8>ls

include/ lib/

etl-opt8>ls include/

atlas/ cblas.h clapack.h
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etl-opt8>ls include/atlas/

atlas_buildinfo.h atlas_dr1kernels.h atlas_strsmXover.h

atlas_cacheedge.h atlas_dr1_L1.h atlas_tcacheedge.h

atlas_cGetNB_gelqf.h atlas_dr1_L2.h atlas_trsmNB.h

atlas_cGetNB_geqlf.h atlas_dsyr2.h atlas_type.h

atlas_cGetNB_geqrf.h atlas_dsyr.h atlas_zdNKB.h

atlas_cGetNB_gerqf.h atlas_dsyr_L1.h atlas_zGetNB_gelqf.h

atlas_cmv.h atlas_dsyr_L2.h atlas_zGetNB_geqlf.h

atlas_cmvN.h atlas_dsysinfo.h atlas_zGetNB_geqrf.h

atlas_cmvS.h atlas_dtGetNB_gelqf.h atlas_zGetNB_gerqf.h

atlas_cmvT.h atlas_dtGetNB_geqlf.h atlas_zmv.h

atlas_cNCmm.h atlas_dtGetNB_geqrf.h atlas_zmvN.h

atlas_cr1.h atlas_dtGetNB_gerqf.h atlas_zmvS.h

atlas_cr1kernels.h atlas_dtrsmXover.h atlas_zmvT.h

atlas_cr1_L1.h atlas_pthreads.h atlas_zNCmm.h

atlas_cr1_L2.h atlas_sGetNB_gelqf.h atlas_zr1.h

atlas_csNKB.h atlas_sGetNB_geqlf.h atlas_zr1kernels.h

atlas_csyr2.h atlas_sGetNB_geqrf.h atlas_zr1_L1.h

atlas_csyr.h atlas_sGetNB_gerqf.h atlas_zr1_L2.h

atlas_csyr_L1.h atlas_smv.h atlas_zsyr2.h

atlas_csyr_L2.h atlas_smvN.h atlas_zsyr.h

atlas_csysinfo.h atlas_smvS.h atlas_zsyr_L1.h

atlas_ctGetNB_gelqf.h atlas_smvT.h atlas_zsyr_L2.h

atlas_ctGetNB_geqlf.h atlas_sNCmm.h atlas_zsysinfo.h

atlas_ctGetNB_geqrf.h atlas_sr1.h atlas_ztGetNB_gelqf.h

atlas_ctGetNB_gerqf.h atlas_sr1kernels.h atlas_ztGetNB_geqlf.h

atlas_ctrsmXover.h atlas_sr1_L1.h atlas_ztGetNB_geqrf.h

atlas_dGetNB_gelqf.h atlas_sr1_L2.h atlas_ztGetNB_gerqf.h

atlas_dGetNB_geqlf.h atlas_ssyr2.h atlas_ztrsmXover.h

atlas_dGetNB_geqrf.h atlas_ssyr.h cmm.h

atlas_dGetNB_gerqf.h atlas_ssyr_L1.h cXover.h

atlas_dmv.h atlas_ssyr_L2.h dmm.h

atlas_dmvN.h atlas_ssysinfo.h dXover.h

atlas_dmvS.h atlas_stGetNB_gelqf.h smm.h

atlas_dmvT.h atlas_stGetNB_geqlf.h sXover.h

atlas_dNCmm.h atlas_stGetNB_geqrf.h zmm.h

atlas_dr1.h atlas_stGetNB_gerqf.h zXover.h

etl-opt8>ls lib/

libatlas.a libcblas.so liblapack.a libptcblas.so

libatlas.so libf77blas.a liblapack.so libptf77blas.a

libcblas.a libf77blas.so libptcblas.a libptf77blas.so

The shared object support in ATLAS is still experimental, so we can get some idea if
our shared objects work by running an undocumented tester. To try a dynamically linked
LU factorization, we:

animal>cd ../bin

animal>make xdlutst_dyn

...............................................................

............<A WHOLE LOT OF UP-TO-DATE CHECKING>...............

...............................................................

make[1]: Leaving directory ‘/home/whaley/numerics/ATLAS3.7.38/animal64/bin’

gfortran -O -fPIC -m64 -o xdlutst_dyn dlutst.o \

/home/whaley/numerics/ATLAS3.7.38/animal64/lib/libtstatlas.a \

/home/whaley/numerics/ATLAS3.7.38/animal64/lib/liblapack.so \

/home/whaley/numerics/ATLAS3.7.38/animal64/lib/libf77blas.so \
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/home/whaley/numerics/ATLAS3.7.38/animal64/lib/libcblas.so \

/home/whaley/numerics/ATLAS3.7.38/animal64/lib/libatlas.so \

-Wl,--rpath /home/whaley/numerics/ATLAS3.7.38/animal64/lib

animal>./xdlutst_dyn

NREPS Major M N lda NPVTS TIME MFLOP RESID

===== ===== ===== ===== ===== ===== ======== ======== ========

0 Col 100 100 100 95 0.001 1273.153 1.416e-02

0 Col 200 200 200 194 0.002 2453.930 1.087e-02

0 Col 300 300 300 295 0.007 2574.077 8.561e-03

0 Col 400 400 400 394 0.017 2531.312 8.480e-03

0 Col 500 500 500 490 0.031 2701.090 7.610e-03

0 Col 600 600 600 594 0.051 2796.150 8.332e-03

0 Col 700 700 700 693 0.081 2832.877 7.681e-03

0 Col 800 800 800 793 0.116 2938.840 7.091e-03

0 Col 900 900 900 893 0.161 3014.142 6.856e-03

0 Col 1000 1000 1000 995 0.221 3019.330 7.097e-03

10 cases ran, 10 cases passed

So, we appear to be good, and the install is complete! Now we point our users to the
installed libs, and wait for the error reports to roll in.

9 Special Instructions for some platforms

9.1 Special Instructions for Windows

9.1.1 Setting up Cygwin

ATLAS requires cygwin in order to install under Windows. Cygwin provides a Unix-style
shell environment (including standard utilities such as gcc and make) for Windows. Cygwin
is free, and can be downloaded from www.cygwin.com. Setup is usually as easy as running a
install script selecting a mirror site, and selecting the right packages. If you have found you
have missed a package, just rerun the install script to add it. The packages that I install
are pretty much everything that mentions gcc and gfortran. You can find these packages by
entering “gcc” in the search box. You will also need gfortran, and all the usual developer
stuff (make, etc.). If you want to build libraries to be used by applications using MSVC++
or the Intel compilers, you will also want to be sure to install all the MinGW compilers and
tools (see the following sections for more info).

Microsoft’s Interix (AKA Windows Services for Unix, etc.) is not supported; Interix does
not appear to be actively supported by MS, and its tools are very old even when they work.
We now have some support for using the MinGW compilers (http://www.mingw.org/),
but the install itself still requires cygwin, and in our MinGW support we have used the
MinGW compilers provided by cygwin.

9.1.2 Choosing cygwin or MinGW compilers

ATLAS supports two installation methods under 32-bit Windows installs, and one on 64-bit
installs. For Windows where the library will be used in 32-bit mode, the user may choose to
install ATLAS using the cygwin GNU compilers. This is primarily useful when the user’s
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applications are also compiled using the cygwin enviromnent. This is the default installation
method when 32-bit is selected.

However, if the user’s application uses native Windows compilers such as MSVC++
or the Intel compilers, the cygwin libraries can be hard to link to. In this case, ATLAS
can be installed to use the the MinGW GNU compilers, which provide gcc/gfortran that
interoperate with native compilers. To tell ATLAS to build the 32-bit libraries using the
MinGW compilers, you should add:

-b 32 -Si nocygin 1

to your normal configure flags.
When ATLAS is configured to build 64-bit libraries, then the only supported compilers

are MinGW, since cygwin does not work in 64-bit mode. Therefore, no additional flags
beyond the usual -b 64 need be passed to configure in order to build a natively interoperable
64-bit library.

If you are using the MinGW compilers, configure will try to autofind the correct MinGW
binutils, but this may fail. If configure does not work, you may have to specify where your
MinGW binutils are installed, as discussed in Section 9.1.3.

9.1.3 Specifying the MinGW binutils to use

If ATLAS fails to find the correct MinGW compilers that you wish to use, you can manually
specify complete paths to configure. In the directory where you plan to do configure, but
before doing configure, create the file MinGW64.dat for a 64-bit install, or MinGW32.dat for
a 32-bit install. This file specifies complete paths to all the MinGW binutils needed by
ATLAS, one per line. The first line points to your MinGW ar, the second to ranlib, the
third to your gcc, and the fourth to your gfortran. If you are planning to configure to not
use a FORTRAN compiler (using the --nof77 flag), then you can omit the gfortran line.

Each line must be appropriately escaped if it contains embedded spaces or parens, as
Windows often does. This may or may not work, and if you have problems getting it
to work, I recommend using logical links to create working paths that don’t embed these
characters.

Here is an example of such a file as created for a 64-bit install using the MinGW compilers
provided by cygwin, saved to BLDdir/MinGW64.dat:

/usr/bin/x86_64-w64-mingw32-ar.exe

/usr/bin/x86_64-w64-mingw32-ranlib.exe

/usr/bin/x86_64-w64-mingw32-gcc-4.5.3.exe

/usr/bin/x86_64-w64-mingw32-gfortran.exe

Note that the entire file should be 4 (or 3 if gfortran isn’t used) lines, with no blank lines.

9.1.4 Creating MSVC++ compatible import libraries

If you configured with --shared, then ATLAS should autocreate both a .dll and a .def

file. My understanding is that the Windows tool LIB can then be used to create a MSVC++
compatible import library with commands like:

LIB /nologo /MACHINE:[x86,X64] /def/lib[s,t]atlas.def



9.1 Special Instructions for Windows Whaley 30

which will create the required .lib. For instance:

LIB /nologo /MACHINE:X64 /def/libtatlas.def

Should create the threaded ATLAS library libtatlas.lib for 64-bit Windows.
You can see the genesis of this approach in the e-mail thread:

https://sf.net/projects/math-atlas/forums/forum/1026734/topic/5349864

9.1.5 Special Instructions for 64 bit Windows (eg., Windows 7) users

64-bit capable Windows (like Windows 7) users can choose to build either the 32-bit or
64-bit libraries. If your application requires one or the other, then you know which you
want to use. If you have a choice, the 64-bit libraries are usually faster, due to the fact that
32-bit applications have access to only half as many registers. However, Windows chose
not use the standard AMD64 ABI. This has two unfortunate affects: (1) A 64-bit Windows
install cannot use ATLAS’s 64-bit assembly kernels, since they require the standard AMD64
ABI. (2) A 64-bit Windows install cannot use the architectural defaults, since ATLAS’s
architectural defaults will typically use assembly kernels that won’t work properly under
64-bit Windows. This means that 64-bit Windows installs can be substantially slower than
when using the same hardware with another OS (eg., Linux).

Therefore, on some platform where hand-tuned assembly is critical, the 32-bit libraries
can be faster than the 64-bit, since Windows utilized the standard 32-bit ABI. On systems
where good performing ANSI C routines are available, the extra registers will likely make
64-bit perform better. Therefore, if you can use either 32- or 64-bit libraries, it may make
sense to install both versions, and compare their performance.

Without architectural defaults ATLAS installs typically take most of a day. To avoid
this, consult the errata file: the plan is to try to get Windows users to submit their archi-
tectural defaults, so that Windows users can help each other. The errata file should contain
a link to the 64-bit Windows architectural defaults tarfile (remember that Windows users
wishing to build 32-bit libraries can use the standard architectural defaults).

During cygwin setup, be sure to select the gcc and gfortran packages that start with
“ming64”. Once you finish the install and open up a cygwin window, you should find the
64-bit compilers in /usr/bin/. I used the gcc 4.x series one. In my install the full path
was:

/usr/bin/x86_64-w64-ming32-gcc-4.5.3.exe

/usr/bin/x86_64-w64-ming32-gfortran.exe

If you don’t have files like this (though maybe different version numbers on gcc, obvi-
ously), run cygwin setup again and select the right packages.

In order to configure for a 64-bit Windows build, add these flags to your normal configure
options:

-b 64 -Si archdef 0

Since we can’t use the architectural defaults, the install will take a looong time. If you are
using the community-built architectural defaults from the errata file, you would instead use
the additional flags:

-b 64 -Ss ADdir <path to unpacked Win64 archdef directory>
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9.2 Special instructions for ARM with HARDFP ABIs

ATLAS assumes that the ARM ABI used is so-called SOFTFP, where floating-point values
are passed in the integer registers. If you are using a OS that has switched to the HARDFP
ABI, please scope the errata file for additional installation instructions.

9.3 Special instructions for OS X

Newer versions of OS X ship broken versions of the gnu binutils. They are deprecated in
favor of clang, which presently produces poor performance and wrong results for ATLAS.
Therefore, you will want to install a modern gcc using a system like fink, macports or
homebrew. Note that even in this case, Apple’s decisition to break gnu portability will still
limit your performance. The crippled assembler they provide does not understand AVX
instructions, which reduces your peak performance by half, and for some reason GNU gcc
is pretty much impossible to configure to ignore the native assembler in favor of its own
binutils.

Note that more recent GNU tar releases have become incompatible with OS X’s native
tar. If you have difficulty untarring the tarfiles, you may need to use gnu tar rather than
OS X tar. On many OS X systems, GNU tar is available as gtar.

9.4 Special instructions for AIX

Under AIX, it is critical that you define an envirnment variable indicating whether you are
building 64 or 32 bit libraries, and this definition must match what you pass to configure

via the -b flag. You need to define the environment variable OBJECT MODE to either 64
or 32, depending on which of these you pass to configure using the -b flag. So, if you
are building 64-bit libraries and you use a bash derivative shell, you would issue export

OBJECT MODE=64 before starting the ATLAS configure step. On the other hand, if you use
a csh derivative shell and want to build 32 but libaries, you would need to issue setenv

OBJECT MODE 32 before the build step.

9.5 Special instructions for SunOS

Solaris has its own version of the Unix utilities, which differ sharply from the more common
gnu tools. In particular, SunOS offers two fgreps, one of which works correctly for ATLAS’s
make check step, and one of which does not. On my SunOS machine, I had to make sure
/usr/xpg4/bin was in my path before /bin in order to get an fgrep that can take multiple
expression arguments (as make check requires).

Also, if gcc isn’t compiled with with the correct gnu utilities, ATLAS may fail to au-
todetect the assembly dialect of your machine. This will cause the build to fail since it
can’t assemble the UltraSPARC assembly kernels, and you can see if it happened by ex-
amining your Make.inc’s ARCHDEF macro. If this macro does not include the definition
-DATL GAS SPARC, then this has happened to you. On some systems, you can get the install
to work by adding the flag -s 3 to your configure invocation. If this still doesn’t fix
the problem, you’ll need to get a better gcc install. Note that this error causes linking to
assembled files to die with messages like:

ld: fatal: relocation error: R_SPARC_32: file /var/tmp//ccccPppx.o:
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symbol <unknown>: offset 0xff061776 is non-aligned

10 Troubleshooting

The first thing you need to do is scope the errata file to see if your problem is already
covered:

http://math-atlas.sourceforge.net/errata.html

Probably the most common error is when ATLAS dies because its timings are varying
widely. This can often be fixed with a simple restart, as described:

http://math-atlas.sourceforge.net/errata.html#tol

If you are unable to find anything relevant in the errata file, you can submit a support
request to the ATLAS support tracker (not the bug tracker, which is for developer-confirmed
bugs only):

https://sourceforge.net/tracker/?atid=379483&group_id=23725&func=browse

When you create the support request, be sure to attach the error report. It should
appear as BLDdir/error_<arch>.tgz. If this file doesn’t exist, you can create it by typing
make error_report in your BLDdir. More details on submitting support requests can be
found in the ATLAS FAQ at:

http://math-atlas.sourceforge.net/faq.html#help
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A Post-install Timing and Benchmarking

This appendix describes how to use ATLAS’s benchmarking tools, which are built and run
in OBJdir/results.

A.1 Setting up ploticus

You will need to get ploticus installed. On ubuntu, all you need is:

sudo apt-get install ploticus

I believe the command for fedora is (as root):

yum install -y pl

For other OSes, download the software from the ploticus homepage:

http://ploticus.sourceforge.net/doc/download.html

Under ubuntu, the executable is called ‘ploticus’. If your install is called something else
(eg., under Fedora it is called ‘pl’), then you’ll need to edit your BLDdir/results/Makefile
and change the PLOT macro to the correct name and path. You may also need to set where
to find the ploticus prefab files. For instance, under Fedora I had to:

export PLOTICUS_PREFABS=/usr/share/ploticus

A.2 Building the existing charts

To build complete reports comparing the present ATLAS install to other LAPACK/BLAS,
you can issue:

make atlvsys.pdf cmp="SYSTEM LIB NAME"

make atlvat2.pdf cmp="ATLASvXXXX" AT2dir="OBJdir/lib dir of previous install"

make atlvf77.pdf cmp="f77"

For example, to compare against MKL (setup as described below), you would issue:

make atlvsys.pdf cmp="MKL"

To compare against a previous version of ATLAS, you additionally must specify the
directory of the installed libraries using the AT2dir macro.

You can build individual charts comparing ATLAS versus another LAPACK/BLAS
install by issuing commands of the following form from BLDdir/results:

make charts/<pre><rout><side><uplo><ta>_<sz>_<cmp>[_pt].eps

Where the choices are:

1. pre: precision/type prefix, choose ‘s’, ‘d’, ‘c’, or ‘z’.

2. rout: choose ‘mmsq’ for square GEMM, ‘mmrk’ for rank-K update GEMM with K
equal to the make macro RK, or one of the l3blas names: ‘symm’, ‘herk’, ‘syrk’, ‘herk’,
‘syr2k’, ‘her2k’, ‘trmm’, ‘trsm’. You can choose one of the lapack names: ‘getrf’,
‘potrf’, ‘geqrf’.
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3. side : ‘L’ (Left) or ’R’ (Right)

4. uplo : ‘L’ (Lower) or ’U’ (Upper)

5. ta : ‘N’ (NoTranspose), ‘T’ (Transpose), ’C’ (ConjTrans)

6. cmp: choose ‘avs’ (compare present install to system lib like ACML or MKL), ‘ava’
(compare against prior ATLAS install), ‘avf’ (compare against F77 LAPACK &
BLAS).

7. size: varies problem sizes charted, choose: ‘tin’ (10-100), ‘med’ (200-2000), ‘lrg’
(2400-4000), ‘cmb’ (all sizes in one chart) ‘mlr’ (medium and large sizes in one chart).

8. _pt: if omitted, time serial, else time threaded

You can also get summary information that displays square GEMM and all factorization
performance on one chart with the commands:

make charts/<pre>factor_<sz>_<lib>[_pt].eps # results in MFLOPS

make charts/<pre>pcmm_factor_<sz>_<lib>[_pt].eps # results as % of GEMM

You can also get a summary chart of all QR variants using:

make charts/<pre>qrvar_<sz>_<lib>[_pt].eps # results in MFLOPS

Where <lib> is one of ‘atl’, ‘sys’, ‘at2’, and ‘f77’.
To compare differing ATLAS installs, edit your BLDdir/results/Make.plinc, and set

AT2dir to point to the other ATLAS install’s lib/ directory.
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To compare against a system LAPACK/BLAS, fill in the following macros in BLDdir/Make.inc

to point to the system libraries, rather than the default F77BLAS:

SBLASlib = $(FBLASlib) # should be serial sysblas

BLASlib = $(FBLASlib) # should be parallel sysblas

SLAPACKlib = # set to parallel system lapack

SSLAPACKlib = # set to serial system lapack

For instance, here’s how to set them to use ACML:

SBLASlib = /opt/acml4.4.0/gfortran64/lib/libacml.a

BLASlib = /opt/acml4.4.0/gfortran64_mp/lib/libacml_mp.a -fopenmp

SLAPACKlib = /opt/acml4.4.0/gfortran64_mp/lib/libacml_mp.a

SSLAPACKlib = $(SBLASlib)

MKL is a good deal more complicated, and you’ll have to see Intel’s directions for things
to work for your setup. On mine, I did:

MKLROOT = /opt/intel/mkl/

SBLASlib = -Wl,--start-group $(MKLROOT)/lib/intel64/libmkl_gf_lp64.a \

$(MKLROOT)/lib/intel64/libmkl_sequential.a \

$(MKLROOT)/lib/intel64/libmkl_core.a -Wl,--end-group -lpthread

BLASlib = -Wl,--start-group $(MKLROOT)/lib/intel64/libmkl_gf_lp64.a \

$(MKLROOT)/lib/intel64/libmkl_gnu_thread.a \

$(MKLROOT)/lib/intel64/libmkl_core.a -Wl,--end-group \

-fopenmp -lpthread

SLAPACKlib = -Wl,--start-group $(MKLROOT)/lib/intel64/libmkl_gf_lp64.a \

$(MKLROOT)/lib/intel64/libmkl_gnu_thread.a \

$(MKLROOT)/lib/intel64/libmkl_core.a -Wl,--end-group

SSLAPACKlib = -Wl,--start-group $(MKLROOT)/lib/intel64/libmkl_gf_lp64.a \

$(MKLROOT)/lib/intel64/libmkl_sequential.a \

$(MKLROOT)/lib/intel64/libmkl_core.a -Wl,--end-group

After the above setup, I can compare ATLAS’s medium-sized threaded Cholesky per-
formance to that of ACML by issuing:

make charts/dpotrf_LLN_mlr_avs_pt.eps cmp=ACML

gv charts/dpotrf_LLN_mlr_avs_pt.eps &

A.3 A guide to the tools (to build your own)

I have written a set of generic tools for manipulating the output of ATLAS’s timers, and
you can use and extend these tools if you want to autotime fancier/different things. All
tools give usage information if you pass --help on the commandline. All tools default to
taking input from stdin and output to stdout, so you can pipe them into each other. Each
tool does a very simple thing, and the idea is you build a pipe of them to do useful work.

To make building your own tools easy, examine SRCdir/include/atlas tvec.h which
contains a host of prewritten routines and data structures to make tool building easy.

All the tools I have written allow you to choose to keep only certain vectors of data
(corresponding to columns of output in the timer output). To give an example, say we ran
the following line:
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c2d>./xdmmtst_atl -F 120 -N 10 100 10 -T 0 -# 3 > timer.out

This will use gemmtst.c to time all square problems between 10 and 100 in steps of 10,
without doing any testing, forcing at least 120MFLOPS of computation for timing accuracy,
with three repetitions.

Here’s the tools I have written so far:

xatl2tvec : Reads in the output of a timer file, and produces a standard timing vectors
file that can be read by routines provided in atlas tvec.h and all downstream tools.
Example usage:

c2d>./xatl2tvec -# 3

xreducetvec : take tvec file with repetition timings and reduce them to single timings
while adding simple statistics like min, max, and average.

xcattvecs : take multiple vector files and combine them into one file for later comparison.
Renames vectors as necessary by adding _# to repeated names coming from later files.
Can specify for some vectors to get this statistical treatment, and other vectors to
just use the first one found.

xtvec2plp : Take a standard tvec file and produce a standard ploticus data file from it.

xmergetvecs : Take two standard tvecs that contain separate runs of the same data with
non-overlapping data, and combine them into one vector. Eg., you do one run with
N = 100, 200, 300 and a second with N = 1000, 5000, 8000. This routine will allow
you to combine these N ranges into one for charting all results in one graph. This
can be done repeatedly to merge any number of runs together.

xperctvecs : recast named tvecs as a percentage of a baseline. Can also be used to compute
speedup rather than percentage by adding -m 1.0 flag.

To see how these tools can be used together, you can trace the dependence chain of any
of the charts that are autobuilt, as explained in §A.2.


